
Unification in Lambda-Calculus

Michael Beeson

Department of Mathematics and Computer Science
San Jose State University

San Jose, California 95192, USA
email: beeson@mathcs.sjsu.edu

Abstract. A new unification algorithm is introduced, which (unlike pre-
vious algorithms for unification in λ-calculus) shares the pleasant proper-
ties of first-order unification. Proofs of these properties are given, in par-
ticular uniqueness of the answer and the most-general-unifier property.
This unification algorithm can be used to generalize first-order proof-
search algorithms to second-order logic, making possible for example a
straighforward treatment of McCarthy’s circumscription schema.

1 Introduction

The origins of this work lie partly in an attempt to build a theorem-prover capa-
ble of implementing John McCarthy’s work on circumscription. Circumscription
is a second-order axiom schema, and cannot, in its full generality, be reduced
to first-order. Indeed, it does not seem any easier to build a theorem-prover to
handle all cases of circumscription than to handle second-order logic in general.

Second-order logic uses λ-terms to define predicates, and hence any attempt
to mechanize second-order logic necessarily will involve unification of λ-terms.
Huet [Huet 1975] introduced an algorithm for unifying terms in λ-calculus, and
Miller and Nadathur [Miller and Nadathur] introduced an extension of Prolog
to a fragment of second-order logic (in fact higher-order logic) based on a similar
unification algorithm. However, it turned out that Huet’s algorithm isn’t enough
to handle circumscription. The difficulty is not hard to understand: Suppose we
want Q(1) = 1 and Q(2) = 0 (Q can be thought of as a predicate by treating 1
as true and 0 as false). Huet’s unification, given the problem Q(1) = 1, is only
going to produce λx.1 and λx.x as possible values of Q, neither one of which
satisfies Q(2) = 0. Moreover, it is unpleasant that Huet’s notion of unification
does not have “most general unifiers”. These difficulties are related; when the
right notion of unification is defined, there are “more” unifiers, and there is also
a “minimal” or “most general” unifier, of which all the others are “extensions”.

This paper contains the definition of this new unification algorithm, and the
proof that it always produces a most general unifier.

2 Related Work

This unification algorithm can be used to extend to second-order logic the “back-
wards Gentzen” theorem-prover described for first-order logic in [Beeson 1991].



As far as I know, the new unification algorithm presented here makes pos-
sible the first direct implementation of circumscription, i.e. using second-order
logic directly in proof search. Lifschitz has given a method of reducing some
cases of circumscription to first-order logic, where it seems certain that existing
theorem-provers could handle the transformed problem, although the experiment
hasn’t actually been carried out([Lifschitz 1985]). A theorem-prover described
in [Baker-Ginsberg 1989] and [Ginsberg 1989] is related to circumscription via
Lifschitz’s result, but does not involve circumscription in its mechanism. Exper-
iments with this algorithm in automatic deduction by circumscription will be
described elsewhere.

3 λ-Calculus and definition by cases

We are interested in applications of unification to various logical systems, in-
cluding second-order logic and various type theories. All of these logics can be
expressed as subsystems of λ-calculus, so it is natural to study unification in the
general setting of λ-calculus. The system of λ-calculus for which we solve the
unification problem is an extension of the usual λ-calculus. We call this system
λD. It is formed by adding to the ordinary λ-calculus a new constant d for defi-
nition by cases, and the following reduction rules. In these rules, equality means
“reduces to”.

d(x, x, a, b) = a

d(x, y, Zy, Zx) = Zx

d(x, y, y, x) = x

d(x, y, a, a) = a

Taking Z = λx.x and Z = λx.a, the last two rules follow as equalities from the
second, but as reduction rules instead of just equalities they are not superfluous.
We also might consider a rule similar to δ-reduction, namely, for distinct normal
terms t and s,

d(t, s, a, b) = b

but this rule is not needed in our system.1

A natural question is whether λD satisfies the Church-Rosser theorem. J.
W. Klop showed that it does not (private correspondence). Equality of terms
in λD is defined by the transitive closure of the relation “a and b have a com-
mon reduct”. Klop’s counterexample to Church-Rosser leaves open the question
whether normal forms are unique in λD, and indeed leaves open the possibility
that two terms not containing d, which have no common reduct in λη-calculus,
might still be equal in λD. Indeed, for all we know at this point, T and F might
be equal in λD. The following shows that this is not the case: λD is consistent
and indeed is a conservative extension of λη, for equations between closed terms.

1 The λδ-calculus involves a constant δ and the reduction rules δαα → T and δαβ → F

when α and β are distinct closed normal terms. See [Barendregt 1981], p. 396 for
the classical results about λδ-calculus.



Theorem. Let P and Q be two closed terms not containing d, and suppose
P = Q in λD-calculus. Then P = Q already in λ-calculus.

The proof of this theorem is long and technical, and the strict length limit
on papers in this volume prohibits its inclusion. To avoid dependency on this
result, one can work instead in a typed λ-calculus. To be specific, we consider
simply-typed λ-calculus with one ground type, as described in Appendix A of
[Barendregt 1981]. To this system we can consistently add a constant d of each
sensible type such that in d(a, b, x, y), a and b are of ground type and x and y are
of the same type (not necessarily ground), and postulate the laws d(a, b, x, y) = x
if a = b and y otherwise. Then the typed versions of the d-laws of λD are valid.
The reader with doubts about the theorem just stated can read the rest of the
paper as being about this system of typed λ-calculus instead of λD.

We write t ∼= s to mean tx = sx, where x is a variable not contained in t or
s.2 Note that extensional equality is preserved under reduction: if a ∼= b and a
reduces to a′ and b reduces to b′ then aa′ ∼= b′.

The second d-rule above then takes the form

λx.d(x, a, Za, Zx) ∼= Z

This form of the rule will be used in the most-general-unifier calculation in a
subsequent section.

4 Lambda Calculus and Logic

It is well-known that second-order logic can be defined in lambda-calculus (see
[Barendregt 1981], p. 570, for basic references, and [Prawitz 1967] for full de-
tails). We specify a few notational matters that will be needed to support the
proofs in this paper.

It will be convenient to consider λ-calculus as enlarged with a stock of con-
stants, as well as variables. Technically we can just regard half of the usual
variables as “constants”; unification will only instantiate the variables, but not
the constants. Note that constants can still be used for λ-abstraction, i.e. from
within the λ-calculus they are just like variables.

When logic is translated into lambda-calculus, the “object variables” (vari-
ables of the logic) become constants in lambda-calculus, as do the constants and
function symbols and predicate symbols of the logic. Also the quantifiers and log-
ical symbols such as ∧ and → become constants or constant terms (containing no
variables) of λ-calculus. The variables of λ-calculus are used as “metavariables”
to range over terms of logic. When we look for a proof of a theorem ∃xA(x), we
first replace x by a metavariable X and search for a proof of A(X). We hope
that eventually unification will “instantiate” X to some term. In λ-calculus, the

2 The η-reduction rule in λ-calculus says that (λx.t)x reduces to t. This is not a rule
of the usual λ calculus, but it has been extensively studied. We deliberately use
the relation t ∼= s rather than equivalence in λη-calculus, to avoid the technical
complications of adding η-reduction and the d-rules to λ-calculus at the same time.



logical metavariable X becomes a variable, and the object variable x of the logic
becomes a constant of λ-calculus.

Second-order logic has two kinds of variables, first-order and second-order. It
is customary to use capital letters for second-order variables. This conflicts with
the Prolog convention, in which capital letters are used for metavariables. We
therefore use boldface for logical metavariables; but in λ-calculus, we use lower-
case letters for variables, as usual. Second-order logic permits the formation of
λ-terms which are thought of as comprehension terms, i.e. λx.a(x) intuitively
represents the set of x such that a(x). Such terms translate directly into λ-terms
of λ-calculus, where a λ-term is thought of as a predicate, taking values T or F.

In logic, predicates and functions can have more than one argument, but in
λ-calculus, “currying” is used; that is, f(x, y) is an abbreviation for (fx)y. Thus
the translation of an atomic formula P (x, y) will be in curried form.

5 A New Unification Algorithm

Huet pointed out in [Huet 1975] that equations involving second-order variables
in general have many solutions, even if we require the solutions to be definable by
λ-terms. For example, X(1) = 1 could be solved by X = λx.x or by X = λx.1.
Hence, he said, we cannot expect unique “most general unifiers” as in first-order
logic, and he went on to give a unification algorithm that produces many unifying
substitutions. As pointed out in the introduction, in applications the solutions
produced by Huet’s algorithm do not suffice, partly because the algorithm does
not produce terms for functions defined by cases, but only by pure λ-terms.

One approach to the problem, which I first tried, is to allow terms for func-
tions that are only partially defined. This probably works, but it requires many
details, as the necessary formal systems are not in the literature. Here we take
a different approach: we allow unification to produce answers containing a new
variable. Instead of having some values (which aren’t needed to solve the equa-
tion at hand) be undefined, we just leave them unspecified, by using a new free
variable.

To lead up to the definition of unification, we will give an important case of
the definition first. Consider the problem of unifying X(t) with s, where X is a
variable and t and s are constant terms. To solve this unification problem, we let
Y be a new variable and take X = λx.d(x, t, s, Y x). More precisely, we return
the substitution θ whose value on X is the term λx.d(x, t, s, Y x). Think of this
as “if x = t then s else unspecified”.

To understand this definition, consider an example: when we unify X(0) with
1, we get X = λx.d(x, 0, 1, Y x), which takes the value 1 at 0, and elsewhere is
“unspecified”, that is, has the value Y x where Y is a new variable. By contrast,
Huet’s unification would give only the constant function X = λx.1. Consider a
second example: unify X(1) with 1. Huet’s unification would give two distinct
answers: X = λx.1 and X = λx.x. Our answer is “more general” than each of
these, and more general than infinitely many other special answers obtained by



specifying other values of X than X(1). The “most general” answer specifies
only X(1), leaving the other values unspecified.

However, in that definition of what it means to unify X(t) and s, it is impor-
tant that t and s were constant terms. Consider the problem of unifying X(z)
and a(z), where a is constant. Do we want X = λx.d(x, z, a(z), Y x)? Well, in
some cases we might, but in other cases we want X = λx.(a(x) ∨ Y x). For ex-
ample, if we are trying to prove in second-order logic that ∃X(a(z) → X(z), we
will first replace X by a metavariable X and then try to unify X(z) with a(z).
We want to get X = λz.a(z) or some answer more general than that, such as
X = λz.(a(z) ∨ Y (z)).

This raises an issue which could/should have been considered already in ordi-
nary unification. When a theorem-prover replaces a quantifier by a metavariable,
there is restriction on the (object) variables that can occur in the answer sub-
stitution when it is eventually found. In the above example, when X is replaced
by X, the restriction is that the eventual value of X is not allowed to contain a
free occurrence of z. In [Beeson 1991], a simply-programmed inference program
allows “wrong” unifications to be temporarily considered and rejected later. An
improvement to the program, suggested by N. Shankar, keeps track of these
restrictions and rejects unifications that violate them immediately. Considering
unification in second-order logic or lambda-calculus brings this “trick” into fo-
cus: it should be part of the definition of unification. That is, unification takes
place relative to a finite set of restrictions on the possible values of variables;
these restrictions are part of the input to the unification algorithm. Whether we
take X = λz(a(z)∨Y (z) or X = λzd(x, z, a(z), Y x) will depend on whether z is
forbidden to X or not, i.e. whether X is restricted from taking values depending
on z.

We now make these ideas precise.

Definitions. A restriction is a pair consisting of a variable (of lambda-calculus)
and a (possibly empty) list of constants.3 An environment is a finite list of
restrictions.4 If 〈x, r〉 is a member of the environment E we say that the variable
x occurs in E or is mentioned in E, and that all the members of the list r
are forbidden to x in E. We say a compound term t is forbidden to x in E
if it contains a free occurrence of any constant that is forbidden to x in E. A
substitution is a function from variables to terms. The substitution σ is legal for
environment E provided σ(X) is defined for all X that occur in E and that σ(X)
does not contain free occurrences of any variable or constant forbidden to X in
E. The substitution σ unifies terms t and s relative to E if for some substitution
χ whose restriction to E is the identity, we have tσχ = sσχ.5

The inputs to the unification algorithm are two terms t and s to be unified
and an environment E. We say that t and s are to be unified “relative to” the en-

3 Intuitively, the eventual value of the variable is not allowed to depend on the members
of the list.

4 Intuitively, an environment lists all the variables in use so far, whether or not their
eventual values are restricted, together with any restrictions so far imposed.

5 That is, tσ = sσ for some values of the the variables not in E.



vironment E. One output of the unification algorithm is a substitution σ which
is legal for E, such that tσ = sσ. The usual notion of unification is obtained
by taking an environment E with no restrictions on any of the variables occur-
ring in E. But note that the use of restrictions, even in first-order unification,
corresponds to the actual use of unification in theorem-proving.

The unification algorithm has a second output, which is a new environment
enlarging the input environment E. Here “enlarging” means simply that new
variables may have been added.

The algorithm produces an answer substitution only if it succeeds. It can
also fail, by terminating but producing a special signal for failure instead of an
answer substitution and new environment. And, at least a priori, it might fail
to terminate.

We now give the precise definition of our unification algorithm. We will sup-
press mention of the environment, both in input and output, writing unify(t, s)
as usual to denote the output substitution σ. When it is necessary to mention
the environment it will be by way of “z is forbidden to x”, which means “z is for-
bidden to x in E, where E is the input environment”. When we say, “Y is a new
variable”, we mean that Y is a variable not occurring in the input environment
E, and it is implicit that the output environment will include the new variable
Y . It must be remembered that failure is a possible result of unify(t, s).

If a and b are terms containing no variables, and a = b in λD, then unify(a, b)
succeeds, producing the empty substitution. If a and b are terms containing no
variables and not containing d, and a and b reduce to distinct normal forms,
then unify(a, b) fails.6

If a and b are literally identical terms (which may contain variables) then
unify(a, b) succeeds, producing the identity substitution.

Next, if either input term permits a β-reduction at top level, the following
rules are used:

unify(t, (λx.a)s) = unify(t, a[s/x])

unify((λx.a)t, s) = unify(a[t/x], s)

Next, there are two clauses in the definition of unify for each of the reduction
rules involving d. These rules take the forms

unify(t, s) = unify(t′, s)

unify(s, t) = unify(s, t′)

where t is the left side of the reduction rule and s is the right side. From now
on, we will be dealing with inputs which, while not necessarily normal, permit
no reduction at top-level.

6 The restriction to d-free terms is necessary because of the failure of Church-Rosser
in λD; if one uses typed λ-calculus one can dispense with this.



To unify X(t) and s, where t and s are not forbidden to X , we take X =
λxd(x, t, s, Y x). To unify X(t1, t2) and s, where t1, t2 and s are not forbidden
to X , we take

X = λx1x2(d(x1, t1,d(x2, t2, s, Y2x), Y1x)

where Y1 and Y2 are new variables, and similarly for unifying X(t1, . . . , tn) and
s.

We have to define when two λ-terms unify. We have

unify(λx.t, λx.s) = unify(t, s),

but we also need to unify two λ-terms with different bound variables after suit-
able renaming of the bound variables. The simplest way to handle this is to
define

unify(λx.a, λy.b) = unify(a[z/x], b[z/y])

where z is a new variable, i.e. not contained in a or b.
In λ-calculus, there are no function and predicate symbols, except the appli-

cation term formation symbol, Ap. Officially x(y) is the term Ap(x, y). Here our
definition corresponds to Robinson unification. To unify ts with pq, we first unify
t with p. If this fails, we fail. If it succeeds with substitution σ, we then unify
sσ and qσ. Note, however, that the output environment of the first unification
becomes the input environment for the second unification. The output is the
result of the second unification.

The above clauses define first-order unification. This notion of unification
will support first-order inference (since it generalizes Robinson unification), but
it is not yet sufficient to support second-order inference, in particular the cir-
cumscription examples. Consider for example the inference problem in which we
have az → Xz. We want to find a value for X more general than X = λz.az.
If, for example, we also have bz → Xz we should be able to find by two succes-
sive unifications, something more general than X = λz.(az ∨ bz). The following
additional clause in the definition of unification will permit this:

To unify Xz and az, where z is a constant forbidden to X , we take X =
λz.(az ∨ Y z), where Y is a new variable. (The convention here is that z can be
a single variable or can be z1 . . . zn.) More generally, if s is a term containing
a constant (or constants) z forbidden to X , to unify Xz and s, we take X =
λz.(s ∨ Y z). The constant z will be forbidden to Y in the output environment,
along with any other constants forbidden to X .

Note that the substitution σ which has been defined in this last clause to
unify two terms t and s need not satisfy tσ = sσ, since with t = Xz and s = az
we have tσ = az ∨ Y z and sσ = az. But if we define χ to be the substitution
giving Y (which is not part of the input environment) the value λz.F then we
have tσχ = sσχ, so σ does unify t and s.

There are also mixed cases, where some of the variables are forbidden to X
and some are not. For example, to unify Xxz and axz, where z is forbidden to
X and x is not, we take X = λx.d(x, t, (axz ∨ Y z), Ux), where Y and U are
fresh variables. The general case is only notationally more complex.



Note that unification can fail to terminate on inputs which have no normal
form; for example unify(Ω, x) fails to terminate where Ω is any term with an
infinite β-reduction sequence. On the other hand unify(Ω, Ω) does succeed. Usu-
ally we will be interested in unifying normal terms, and in that case unification
always terminates, as the following theorem shows.

Theorem. Let t and s be normal terms, and let E be an environment containing
all variables in t or s. Then unify(t, s) terminates, and unifies t and s relative
to E.

Proof : By induction on the complexity (depth) of t and s. Since they are normal
terms, all subterms are normal, and the clauses of unify that correspond to re-
duction rules are never used. The other clauses make recursive calls only to unify

applied to subterms of t and s, which by induction hypothesis do terminate. We
still have to prove that unify(t, s) unifies t and s. This is obvious for Robinson
unification, but now the definition of “unifies” is more general, involving “some
values of the new variables”, so there is something to be proved, even for the old
clauses in the definition. The induction steps corresponding to the new clauses
have been given above, in the course of the definition. Consider the proof that
unify(ts, pq) really unifies ts and pq. Let σ = unify(t, p). Then by hypothesis
tσχ = pσχ for some χ which is the identity on the input environment E. Let
τ = unify(sσ, qσ). By induction hypothesis sστη = qστη for some η which is
the identity on E′, the environment including E and any new variables intro-
duced by σ. Since E contains all variables in s and q, τ is the identity on any
new variables introduced by σ, and since E′ is the input environment for the
call producing τ , η is the identity on any new variables introduced by τ . Define
β = ητ = τη, the union of these two disjoint substitutions. Then we will prove
(ts)στβ = (pq)στβ. Note that χτ = τχ since χ is non-identity only on new
variables introduced by σ, but τ is the identity on these variables. We calculate
as follows:

(ts)στβ =

(tστβ)(sστβ) =

(tστχ)(sστη) =

(tσχτ)(sστη) =

(pσχτ)(qστη) =

(pστχ)(qστη) =

(pστβ)(sστβ) = (pq)στβ

Since στ is the output substitution unify(ts, pq), this completes the proof.

6 The Most General Unifier

Since substitutions are functions whose values are terms, equality between sub-
stitutions is defined in terms of equaltiy of terms. In systems allowing λ-terms,



equality of terms involves the notion of reduction, rather than syntactic identity,
so the notion of equality of substitutions is correspondingly more complicated.
In the applications we have in mind, variables will denote functions or predi-
cates, not only individuals. Therefore, the substition which gives a variable the
value t should be equal to the substitution which gives the same variable the
value s, if s and t are extensionally equal. As explained above, we write t ∼= s to
mean tx = sx, where x is a variable not contained in t or s. We now define two
substitutions θ and µ to be a equal on an environment E provided θX ∼= µX for
all variables X in E.

The notion of one substitution being “more general” than another is defined
almost as usual. The usual definition is this: θ is more general than µ if there
is a substitution γ such that θγ = µ. The fact that our unification algorithm
introduces “new” variables requires relativizing this definition, as follows:

Definition. Given an environment E, θ is more general than µ, relative to E,
if there is a substitution γ such that θγ = µ on E. That is, for all variables X
in the finite set E, we have Xθγ ∼= Xµ.

It will sometimes happen that γ is defined on variables not in the original
environment E. For example, if θ is the substitution produced by unifying terms
t and s, and E is the set of variables occurring in t or s, then γ may be defined
on some of the “new” variables introduced by the unification algorithm.

Because reduction is allowed in determining equality, the concept of one
substitution being more general than another is more complex than in first-order
logic, as the following example will illustrate.

Example: Consider the problem X(1) = 1. The answer substitution is X =
λx.d(x, 1, 1, Y (x)). Both the answers produced by Huet’s algorithm can be ob-
tained, up to extensional equivalence, from this answer by instantiating Y to
one of the values Y = λx.x or Y = λx.1. If we substitute these values for Y and
reduce to normal form, we obtain

d(x, 1, 1, (λx.x)(1)) = d(x, 1, 1, x) = x

d(x, 1, 1, (λx.1)(1)) = d(x, 1, 1, 1) = 1

Hence the answer substitution produced by our second-order unification algo-
rithm is more general than each of Huet’s two answers. It is also more general
than any of the infinitely many variable-free solutions, such as

X = λx.d(x, 1, 1,d(x, 2, 0, 3))

.

Theorem. (Most general unifier) Let E be an environment. Suppose that p and
q are normal terms in λD. Suppose that for some substitution θ legal for E, pθ
and qθ are identical. Then p and q unify, and the answer substitution is legal for
E, and more general than θ.

Proof : The proof is by induction on the complexity of the term p. If p is a
variable, then unify(p, q) succeeds with answer substitution χ given by pχ = q.



Take β = θ. Then to show χβ = θ it will suffice to show pχβ = pθ, since χ is
the identity on variables other than p. But pχβ = qθ since pχ = q, and qθ = pθ
by hypothesis, so pχβ = pθ as desired. The case when q is a variable is treated
similarly. We may henceforth suppose that neither p nor q is a variable.

Suppose p is a constant. Then pθ is p. Therefore qθ is also p, so q (since
it isn’t a variable) is p too. Hence unify(p, q) succeeds, returning the identity
substitution. Similarly if q is constant.

Now we may assume that p and q are both λ-terms or application terms.
Since pθ and qθ are identical, either both p and q are application terms, or both
of them are λ terms.

Let X be a variable and let χ = unify(X(s), t), where t and s are normal
terms not forbidden to X in E. Then by definition of unification,

Xχ = λz.d(x, s, t, Y (x)) (1)

where Y is a new variable (outside E). Suppose

X(s)θ = tθ (2)

We want to find a substitution β such that θ = χβ on E. By (2) we have

(Xθ)(sθ) = tθ (3)

Define β so that Y β = Xθ, and Zβ = Zθ for all variables Z in the environment
E (including the case Z = X). Calculate:

Xχβ = (λx.d(x, s, t, Y (x))β

= λx.d(x, sβ, tβ, (Y β)(x))

= λx.d(x, sθ, tθ, (Y β)(x))

= λx.d(x, sθ, tθ, (Xθ)(x))

= λx.d(x, sθ, (Xθ)(sθ), (Xθ)(x))

by (3). In view of the identity Z ∼= λx.d(x, a, Za, Zx), (which is just another
expression of the second d-rule), applied with Z = Xθ, we have

Xχβ = Xθ

Note that this is the step requiring the use of extensional equality. We cannot
make this step go through using only β-reduction in the definition of equality of
substitutions; and in view of the examples, this seems quite natural. The case in
which we have t1, . . . , tn instead of t is handled similarly.

Now consider the case of unifying X(z) and s, where X is a variable and z is a
constant forbidden to X in E, and s contains z. By hypothesis, (Xθ)(zθ) = (sθ).
Since z is constant, zθ = z, so (Xθ)z = (sθ). Since θ is legal for X in E, by
hypothesis, Xθ does not contain z. Let a = λw.s[w/z], so a does not contain z.



Therefore Xθ ∼= aθ, i.e. (Xθ)w = (aθ)w = s[w/z] for any variable or constant
w.

Let χ be the result of the unification algorithm, so Xχz = az ∨Y z. Define β
to agree with θ on variables occurring in E, and Y β = λzF. Then

Xχβw = (λz(az ∨ Y z)β)w

= (λz((aβ)z ∨ F)w

= (λz((aβ)z))w

= (aβ)w

= (aθ)w

= (Xθ)w

Therefore Xχβ ∼= Xθ as desired. On any variable U other than X , we have
(Uχβ)w = Uβ = (Uθ)w. Hence χβ = θ as substitutions. This completes the
cases corresponding to the new clauses in the definition of unification.

We still have to check the cases corresponding to ordinary unification. Con-
sider the case when p = f(t1, t2) and q = f(s1, s2). In λ-calculus, there are no
function symbols per se except the binary symbol ap for application. Usually
we don’t write ap explicitly but just write p(q) or pq for ap(p, q). So officially
the only possibility here is f = ap; but this one case is as difficult as the general
case in first-order unification, of course.

Let χ = unify(p, q). We want to show that for some β we have χβ = θ. We
have, by definition of the unification algorithm, χ = χ1χ2 where

χ1 = unify(t1, s1) (4)

χ2 = unify(t2χ1, s2χ1) (5)

Assume pθ = qθ. Then
t1θ = s1θ (6)

t2θ = s2θ (7)

Then by induction hypothesis, (4), and (6), we have for some β1,

θ = χ1β1 (8)

By (7) and (8), we have
t2χ1β1 = s2χ1β1 (9)

By (5) and the induction hypothesis, we have for some β

χ2β = χ1β1 (10)

By (9), we have
χβ = χ1χ2β = χ1β1 = θ



This completes the case in which p and q are binary compound terms with the
same function symbol. In case p and q are unary compound terms with the same
function symbol, apply the induction hypothesis to the arguments. In case p is
a variable not occurring in q, the answer substitution χ = unify(p, q) is given
by pχ = q, and χ is the identity on other variables. Since by hypothesis pθ = qθ,
we have pθ = pχθ. Since χ is the identity on other variables than p, we have
θ = χθ, so θ itself is the desired β. This completes the proof.

7 Unification and Second-Order Logic

We now return to the connection between unification and second-order logic.
An innocent victim of the 15-page length limit for this paper was the detailed
description of the version of second-order logic we use. The following remarks
will have to suffice:

Each of the four quantifier rules has to be taken twice, once for first-order
quantifiers and once for second-order quantifiers. In addition there are the λ-
rules:

Γ ⇒ A[t/x]

Γ ⇒ (λx.A)t

Γ, A[t/x] ⇒ φ

Γ, (λx.A)t ⇒ φ

These rules permit us to reduce λ-terms when trying to construct a proof
bottom-up. These rules were implemented at the same time as first-order logic, in
the prover GENTZEN [Beeson 1991], but only simple second-order deductions
could be performed by GENTZEN, because a powerful second-order unification
algorithm was missing. GENTZEN could find the correct instances of mathe-
matical induction for certain proofs, but could not do circumscription proofs,
for example.

We define a system LD of second order logic with definition by cases. The
intuitive idea is

d(x, y, a, b) = a if x = y else b

In second-order logic, we can take

d(x, y, A, B) = (x = y → A) ∧ (x 6= y → B)

so it is not necessary to add a constant d to second-order logic. However, since
d figures in our unification algorithm and hence in our theorem-prover, the
implemented version of second-order logic does contain a constant d.

The λ-rules allow us to reduce λ-terms, but in LD we also need to reduce
d-terms. Therefore LD includes the following rules, which we call the d-rules:

Γ ⇒ A

Γ ⇒ d(x, x, A, B)



x 6= y, Γ ⇒ B

Γ ⇒ d(x, y, A, B)

y 6= x, Γ ⇒ B

Γ ⇒ d(x, y, A, B)

B, Γ ⇒ C

x 6= y,d(x, y, A, B), Γ => C

B, Γ ⇒ C

y 6= x,d(x, y, A, B), Γ => C

A, Γ ⇒ C

d(x, x, A, B), Γ => C

Note that if d(x, y, A, B) is regarded as an abbreviation, these rules are derived
rules of inference. It follows that proofs in LD can be translated into proofs
in L; moreover the same is true of cut-free proofs. It is therefore a matter of
convenience only whether we take d as defined or primitive.

Extend second-order logic by allowing “metavariables” to stand in place of
terms. Call this system LDM. Second-order logic LD and its extension LDM

can be translated into λ-calculus by standard techniques. We will be explicit
about those “standard techniques.” We distinguish some of the variables of λ-
calculus and call them constants, agreeing not to use them for other purposes.
We then specify some constants of λ-calculus to stand for the propositional
connectives and for ∀ and ∃. We denote these constants by the same symbols ∀
and ∃. Then the translation A′ of A is given by

(∀xA)′ = ∀(λx.A′)

(∃xA)′ = ∃(λx.A′)

The translation commutes with the propositional connectives. Identifying for-
mulas of second-order logic with their translations, we can regard unification as
defined on formulas of second-order logic. Predicate symbols are simply constants
of λ-calculus.

Lemma. Let A and B be two formulas of second-order logic LDM. Suppose
unify(A, B) succeeds with answer substitution θ. Then LD proves Aθ ⇒ Bθ.

Proof : By induction on the computation of unify(A, B). Note that this is a
sensible induction, since when unify is called on two formulas of second-order
logic, the recursive calls always have arguments which are formulas of second-
order logic as well. This is so even when we regard ∀xA as an abbreviation for
the λ-term ∀(λx.A), because λx.A is a formula of second-order logic.

The only interesting cases are the steps corresponding to the new clauses in
the definition of unification. Consider the case of unify(Xt, s), where t and s
are not forbidden to X . Then θ = unify(Xt, s) is given by

Xθ = λx.d(x, t, s, Y (x))



where Y is a new variable. We have the following derivation in LD:

s ⇒ s
d(t, t, s, Y (t)) ⇒ s

(λx.d(x, t, s, Y (x)))t ⇒ s

Now consider the case of unify(Xz, az), where z is constant and forbidden
to X and does not occur in a. Then we have the following derivation in LD:

az ⇒ az
F ⇒ F

F ⇒ az

az ∨ F ⇒ az

λw(aw ∨ F)z ⇒ Az

Xzθ ⇒ azθ

This completes the proof.

8 Automated Deduction in Second-Order Logic

Robinson’s unification algorithm is the key to theorem-proving in first-order
logic, whether one combines it with resolution or with “backwards Gentzen”
methods, or uses it in an equational theorem-prover. The extensions to the unifi-
cation algorithm introduced here will have applications in automated deduction,
also independent of whether one uses resolution or some other method of proof
search.

In [Beeson 1991] one can find the Prolog source code for a theorem-prover
for first-order logic, based on bottom-up construction of cut-free proofs in a
Gentzen sequent calculus. The prover uses metavariables to stand for as-yet-
undetermined terms, and instantiates these metavariables by unification when
the proof construction reaches leaf nodes of the proof tree (axioms). We will
not assume familiarity with this prover, but only with the general idea of back-
wards proof-search in a sequent calculus, introducing metavariables when (cer-
tain) quantifiers are stripped away, and instantiating the metavariables later by
unification. The prover described in [Beeson 1991] can be extended to second-
order logic by changing the unification algorithm to the one given in this paper.

We will describe how it proves the theorem

a 6= b ⇒ ∃X(X(a) ∧ ¬X(b)).

First, the quantifier will be “opened up” and the variable X replaced by a
metavariable. In [Beeson 1991] we used capital letters for metavariables; this
clashes with the convention that capital letters are used in second-order logic for
second-order variables, so here we use X for a metavariable. The goal is now

a 6= b ⇒ X(a) ∧ ¬X(b).

This goal is divided into two goals,

a 6= b ⇒ X(a) (11)



and

a 6= b ⇒ ¬X(b) (12)

GENTZEN will work on 11 first. It will unify X(a) with true, instantiating the
metavariable X as

X = λx.d(x, a, true ,Yx) (13)

producing the new goal

a 6= b ⇒ λx.d(x, a, true ,Yx)a.

The clause implementing the ⇒ λ-rule then applies, reducing the goal to

a 6= b ⇒ d(a, a, true ,Yx).

Then a d-rule applies, producing the goal

a 6= b ⇒ true

which is an axiom. Now GENTZEN begins to work on (12), with the metavari-
able Xinstantiated as in 13. Specifically, the goal is

a 6= b ⇒ ¬λx.d(x, a, true ,Yx)b

The rule ⇒ ¬ is applied, producing the goal

λx.d(x, a, true ,Yx)b, a 6= b ⇒ false

The λ ⇒ rules is applied, producing the goal

d(b, a, true ,Yb), a 6= b ⇒ false

One of the d-rules now applies, producing the new goal

Yb, a 6= b ⇒ false

The axiom clause now makes a call to unify(Yb, false), instantiating Y as

Y = λy.d(y, b, false,Zy)

for a new metavariable Z. This makes the attempt to prove Xa ∧ ¬Xb succeed,
returning the answer substitution

X = λx.d(x, a, true , λy.d(y, b, false,Zy)x)

The proof produced, rewritten in tree form, is as follows, with

t = λx.d(x, a, true , λy.d(y, b, false ,Zy)x) :



a 6= b ⇒ true

a 6= b ⇒ d(a, a, true , λy.d(y, b, false ,Zy)

a 6= b ⇒ ta

false ⇒ false

d(b, b, false ,Zy), a 6= b ⇒ false

(λy.d(y, b, false ,Zy))b, a 6= b ⇒ false

d(b, a, true , (λy.d(y, b, false ,Zy))b), a 6= b ⇒ false

a 6= b, tb ⇒ false

a 6= b ⇒ ¬tb

a 6= b ⇒ ta ∧ ¬tb

a 6= b ⇒ ∃X(Xa ∧ ¬Xb)

This proof illustrates the use of the first new clause in the definition of
unification. The circumscription examples use the second new clause as well.

References

[Baker-Ginsberg 1989] A. Baker and M. Ginsberg. A theorem prover for prioritized
circumscription. Proceedings of the Eleventh International Joint Conference on Ar-

tificial Intelligence, pp. 463–467, Morgan Kaufmann, Los Altos, Calif. (1989).
[Barendregt 1981] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics.

North-Holland, Amsterdam (1981).
[Beeson 1991] M. Beeson. Some applications of Gentzen’s proof theory in automated

deduction. In Schroeder-Heister (ed.), Extensions of Logic Programming, Lecture
Notes in Artificial Intelligence 475, Springer-Verlag, Berlin/ Heidelberg/ New York
(1991).

[Ginsberg 1989] M. Ginsberg. A circumscriptive theorem prover. Artificial Intelligence

39, No. 2 (1989).
[Huet 1975] G. Huet. A unification algorithm for typed λ-calculus. Theoretical Com-

puter Science 1 (1975) 27–52.
[Lifschitz 1985] V. Lifschitz. Computing circumscription. Proceedings of the Ninth

International Joint Conference on Artificial Intelligence, pp. 121–127, Morgan Kauf-
mann, Los Altos, Calif. (1985).

[McCarthy 1986] J. McCarthy. Applications of circumscription to formalizing
common-sense knowledge. Artificial Intelligence 28 (1986) 89–116.

[Miller and Nadathur] D. Miller and G. Nadathur. An Overview of λ-Prolog In Pro-

ceedings of the Fifth International Symposium on Logic Programming, Seattle, August

1988.
[Prawitz 1967] D. Prawitz. Completeness and Hauptsatz for second order logic. Theo-

ria 33, 246-258.


