Automatic Generation of Epsilon-Delta Proofs
of Continuity

Michael Beeson

Department of Mathematics and Computer Science
San Jose State University

San Jose, California 95192, USA

beeson@mathcs.sjsu.edu

Abstract. As part of a project on automatic generation of proofs in-
volving both logic and computation, we have automated the production
of some proofs involving epsilon-delta arguments. These proofs involve
two or three quantifiers on the logical side, and on the computational
side, they involve algebra, trigonometry, and some calculus. At the bor-
der of logic and computation, they involve several types of arguments
involving inequalities, including transitivity chaining and several types
of bounding arguments, in which bounds are sought that do not de-
pend on certain variables. Control mechanisms have been developed for
intermixing logical deduction steps with computational steps and with
inequality reasoning. Problems discussed here as examples involve the
continuity and uniform continuity of various specific functions.

1 Context of this Research

Mathematics consists of logic and computation, interwoven in tapestries of proofs.
“Logic” is represented by the manipulation of phrases (or symbols) such as for
all x, there exists an x, implies, etc. “Computation” refers to chains of formulas
progressing towards an “answer”, such as one makes when evaluating an integral
or solving an equation. Typically computational steps move “forwards” (from the
known facts further facts are derived) and logical steps move “backwards” (from
the goal towards the hypothesis, as in it would suffice to prove. The mixture of
logic and computation gives mathematics a rich structure that has not yet been
captured, either in the formal systems of logic, or in computer programs. The
research reported on here is part of a larger research program to do just that:
capture and computerize mathematics.

At present, there exist computer programs that can do mathematical compu-
tations, such as Mathematica, Maple, and Macsyma. These programs, however,
do not keep track of the logical conditions needed to make computations legal,
and can easily be made to produce incorrect results.t

! Just to give one example: Start with the equation a = 0. Divide both sides by a. In
all the three systems mentioned, you can get 1 = 0 since the system thinks a/a = 1
and 0/a = 0. Many other examples have been given in the literature [1],[15].

II

On the other hand, there are theorem-proving programs such as Otter [13](and
others too numerous to mention) which perform logical reasoning. These pro-
grams are quite limited in their computational abilities, although some of them
can perform rewrites using a specified set of equations. The input consists of a
file containing axioms, and a goal, usually expressed in clausal form. The pro-
gram contains no mathematical knowledge except that supplied in the axioms;
it only “knows” the laws of logic. Proof-search, such as these programs perform,
is not what is meant here by “computation”; although of course in some sense
the execution of any algorithm is computation, what we call computation here
is more like what an ordinary mathematician means by the word, a sequence of
more or less purposeful-appearing steps, with little or no trial-and-error involved.

This paper will present a framework for integrating logic and computation,
and report on experiments with the implementation of that framework. The
implementation is contained in two computer programs, Mathpert and Weier-
strass. The former has been reported on elsewhere in detail [1-3]: it contains
implementations of over two thousand mathematical operations, together with
logical apparatus to keep track of assumptions that may be required or gen-
erated by those operations. Mathpert (as in “Math Expert”) uses these opera-
tions to provide a computerized environment for learning algebra, trigonometry,
and calculus. It is the second program, Weierstrass, which is used in the re-
search reported here. Weierstrass began life as a C-language implementation of
a “backwards Gentzen” theorem prover, whose Prolog progenitor was described
in [4]. To this backbone has been added a set of control structures, or if you like,
implementations of special inference rules, to allow the proper meshing of log-
ical and computational steps. These control structures operate at the top level
of Weierstrass, but the computational steps themselves can use, in principle,
anything that has been implemented in Mathpert, which is all of high-school al-
gebra, trigonometry, and one-variable calculus including limits, differentiation,
and integration, as well as a good many techniques for rewriting inequalities,
and a few advanced algorithms, such as the Coste-Roy algorithm [10], based on
Sturm’s theorem, for determining whether polynomials have roots in given inter-
vals. The implementations of these operations in Mathpert are logically correct,
so that they can be used in Weierstrass without the risk of inconsistency that
would accompany the similar use of Mathematica, Maple, or Macsyma.?

The plan of the paper is to describe the control structures used in Weierstrass,
and then to illustrate their use by giving several examples of proofs produced
by Weierstrass.

No program has ever before produced an epsilon-delta proof of the continuity
of any specific non-linear function. For example, Bledsoe and his student Hines
have used the prover STRIVE [6] to prove that the sum of continuous func-
tions is continuous, and that linear functions are continuous, but it lacks the

2 Weierstrass is not an interactive program for producing a proof step-by-step. The
user supplies axioms and a goal, and Weierstrass finds a proof if it can. However,
the techniques discussed in this paper could easily be used to build an interactive
program.

11T

computational ability to carry out the proofs given here. Analytica [9] is linked
to the computational facilities of Mathematica, but essentially deals only with
quantifier-free proofs. The Boyer-Moore prover [7] has proved some impressive
theorems of number theory, including the law of quadratic reciprocity, but like
Analytica, works best with free-variable proofs, and cannot find epsilon-delta
proofs. Other directly relevant work includes [11], [16], [8]. A lengthier discus-
sion of these and other projects is precluded by the length limit on papers in
this volume.

2 Nature of the Proofs Produced by Weierstrass

To avoid confusion, some discussion of nature and purpose of computer-generated
proofs is necessary. Weierstrass produces (internally) a proof-object, which can
be displayed or saved in more than one form. The intention is, to produce a proof
that can be read and checked for correctness by a human mathematician; the
standard to be met is “peer review”, just as for journal publication. By contrast:
the purpose of Weierstrass is not to produce formal proofs in a specified formal
system.

Nevertheless, the program does produce a formal proof object. This object
can be regarded as a proof in a formal system, but some of the steps in the proof
involve more computation than is normal in formal systems. In traditional logi-
cal systems, checking that an inference step is correct according to the system is
a simple syntactic comparison to the rule used at that inference. In Weierstrass,
an inference step might involve the use of a mathematical algorithm, even for
example a complicated algorithm based on Sturm sequences, so that the correct-
ness of the step might not be obvious by inspection. If the algorithms used have
been correctly implemented, then the proofs are formally correct.? But certainly
we do not have proofs (formal or informal) of the correctness of the specific pro-
grams implementing more than two thousand mathematical operations available
in Weierstrass, so we must rely on human verifications that the actual output
of Weierstrass is an acceptable proof.

There is a different and more interesting reason why the proofs produced
by Weierstrass should be judged by the “peer review” standard. Namely, the
algorithms it uses represent theorems of all different “levels”. For instance, one
might protest that the “right way” to prove continuity theorems such as are con-
sidered here, is to prove general theorems about the continuity of compositions
of functions, etc., and quote them. Indeed, that is the way Mathpert proceeds
internally, e.g. when it has to verify the continuity of an integrand in evaluating a
definite integral. But when trying to prove the continuity of z*, we don’t want a
one-line proof based on the continuity of polynomials. To state the point another

3 This is really no different than in a purely logical theorem prover: one does not
demand that one should prove the correctness of the theorem-prover before accepting
its output as a proof. Otherwise, one would be involved either in an infinite regress
or a reflexive situation where a prover would prove its own correctness. And would
we believe it then?

v

way: People interested in foundations of mathematics try to order the concepts
and theorems of mathematics so that each one depends only on earlier results,
with everything resting on a few self-evident axioms. The body of mathematics
available to Weierstrass has not been so ordered; rather, there is simply a “web”
of known facts and algorithms, any of which can be used as required. We see one
example of this in the third example presented in this paper: Weierstrass doesn’t
mind using the mean value theorem to prove the continuity of f(z) = 1/, even
though the result seems “simpler” than the tool.

Some of the descendants of this program may become the “mathematician’s
assistant” of the future, a tool to which a practicing mathematician may turn
when a stubborn inequality needs to be proved. The standard of “peer review” is
the appropriate one for this type of program. Other descendants of this program
may be used in a project to construct a database of formalized mathematics, sim-
ilar to the Mizar project of today. In that case the questions of formal correctness
proofs for the computational steps, and of ordering the results and deriving them
from axioms, will eventually arise, but this will be a difficult enterprise.

3 The Logical Backbone of Weierstrass

The core of the logical apparatus in Weierstrassis a “backwards Gentzen prover”.
I shall now explain what is meant by that phrase. A Genizen sequent, or just
sequent, is an expression of the form Aq,..., A, = B, where the A; and B are
logical formulae (in some language).* The right side of the sequent symbol = is
called the succedent and the left side is the antecedent. The semantic interpre-
tation of a sequent is that the conjunction of the A; implies B. We allow true
and false as atomic propositions. The sequent calculus is a set of inference rules
for deducing one sequent from another. One standard reference for these rules is
Kleene’s book [12]. In that reference, an empty list can appear in the succedent;
we use false for this purpose, so that a formula always stands in the succedent.

When the sequent calculus is implemented in Weierstrass, most of the an-
tecedent is kept in a list of assumptions, which could in principle be quite long.
If axioms of induction are used, for example, new instances of the axioms can
be generated as required; axioms belong in the antecedent, since the sequent
calculus is for producing purely logical proofs. The only parts of the antecedent
that will be “passed” as function parameters are assumptions that are made
temporarily during the argument. For example, to prove an implication A — B,
we “assume” A and then try to derive B. This is the implementation of the
Gentzen rule

I'A=21H
I'=A—1B

4 These are sometimes called intuitionistic sequents, by contrast with classical sequents
which allow Bi,..., B, on the right. Weierstrass uses intuitionistic logic, but that
is for efficiency and convenience only, and is not essential. Indeed some of the com-
putational steps may not be intuitionistically valid.

v

In addition to the ordinary variables of logic, we also make use of “metavari-
ables”, whose values are expressions (terms or sometimes formulae), rather than
numbers or other mathematical objects which are the values of ordinary (object)
variables. Weierstrass introduces metavariables when it uses the Gentzen rules

I Affs] Alt/e,T =B
= 3rA VIA, I'=B

For example, to prove 36V, y(lr—y| < 6—|f(x)—f(y)| < €), Weierstrass will
change 6 to a metavariable, and try to prove VY, y(|x—y| < 6—|f(x)— f(y)| < €).
Eventually, § will be given a value (if the proof is successful), and when that
value is put in for the metavariable §, the result will be a (part of a) proof tree
which is legal according to the Gentzen rules. In the meantime, that is before
the final unifications take place, what is being constructed is something slightly
more general than a Gentzen proof tree; it is a Gentzen proof tree in which
metavariables are allowed, and the metavariables may have values, and the values
may be expressions involving other metavariables. (That is, the metavariables
can be “partially instantiated”.) A formal definition of an extended derivation,
and some related theorems, can be found in [4].

In general, Weierstrass starts by loading an axiom file, which contains (zero
or more) axioms and a goal. The goal is placed in the succudent, and the axioms
in the assumption list, which implements the antecedent. Weierstrass then at-
tempts to construct an extended derivation of this sequent. Unification is used
in order to instantiate metavariables introduced as described above. Unification
is also used to control the selection of the next rule to be applied. Some of the
logical rules are broken into subcases, and the order in which they are tried is
important. These matters are discussed in [4]. For the present work, it suffices
to note that the logical apparatus, functioning on its own, is a decent theorem-
prover. While it makes no attempt to compete with Otter, the logic required
for ordinary mathematics is comparatively simple, and in no example has the
logical apparatus required revision beyond what was described in [4] seven years
ago.

The implementation of a metavariable X includes a data structure designed
to keep track of a list of variables that are “forbidden” to X; this means that
X cannot have a value that contains variable forbidden to X. We make this
part of the definition (and implementation) of unification; see [5] for theoretical
reasons. This method provides an efficient way to keep track of the conditions
on variables that accompany the quantifier rules that introduce metavariables.
Instead of giving a metavariable a forbidden value, and carrying out another long
subproof, only to discard the result because the conditions on the quantifier rule
are violated, the unification will fail instead. I credit Natarajan Shankar for first
telling me something similar to this. The idea has been fruitful beyond this
improvement in efficiency, since we can use it in connection with computational
steps where we want to bound a certain quantity in terms of some bound that
does not depend on certain variables; this will be discussed below.

VI
4 Computational Methods in a Quantifier-free Prover

The theorem prover, or logical apparatus, in Mathpert is responsible for main-
taining the correctness of computations; it must block incorrect steps and ensure
that the assumptions do support the steps that are taken. The program Weier-
strass began by combining the methods of [4] for handling first-order logic, with
the methods of Mathpert for handling computations in a quantifier-free setting.
More precisely, the logical apparatus in Mathpert deals with sequents composed
of formulae which involve no implication or negation, but only disjunctions and
conjunctions of equalities and inequalities. When we say “quantifier-free” below,
this is what we mean. We describe those methods, as implemented in Weier-
strass, in this section.

4.1 Logical and Mathematical Simplification

Computational methods can be applied either to a mathematical expression
(term), or to a logical expression (proposition). That is, we can treat rewriting
propositions according to the laws of Boolean algebra on the same footing as
rewriting algebraic expressions according to the laws of eighth-grade algebra.
We apply the term “simplification” to describe the application of both algebraic
and logical operations.

4.2 Operations More General than Rewrite Rules

The term operation is here used to mean an algorithm that transforms an ex-
pression of a certain form into another expression, which is equal (algebraically
or logically) to the input, possibly under certain “side conditions”. For example,
Va2 =z represents an operation that transforms an expression of the form VAZ ,
where A is any expression, into A; but it has the side condition 0 < A. Opera-
tions may be rewrite rules, but they may well be more general than rewrite rules.
For example, the operation named collect powers can be used to rewrite a2z>
as 27, which is not a rewrite rule since arithmetic on the exponents is involved.
The same operation can be used to collect powers separated by other terms, as
in 22yx?, and to collect any number of powers, as in z2yx>z*. But, like rewrite
rules, operations can be applied to any subterm.

4.3 Operations and Side Conditions

Weierstrass keeps the assumption list (the antecedent) in simplified form, so it
is not necessary to look for operations to apply to the antecedent.?

5 When an operation is applied to the succedent, any occurrences of the same formula
that was changed in the succedent are also changed in the antecedent, after which
some simplifications in the antecedent may be performed to keep the antecedent in
simplified form.

VII

When the succedent is quantifier-free, Weierstrass will try to simplify it, try-
ing a large number of logical and algebraic operations. These operations, for
example, may simplify Boolean combinations of inequalities, or simplify certain
inequalities to true or false. Purely algebraic simplification will also be per-
formed, but not, for example, factoring or common denominators; except that
greatest common divisors may be cancelled out of fractions.

This last example brings up the interesting question of the relationship be-
tween the antecedent (assumptions) and the simplifications performed in the
succudent. Consider, for example, the proposition

xt—1

— >0
2 —1

If we cancel z? — 1 from numerator and denominator, we arrive at the proposi-
tion 2241 > 0, which will simplify to true. But, at some point we must assume
2% — 1 +# 0; otherwise the result is incorrect. The points to consider here are two:
(1) the original expression is not defined for all values of x, and (2) the domain
changes as a result of the application of an operation, which on the common do-
main preserves equivalence. The problem of “partial terms” (terms which can be
undefined) is thus closely related to the problem of “side conditions” of symbolic
operations.

4.4 Partial Terms, Domains, and Side Conditions

There are two natural ways to make the assumption 2 — 1 # 0 in the above
example: either at the outset, or when the cancellation is performed. Plan A
would be to analyze the domain of the goal when the problem is set up, and put
the domain conditions into the antecedent. According to plan A, the condition
22 — 1 would have been assumed at the outset, and hence could have been
inferred when required as the side condition for cancelling the common factor
of numerator and denominator. Plan B would be to allow potentially undefined
terms in the partially constructed proof, and only assume x? — 1 £ 0 when it is
required as a side condition for an operation. Plan B was mentioned in earlier
publications such as [4], but in the practical implementation of Mathpert, Plan
A was found to be more efficient; after all, we certainly need to assume that
the goal is defined to prove anything sensible at all. Therefore, Plan A has been
adopted in Weiersirass as well.

However, Plan B is not thereby consigned to the dustbin of history. There
remain situations in which a symbolic operation may have a side condition that
is not necessarily implied by the domain.® In such situations, Plan B will still
be used. An example would be the application of the operation VaZ = x, whose

% We use the word domain to mean a proposition giving the conditions under which
a term is defined; thus the domain of /z is 0 < z. If propositions are thought of as
Boolean-valued functions, and sets are also thought of as Boolean-valued functions,
as Church suggested, then this coincides with the usual usage that the domain of

vz is {z]|0 < z}.

VIII

side condition 0 < z is not implied by the domain.” In the proof tree formalism
of logic, Plan B would entail copying the new assumption to the antecedents
all the way down the tree from the place where the operation is applied to the
conclusion. In the implementation, however, most of the antecedent is kept in
the assumption list, rather than duplicated at every line of the proof tree, and
so adding the new assumption once suffices.

4.5 Infer, Refute, Assume

When an operation has a side condition, there are two choices: either the opera-
tion can try to infer the side condition, and fail if the inference fails, or it can try
to check the side condition, which means that it will try to infer it, and if that
fails, it will try to refute it, and if that fails it will simply assume it. Thus, if we
try to simplify an expression of the form v/A? to A, the side condition 0 < A will
be checked. If, for example, A is 3, the condition 0 < 3 will be successfully in-
ferred, so the simplification takes place without an assumption. If, on the other
hand, A is —3, then the condition will be refuted, and the simplification will
not take place. If, however, A is an expression such that 0 < A can neither be
inferred nor refuted, then it will be assumed.

Consider the example mentioned in the introduction, of dividing both sides
of @ = 0 by a. The side condition for dividing both sides of an equation by « is
that a £ 0. Can we infer this? No. Can we refute it? Not officially, since ¢ = 0
is in the succedent, rather than the antecedent. Then, we will assume it, and
obtain the logically correct but useless proof

a£0=>1=0

a#£0=>a=0

To prevent this sort of thing, refule is also allowed to use the antecedent as
a temporary assumption. That way, if the side condition is inconsistent with the
goal, we will avoid making a contradictory assumption. When this is done, the
attempt to divide a = 0 by a will result in an error message to the effect that
you can’t divide by zero. This can be seen working in Mathpert.

Note that the choice whether infer or check is used is specified in the oper-
ation itself. That is, there will be two different operations represented loosely
by the equation v#2 = z. One of them will infer the side condition (or fail)
and the other will check the side condition. In practice, it seems to work best
to avoid using check in the elementary simplification that are automatically ap-
plied in Weierstrass; after all, if we fail to prove the desired theorem because we
failed to list all the assumptions, we can run Weierstrass again after adding the
omitted assumption in the axiom file. But, the method is used to good advan-
tage in Mathpert, and may prove of value in future applications of systems like
Weiersirass.

To make this scheme work, infer and refute must be guaranteed to terminate,
and hence must be incomplete; that is, sometimes a true side condition will not be

" In practice, few such operations are applied automatically in Weierstrass, but an
interactive prover based on these principles would certainly use Plan B extensively.

IX

inferred, or a false one not refuted. We may wind up making a false assumption.
For example, if p(z) is an expression which is really identically zero, but can’t be
simplified to zero by the means of simplification used by infer, then we might be
led to make the assumption p(x) # 0, e.g. to divide both sides of an equation by
p(x). This could lead to logically correct but senseless results. This is, however,
unavoidable, as the problem of determining whether mathematical expressions
p(x) are identically zero is recursively unsolvable [14].

A related situation arises in solving equations. For example, consider the
equation x? —x = 0. If we divide both sides by 2, we make the assumption = # 0
and find the solution x = 1. This is logically correct, but we didn’t achieve the
goal of finding all solutions of the original equation. This may not be a logical
error, but it is a mathematical error, and hence has been blocked in Mathpert,

but in an interactive system based on Weierstrass, it would not necessarily be
blocked.

4.6 Using the Assumptions in a Computation

Suppose we try to simplify 0 < z, while 0 < z is in the assumption list. Then
it is efficient to allow 0 < x to simplify to true. For example, if 0 < x occurs
inside a disjunction in the succedent, the whole succedent may simplify to true,
completing (that branch of) a proof. Similarly, a side condition involving z # 0
should be reduced to 0 < « if 0 < x is in the assumption list.

4.7 Computation within the Scope of a Bound Variable

Even though Weierstrass applies simplification only to quantifier-free formulae,
sometimes it is still necessary to compute inside the scope of a bound variable,
since variables can be bound by definite integrals or indexed sums. For example,
we want to conclude that >, |, — 5% is everywhere defined, even though the
condition for #* to be defined (for an integer k) requires k¥ > 0V 2 # 0. But
k > 0 holds because the lower limit of the sum is positive. In the case of definite
integrals and indexed sums, this is handled by making temporary assumptions
out of the limits of the sum or integral, while the focus of computation is in
the scope of the sum or integral. Limit terms are handled similarly, but the
assumptions to made involve infinitesimals and the use of non-standard analysis;
this much more complicated algorithm is discussed in detail in [3]. Computation
within the scope of bound variables will not be discussed further in this paper.

4.8 What Formal System has been Implemented?

It is an interesting question to formulate precisely a language and rules of infer-
ence that could be said to be implemented by Weierstrass. One such language
has been specified in [3]; it essentially allows variables for integers and real num-
bers, equality and inequality, and symbols for all the elementary functions used
in calculus. A complete and precise grammar for such a language can be found

X

in [3]. This language also allows the formation of integrals, derivatives, indexed
sums, and limit terms; definite integrals, indexed sums, and limit terms can
bind variables. Weierstrass also allows the formation of A-terms which are not
specified in [3].

We turn now to rules of inference. A single additional rule schema describes
the simplest way to add computation to a quantifier-free prover:

I'=B B, I'= Ao
I'=A

where Ao denotes the result of applying some mathematical or logical op-
eration to A, or to a subterm of A, replacing the subterm by the result of the
operation. In the rule, B is the side condition of the operation, if any; if the
operation has no side condition, the premise ' = B does not occur. In principle
an operation could also have more than one side condition, in which case there
might be more than two premises.

The control strategy for applying this rule is this: whenever A contains no
quantifiers or implications or negations, try this rule, with a certain selection
of operations in a certain pre-specified order. But, the second premise I' = B
representing the side condition is not passed recursively to the main theorem-
prover, but must be derived by very limited means. This is to prevent long delays
or even infinite regresses attempting to verify the side conditions of mathematical
operations; in other words, a practical rather than a theoretical consideration.

This rule of inference does not, however, adequately describe the technique
of using the antecedent in simplification as described above. One way to do so,
although it is admittedly not very elegant, is to generalize the rule to this:

C,I'=(C— A)o C,I'=18B
C,.I'=A

Here C' is one assumption, and ¢ is an operation that can work on an impli-
cation (usually of inequalities). For example, ¢ might simplify ¢ < ¢ — a < ¢ to
true. In both Mathpert and Weierstrass, we never use more than one assumption
at once in the simplification process.

The above rules still don’t adequately describe Weierstrass or even Mathpert,
because they do not account for keeping the assumption list in simplified form.
To describe this we need to add the rule

o= A
I'=A4

where I'c represents the result of simplifying the assumption list I". Since
simplification generally can use formulas in the assumption list, Weierstrass has
to be careful when simplifying assumptions, or each assumption would simplify
to true! Each assumption is temporarily removed from the assumption list,
then simplified (possibly using the other assumptions), and the result replaces
the original assumption. This process is continued until nothing changes. The
result of these simplifications is I'o.

XI

5 Combining Computation with First-Order Logic

In previous sections, we have considered the backwards-Gentzen framework for
a theorem-prover, and the means of adding computation (simplification) to the
quantifier-free fragment of such a prover. We now take up the additional features
which were added to Weierstrass to allow it to handle epsilon-delta proofs.

The first point is that we must, under certain circumstances, allow Weier-
strass to factor, or even use trig factor identities. This is a question of control,
and not of something new in principle: since factoring preserves mathematical
equality, it can be treated exactly like the other computation rules discussed
above. It is just a question of factoring when it is useful, and not factoring when
it is not useful. To achieve this, we simply put it at the bottom of the list of
things to try; that is, below all the things that have been discussed above. It
will thus not be tried unless without it, the proof would fail. That will dispose
of the problem of factoring when it is not useful.

The other new features can be represented as additional inference rules, which
are, like the Gentzen rules, to be applied “backwards” with the aid of unification.
We shall describe several of these rules. Like all the rules in sequent calculus,
the premises and conclusion of these rules are sequents; but in all cases, the
antecedent is unchanged from premise to conclusion, so when writing the rules
below, we shall omit " = in both premises and conclusion.

5.1 Finding Upper and Lower Bounds

Every mathematician knows that many a proof boils down to finding a suitable
bound for some expression that does not depend on certain variables. We have
implemented a pair of algorithms called UpperBound and LowerBound. Upper-
Bound takes as input a term t to be bounded, and a list of variables on which
the bound may not depend. Otherwise put, it tries to find a legal value for a
metavariable M such that |t| < M could be derived, with the specified list of
variables forbidden to M. For example, UpperBound knows that |sinz| < 1. A
better example: if UpperBound is asked to bound x by a bound not depending
on x, and the current assumptions include ¢ < x and x < b, then it will return
the bound |z| < max(|a|, |b]). UpperBound is probably as good as a very good
calculus student at what it does. LowerBound is similar, but it tries to find M
such that M < |t|. The two algorithms are defined by mutual recursion.

UpperBound is added directly to Weierstrass as a rule of inference with no
premises. That is, when we have a goal of the form a < M, where M is a
metavariable and « is some expression, we can directly terminate that proof
branch, instantiating M to the expression produced by UpperBound, supplying
as the second argument to UpperBound the list of variables forbidden to M.

5.2 Factor Bounding

The second new inference rule to be added is called FactorBounding. It says that
if you want to prove 7 is small, one way to do it is to prove that « is small

XII

and give a bound for 3. The following rule is state for simplicity using only two
factors, but the rule is implemented for a product of any number of factors:

ol <bd=y< M Ial<b=10] <e¢/(M+1)

Ia)l<b6=|8v] <e¢

When this rule is implemented, we take M to be a fresh metavariable, and for-
bid to M all the variables that are forbidden to é. In the present implementation
of Weierstrass, the rule is used only when §é is a metavariable. The implementa-
tion also provides an algorithm for deciding which of several factors to bound:
it first identifies the quantity in the antecedent that must be less then 6, and
then looks for a factor which has a nonzero finite limit as that quantity tends to
zero. Limit calculations are performed by symbolic code from Mathpert. These
limit calculations do not enter the actual proof; they are only used to select the
factor to try to bound.

At this point, you might want to turn to Example 1 in the next section, to
see how UpperBound and FactorBounding are used to prove the continuity of

flw) = 2.

5.3 Inequality Chaining

A notorious difficulty in inequality proving is the necessity of using transitivity
chains, and the difficulty of finding the right chain of inequalities in an exponen-
tially large search space. However, many useful chains are of length two, based on
some standard “known” inequality. For example, if we want to prove |sinz| < €,
it will suffice to prove |z| < € in view of the known inequality |sinz| < |z|.
Weierstrass implements this idea in an algorithm UsefulBounds. Described as in
inference rule, this just looks like transitivity:

a<p 8 <e
a<e

When implemented, o < 3 is one of a list of specific known inequalities that
have been supplied to Weierstrass. For example, a special case of the rule would
be

|sinz| < |x] |z] < e

|sinz| < e

This rule of inference is needed by Weierstrass to prove the uniform continuity
of sinx. See the discussion of this example in the next section.

UpperBound is also capable of controlling some transitivity chaining through
the inequalities present in the antecedent. For example, if it is trying to solve
x < M, where x and y are forbidden to M, and the antecedent contains x < y
and y < b, the bound x < b will be found, and M will get the value b.

5.4 Mean Value Theorem

Weierstrass can use the mean value theorem to prove an inequality. This is an
interesting rule of inference, because it reduces a quantifier-free goal to a subgoal

XIIT

involving quantifiers. The purely logical rules of Weierstrass use the cut-free rules
of sequent calculus, which always reduce goals to logically simpler subgoals. Here
is the rule of inference M VT:

Vazz <z<y— flx) < M) |z —y| <e/M
[f(@) = fy)l < e

There is another rule under the same name, in which the conclusion and
the second premise have strict inequality. When implemented, M is a freshly-
created metavariable, and x and y are added to the list of variables forbidden
to M. Note that this would not be the case if the rule were stated with an
existential quantifier over M in the premise (combining the two premises into
a conjunction). It is by controlling the list of variable forbidden to M that
Weierstrass is induced to look for a bound independent of x and y. Now, in
general such a bound cannot exist unless the range of x and vy is restricted by
further inequalities, so some inequality chaining will generally be needed to find
the bound M. As an example of such a proof, we consider in the next section, a
proof of the uniform continuity of 1/ on closed intervals [a,b] with a > 0.

6 Examples of Proofs that Weierstrass Can Find

In this section we describe the key points of certain illustrative example proofs.
The strict length limit does not permit the inclusion of the actual output of
Weierstrass.

6.1 Uniform Continuity of f(x) = 3 on Closed Intervals

. This example illustrates the use of UpperBound and FactorBounding. When
Weierstrass is asked to prove the uniform continuity of f(z) = 3 on closed
intervals [a, b], it soon arrives at the problem of finding a value for the metavari-
able 6 such that, assuming |2 — y| < 8, we could derive |2® —3?| < €. Factoring,
this reduces to |z —y||2% +2y+v?| < €. At this point, the above rule will be used
(in reverse, with a = |2 — y|), creating the two new goals |z 4+ 2y + %| < M
and |r — y| < ¢/(M + 1). The first one will be solved by using UpperBound,
instantiating the metavariable M to 3max(|a|, |b]) and the second will be solved
by the axiom rule I A = A, where A is the assumption |r—y| < 6, instantiating
the metavariable 6§ to /(M + 1).8

6.2 Uniform Continuity of sinx and cosx

These two theorems are proved by Weierstrass in a way similar to the above
example. However, there are two new twists to the argument. First, Weierstrass
needs to use the trig factoring operations, not just polynomial factoring, in order

8 Weierstrass will be able to handle the case of f(x) = ™ similarly, where n is an
integer variable, as soon as UpperBound is extended to handle indexed sums, since
an indexed sum arises when z™ — 3" is factored.

XIv

to write sinz — siny as 2sin(1/2(x — y)) cos((1/2)(z + y). Then in order to
instantiate 8, it must use UsefulBounds to apply the known inequality |sinu| <
|u|, since FactorBounding will produce the subgoal sin(1/2(x —y)) < ¢/(M + 1),
which does not unify directly with |z — y| < 8. Even after |sinu| < |u| is used,
the 2 in the denominator still requires another step, which however Weierstrass
takes without difficulty, since an inequality can be simplified by multiplying both
sides by 2. This is an example of computation applied to a proposition rather
than a mathematical term.

6.3 Continuity of f(x) = /=

More precisely, the example is the uniform continuity of /2 on closed intervals
[a,] with 0 < a. To handle the continuity of 1/2 by factoring, we would have to
get, Weterstrass to write

|z —yl
VE Vil =

It would certainly be possible to do this, but it would be ad hoc, as the kind of
computation rule that would do this would cause trouble elsewhere, so it would
have to be added as a logical inference rule for this special sort of inequality.
Rather than add an ad hoc rule, we chose to use this example as an illustration
of the use of the Mean Value Theorem. Weierstrass will compute the derivative
of v/ and bound it. Specifically, the inference rule M VT described above will
introduce a new metavariable M and create the subgoals, |z — y| < ¢/M and
Va(x < 2z <y — [(1/2)22| < M. Note that the derivative is evaluated. The
variables z,y, and z are forbidden to M. When UpperBound tries to bound 272,
it calls LowerBound to bound z, and successfully finds the transitivity chain
a < x < z, arriving at the bound a < 2.

References

1. Beeson, M.: Logic and computation in Mathpert: an expert system for learning
mathematics, in: Kaltofen, E., and Watt, S. M. (eds.), Computers and Mathematics,
pp. 202-214, Springer-Verlag (1939).

2. Beeson, M.: Design Principles of Mathpert: Software to support education in alge-
bra and calculus, in: Kajler, N. (ed.) Human Interfaces to Symbolic Computation,
Springer-Verlag, Berlin/ Heidelberg/ New York (1996).

3. Beeson, M.: Using nonstandard analysis to ensure the correctness of symbolic com-
putations, International Journal of Foundations of Computer Science 6(3) (1995)
299-338.

4. Beeson, M.: Some applications of Gentzen’s proof theory in automated deduction,
in: Shroeder-Heister, P., Fxtensions of Logic Programming, Springer Lecture Notes
in Computer Science 475, pp. 101-156, Springer-Verlag (1991).

5. Beeson, M.: Unification in lambda-calculus, to appear in Automated Deduction:
CADE-15 - Proc. of the 15th International Conference on Automated Deduction,
Springer-Verlag, Berlin/Heidelberg (1998).

XV

6. Bledsoe, W. W.: Some automatic proofs in analysis, pp. 80—118 in: W. Bledsoe and
D. Loveland (eds.) Automoated Theorem Proving: After 25 Years, volume 29 in the
Contemporary Mathematics series, AMS, Providence, R. 1. (1984).

7. Boyer, R., and Moore, J.: A Computational Logic, Academic Press (1979).

8. Buchberger, B.: History and basic features of the critical-pair completeion proce-
dure, J. Symbolic Computation 3:3-88 (1937).

9. Clarke, E., and Zhao, X.: Analytica: A Theorem Prover in Mathematica, in: Kapur,
D. (ed.), Automated Deduction: CADE-11 - Proc. of the 11th International Con-
ference on Automated Deduction, pp. 761-765, Springer-Verlag, Berlin/Heidelberg
(1992).

10. Coste, M., and Roy, M. F.: Thom’s lemma, the coding of real algebraic numbers,
and the computation of the topology of semi-algebraic sets, in: Arnon, D. S., and
Buchberger, B., Algorithms in Real Algebraic Geometry, Academic Press, London
(1988%).

11. Harrison, J., and Thery, L.: Extending the HOL theorem prover with a computer
algebra system to reason about the reals, in Higher Order Logic Theorem Proving
and its Applications: 6th International Workshop, HUG 93, pp. 174-184, Lecture
Notes in Computer Science 780, Springer-Verlag (1993).

12. Kleene, S. C., Introduction to Metamathematics, van Nostrand, Princeton, N. J.
(1952).

13. McCune, W.: Otter 2.0, in: Stickel, M. E. (ed.), 10th International Conference on
Automated Deduction pp. 663-664, Springer-Verlag, Berlin/Heidelberg (1990).

14. Richardson, D., Some unsolvable problems involving elementary functions of a real
variable, J. Symbolic Logic 33 511-520 (1968).

15. Stoutemeyer, R.: Crimes and misdemeanors in the computer algebra trade, Notices
of the A.M.S 38(7) 779-735, September 1991.

16. Wu Wen-Tsum: Basic principles of mechanical theorem-proving in elementary ge-
ometries, J. Automated Reasoning 2 221-252, 1986.

A Appendix: Output of Weierstrass on the Examples

Weierstrass produces an internal proof object, which can be viewed in either
“trace view” or “proof tree view”. These views both use two-dimensional display
of formulas on the screen. When you choose File | Save As, you save a text
representation of the proof, either as trace or as proof tree. Formulas are written
in a parseable form, similar to TEX, but without backslashes, and enclosed in
dollar signs. In the future, 1 intend to use these files with WebTXto post proofs
to the Web. For purposes of these appendices, I have simply included these
files verbatim (inserting only some line breaks) to avoid any errors introduced
by transcribing them into TEX, and to demonstrate exactly what the program
produces. I have used trace view, since the files are more readable than with proof
tree view. Even so, these files do not convey the process of proof construction
well, since the metavariables are replaced by their final values; for example,
we don’t see how and when 6 is found, but instead it appears to be “pulled
out of a hat” near the beginning of the proof. It is interesting that this very
phenomenon is often a problem in the presentation of proofs produced by human
mathematicians!

XVI

A.1 Continuity of f(x) = =3

Assuming $epsilon > 0%
Trying $exists(delta,all(x,y,a <= x,x <= b,a <= y,y <= b,
abs(x-y) < delta->abs(x"3-y~3) < epsilon))$
Trying $all(x,y,a <= x,x <= b,a <= y,y <= b,
abs(x-y) < X->abs(x"3-y~3) < epsilon)$
Assuming $a <= x,x <= b,a <= y,y <= b,abs(x-y) < X$
Trying $abs(x"3-y~3) < epsilon$
Factoring, it would suffice to prove:
$abs(x-y) abs(x"2+x y+y~2) < epsilon$
We have the following bound:
$abs(x"2+x y+y~2) <= 3(max(abs(a),abs(b))) 2%
So it would suffice to prove:
$abs(x-y) < epsilon/(3(max(abs(a),abs(b))) "2+1)$
Aha! we have
$abs(x-y) < epsilon/(3(max(abs(a),abs(b))) "2+1)$
success
Discharging
success
success
Discharging

A.2 Continuity of f(x) = sinx

Trying $epsilon > O->exists(delta,all(x,y,abs(x-y) < delta->
abs(sin(x)-sin(y)) < epsilon))$
Assuming $epsilon > 0%
Trying $exists(delta,all(x,y,abs(x-y) <
delta—>abs(sin(x)-sin(y)) < epsilon))$
Trying $all(x,y,abs(x-y) < 1/2 epsilon->
abs(sin(x)-sin(y)) < epsilon)$
Assuming $abs(x-y) < 1/2 epsilon$
Trying $abs(sin(x)-sin(y)) < epsilon$
Using trigonometry, it would suffice to prove:
$2abs(sin(x-y)/2) abs(cos(x+y)/2) < epsilon$
Dividing both sides, it would suffice to prove:
$abs(sin(x-y)/2) abs(cos(x+y)/2) < 1/2 epsilon$
We have the following bound:
$abs(cos(x+y)/2) <= 1%
So it would suffice to prove:
$abs(sin(x-y)/2) < epsilon/4$
In view of the known inequality |sin x| < [x| we have:
$abs(sin(x-y)/2) <= abs((x-y)/2)$
it would therefore suffice to prove:
$abs((x-y)/2) < epsilon/4$

XVII

Simplifying, it would suffice to prove:
$2abs(x-y) < epsilon$
Dividing both sides, it would suffice to prove:
$abs(x-y) < 1/2 epsilon$
Aha! we have $abs(x-y) < 1/2 epsilon$
success
Discharging
success
success
Discharging
success

A.3 Continuity of f(r) = /=

Assuming $a > 0,epsilon > 0%
Trying $exists(delta,all(x,y,a <= x,x <= b,a <= y,y <= b,
abs(x-y) < delta->abs(sqrt(x)-sqrt(y)) < epsilon))$
Trying $all(x,y,a <= x,x <= b,a <= y,y <= b,abs(x-y) <
epsilon/(1/2 a~(-1/2))->abs(sqrt(x)-sqrt(y)) < epsilon)$
Assuming $a <= x,x <= b,a <= y,y <= b,
abs(x-y) < epsilon/(1/2 a~(-1/2))$%
Trying $abs(sqrt(x)-sqrt(y)) < epsilon$
Simplifying, it would suffice to prove:
$abs(x~(1/2)-y~(1/2)) < epsilon$
By the mean value theorem applied to $fz = z~(1/2)$
it would suffice to prove:
$all(z,x <= z,z <= y—>abs(1/2 z~(-1/2))
<= 1/2 a~(-1/2)) ,abs(x-y) < epsilon/(1/2 a~(-1/2))$
Trying $all(z,x <= z,z <= y—>abs(1/2 z~(-1/2)) <= 1/2 a~(-1/2))$
Trying $x <= z,z <= y—>abs(1/2 z~(-1/2)) <= 1/2 a~(-1/2)$
Assuming $x <= z,z <= y$
Trying $abs(1/2 z~(-1/2)) <= 1/2 a~(-1/2)$
We have the bound: $abs(1/2 z~(-1/2)) <= 1/2 a~(-1/2)$
success
Discharging
success
success
Trying $abs(x-y) < epsilon/(1/2 a~(-1/2))$
Aha! we have $abs(x-y) < epsilon/(1/2 a~(-1/2))$
success
success
Discharging
success
success
Discharging

