
TILING AN EQUILATERAL TRIANGLE

MICHAEL BEESON

Abstract. Let ABC be an equilateral triangle. For certain triangles T (the
“tile”) and certain N , it is possible to cut ABC into N copies of T . It is known
that only certain shapes of T are possible, but until now very little was known
about the possible values of N . Here we prove that for N > 3, N cannot
be prime, and study more closely the possible tilings when the tile has a π/3
angle.
2010 Mathematics Subject Classification: 51M20 (primary); 51M04 (secondary)

1. Introduction

The subject of this paper is N -tilings of the equilateral triangle. More generally,
triangle ABC is said to be N -tiled by a triangle (the “tile”) with angles (α, β, γ),
if ABC can be cut into N smaller triangles congruent to the tile. In this paper,
we restrict attention to the case of ABC equilateral. A few pictures of N -tilings of
equilateral triangles are given in the figures.

Figure 1. A 3-tiling, a 6-tiling, and a 16-tiling

Miklós Laczkovich wrote many papers on the subject of tilings, considering not
only triangles but convex polygons, and considering not only tilings by congruent
tiles, but by similar tiles as well. In [2] and [3] (especially Theorem 3.3 of [3]) he
narrowed the list of possible tiles that can be used to tile some equilateral triangle.
He proved that the tile (α, β, γ) (in some order) must be one of the following

(i) (π/3, π/3, π/3) (equilateral)
(ii) (π/6, π/6, 2π/3)

(iii) (π/6, π/2, π/3)

(iv) (α, β, π/3) with α not a rational multiple of π

(v) (α, β, 2π/3) with α not a rational multiple of π

The possible N in the first three cases are known. In case (i), N must be a
square, and any square corresponds to a tiling. (That is true for any triangle ABC
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Figure 2. A 27-tiling due to Major MacMahon 1921, rediscovered 2011

Figure 3. 3m2 (hexagonal) tilings for m = 4 and m = 5

and a tile similar to ABC.) For a proof see [4] or [5]. In cases (ii) and (iii), N must
have the form 3n2 or 6n2 respectively [1]. None of these can be prime except for
case (ii), when N = 3 is possible. That leaves the last two cases as the focus of this
paper.

It may come as a surprise to the reader that tilings falling under cases (iv) and
(v) do exist. In 1995, Laczkovich already gave a method for constructing a tiling of
some equilateral triangle from any tile satisfying (iv) or (v), but the N involved can
be quite large. Following Laczkovich’s method, in 2018 I constructed a tiling with
γ = 2π/3 and N = 10935; see Fig. 4. In January 2024, Bryce Herdt constructed
the 1215-tiling shown in Fig. 5. He retiled the larger tiling with triangles three
times longer, which is possible if one splits off a certain parallelogram (pink in the
figure) and tiles it with a different orientation. In [1], it is shown that N must be
at least 12. There is still a gap between 12 and 1215: are there equilateral tilings
with γ = 2π/3 and N in this range?

For tilings when the tile has a π/3 angle, the smallest one I could calculate
following Laczkovich has more than five million tiles. But in 2024, Bryce Herdt
produced better tilings. He constructed a 1944-tiling by (3, 8, 7) of an equilateral
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Figure 4. N = 10935. The tile is (3, 5, 7) and γ = 2π/3.

triangle of side 216, and a 1440-tiling by (5, 8, 7) of an equilateral triangle with side
240. Pictures are given in an Appendix.

In this paper, we prove that if an equilateral triangle is N -tiled according to
cases (iv) or (v) above, then N is not a prime. Laczkovich proved in Theorem 3.3
of [3] that in those two cases, the tile is rational; that is, the ratios of the sides of
the tile are rational. This gives us a good starting point. On that basis, we proceed
in case (iv) by elementary, if somewhat intricate, algebraic computations, arriving
at some equations that must be satisfied by N . While we could not reduce these
equations to an elegant number-theoretical criterion, at least we can show that
N cannot be prime. The algebraic calculations have been performed or checked
using the computer algebra system SageMath [6], but they are presented here in
human-checkable detail.
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Figure 5. N = 1215. The tile is (3, 5, 7) and γ = 2π/3.

To deal with case (v), when the tile has a 2π/3 angle, we make use of a beautiful
method introduced by Laczkovich in his 2012 paper [3]. In this paper, we give the
required definitions and state the two lemmas we need, but for the proofs of those
lemmas, we refer to the cited paper.

The result of this paper, that equilateral triangles cannot be N -tiled when N is
a prime larger than 3, answers a question posed in [5]. Namely, until now it was
not known whether there are arbitrarily large N such that no equilateral triangle
can be N -tiled. Now, in view of Euclid’s theorem that there are infinitely many
primes, we know the answer.

2. The coloring equation

In this section we introduce a tool that is useful for some, but not all, tiling
problems. Suppose that triangle ABC is tiled by a tile with angles (α, β, γ) and
sides (a, b, c), and suppose there is just one tile at vertex A. We color that tile
black, and then we color each tile black or white, changing colors as we cross tile
boundaries. Under certain conditions this coloring can be defined unambiguously,
and then, we define the “coloring number” to be the number of black tiles minus
the number of white tiles. An example of such a coloring is given in Fig. 6.
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Figure 6. A tiling colored so that touching tiles have different colors.

The following theorem spells out the conditions under which this can be done.
In the theorem, “boundary vertex” refers to a vertex that lies on the boundary of
ABC or on an edge of another tile, so that the sum of the angles of tiles at that
vertex is π. At an “interior vertex” the sum of the angles is 2π.

Theorem 1. Suppose that triangle ABC is tiled by the tile (a, b, c) in such a way
that

(i) There is just one tile at A.

(ii) At every boundary vertex an odd number of tiles meet.

(iii) At every interior vertex an even number of tiles meet.

(iv) The numbers of tiles at B and C are both even, or both odd.

Then every tile can be assigned a color (black or white) in such a way that colors
change across tile boundaries, and the tile at A is black. Let M be the number of
black tiles minus the number of white tiles. Then the coloring equation

X ± Y + Z = M(a+ b+ c)

holds, where Y is the side of ABC opposite A, and X and Z are the other two
sides. The sign is + or − according as the number of tiles at B and C is odd or
even.

Proof. Each tile is colored black or white according as the number of tile boundaries
crossed in reaching it from A without passing through a vertex is even or odd. The
hypotheses of the theorem guarantee that color so defined is independent of the
path chosen to reach the tile from A. The total length of black edges, minus the
total length of white edges, is M(a+ b+ c), since a+ b+ c is the perimeter of each
tile. Each interior edge makes a contribution of zero to this sum, since it is black on
one side and white on the other. Therefore only the edges on the boundary of ABC
contribute. Now sides X and Y contain only edges of black tiles, by hypotheses
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(i) and (ii). Side Y is also black if the number of tiles at B and C is odd, and
white if it is even. Hence the difference in the total length of black and white tiles
is X ± Y + Z, with the sign determined as described. That completes the proof.

3. A tile with an angle γ = π/3 and α/π irrational

In this case we have α+ β = 2π/3. Then the possible ways to write π and 2π as
an integer linear combination of (α, β, γ) are these:

π = α+ β + γ

2π = 2α+ 2β + 2γ

2π = 6γ

2π = α+ β + 4γ

2π = 2α+ 2β + 2γ

Hence every vertex with total angle π has an odd number of tiles sharing that
vertex and every vertex with total angle 2π has an even number of tiles sharing
that vertex. Moreover at each vertex of ABC there is just one tile, with its γ angle
at the vertex. Thus the coloring theorem, Theorem 1, applies. It tells that, when
the tiles are colored black and white with the vertex at A black, if M is the number
of black tiles minus the number of white tiles,

M(a+ b+ c) = 3X(1)

where X is the length of each side of ABC.
Our second tool is the area equation, obtained by equating the area of ABC to

N times the area of the tile. Twice the area of ABC is X2 sin γ, and twice the area
of the tile is ab sin γ, so the area equation is

X2 = Nab(2)

These tools enable us to formulate a necessary condition for such a tiling to exist,
and characterize the tile, i.e., compute the tile from N and the coloring number of
the tiling.

Theorem 2. Let triangle ABC be equilateral. Suppose it is N -tiled using a tile
with angles (α, β, π

3
), where β is not a rational multiple of π. Let M be the coloring

number of the tiling. Then

(i) ζ = eiα satisfies a quadratic equation with coefficients (involving N and M)

in Q(i
√
3).

(ii) N and M determines the shape of the tile uniquely; that is, there are algebraic
formulas for (b/a) and (c/a) in terms of N and M . Specifically, a/c and b/c are
given by

1

2

(

3N +M2

3N −M2
±
√

(9N −M2)(N −M2)

3N −M2

)

(iii) M2 < N

Proof. Suppose that equilateral triangle ABC is N -tiled using a tile with angles
(α, β, π

3
). Define

ζ := eiα.
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Then

c = sin γ =

√
3

2

a = sinα =
ζ − ζ−1

2i
b = sinβ

= sin(2π/3− α)

= sin(2π/3) cosα− cos(2π/3) sinα

=

√
3

2

ζ + ζ−1

2
+

1

2

ζ − ζ−1

2i

Substituting the value for X from the coloring equation (1) into the area equation
(2), we find (by hand or using the SageMath code in Fig. 7)

0 =
(

M2
(

−i
√
3− 1

)

+N
(

3i
√
3 + 3

))

ζ4

+2M2
(

−i
√
3 + 1

)

ζ3

+6
(

M2 −N
)

ζ2

+2M2
(

i
√
3 + 1

)

ζ

+M2
(

i
√
3− 1

)

+N
(

−3i
√
3 + 3

)

(3)

Figure 7. SageMath code to derive (3)

var(’p,q,r,N,M,x’)

c = sqrt(3)/2

a = (x-x^(-1))/(2*i)

b = (sqrt(3)/2)* (x+x^(-1))/2 + (1/2)*(x-x^(-1))/(2*i)

X = (M/3)*(a+b+c)

f = 24*(X^2-N*a*b*x^2

print(f.full_simplify())

Observe first ζ = 1 is not a solution, since f(1) = 8M2, and by the coloring
equation, M > 0. (The command f.substitute(x=1).simplify() will save you
the trouble.) Next observe that ζ = −1 is a solution. Hence the non-real solutions,
which are the ones of interest, satisfy a cubic equation. That equation is f(ζ)/(ζ +
1) = 0. The equation can be calculated by long division, or by the SageMath
command1

g = (f.maxima_methods().divide(x+1)[0]).full_simplify()

1Here we see explicitly that SageMath calls on Maxima to do polynomial division. The divide
method produces a list of length 2, with the quotient and remainder.
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The equation resulting is

0 =
(

M2
(

−i
√
3− 1

)

+N
(

3i
√
3 + 3

))

ζ3

+
(

M2
(

−i
√
3 + 3

)

+N
(

−3i
√
3− 3

))

ζ2

+
(

M2
(

i
√
3 + 3

)

+N
(

3i
√
3− 3

))

ζ

+M2
(

i
√
3− 1

)

+N
(

−3i
√
3 + 3

)

Eventually I realized that this equation has another explicit solution, namely
ζ = e−iπ/3, as one can verify by hand, or by asking SageMath for the value of
g(x=exp(-i*pi/3). Dividing by z − e−π/3 we find a quadratic equation for ζ:

0 =
(

M2
(

−i
√
3− 1

)

+N
(

3i
√
3 + 3

))

ζ2

+
(

M2
(

−i
√
3 + 1

)

+N
(

−3i
√
3 + 3

))

ζ

+2M2 − 6N

That is the quadratic equation mentioned in (i) of the theorem.

Solving that equation we find

ζ =
M2
(

i
√
3− 1

)

+N
(

3i
√
3− 3

)

M2
(

−2i
√
3− 2

)

+N
(

6i
√
3 + 6

)

±

√

M4
(

6i
√
3 + 6

)

+M2N
(

−60i
√
3− 60

)

+N2
(

54i
√
3 + 54

)

M2
(

−2i
√
3− 2

)

+N
(

6i
√
3 + 6

)

=
1

2

3N +M2

3N −M2

(

i
√
3− 1

i
√
3 + 1

)

±

√

M4
(

6i
√
3 + 6

)

+M2N
(

−60i
√
3− 60

)

+N2
(

54i
√
3 + 54

)

2(3N −M2)(i
√
3 + 1)

=
1

2

3N +M2

3N −M2

(

i
√
3− 1

i
√
3 + 1

)

±
√
6
√

i
√
3 + 1

√

(M2 − 9N)(M2 −N)

2(3N −M2)(i
√
3 + 1)

=
1

4

3N +M2

3N −M2
(1 + i

√
3)±

√
3eiπ/6

2eiπ/3

√

(M2 − 9N)(M2 −N)

3N −M2

=
1

4

3N +M2

3N −M2
(1 + i

√
3)±

√
3e−iπ/6

2

√

(9N −M2)(N −M2)

3N −M2

=
1

4

3N +M2

3N −M2
(1 + i

√
3)± 3− i

√
3

4

√

(9N −M2)(N −M2)

3N −M2
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The tile edges a and b are the imaginary parts of the two values of ζ. We calculate
them explicitly:

a =

√
3

4

(

3N +M2

3N −M2
−
√

(9N −M2)(N −M2)

3N −M2

)

b =

√
3

4

(

3N +M2

3N −M2
+

√

(9N −M2)(N −M2)

3N −M2

)

c =

√
3

2

These immediately imply the formula in part (ii) of the theorem.

We next prove that M2 < N , which is part (iii) of the theorem. From the area
and coloring equations we have

X2 = Nab
(

M

3
(a+ b+ c)

)2

= Nbc

M2 =
9Nbc

(a+ b+ c)2

From the formulas for (a, b, c) above, we have

a+ b+ c =

(√
3

2

)

(

1 +
3N +M2

3N −M2

)

=
√
3

(

3N

3N −M2

)

This already implies M2 < 3N , since if not, the right side is negative, but the left
side is positive. Now notice that the equation in part (ii) contains

√

(9N −M2)(N −M2).

Since M2 < 3N , the first factor is positive. Hence the second factor N − M2

must be nonnegative, or the square root will not be real, but the ratio a/b is real.
Therefore M2 ≤ N . We cannot have M2 = N since that will make a = b, which
would make α = β, contrary to hypothesis. Hence M2 < N . That proves part (iii)
of the theorem, and completes the proof.

Lemma 1. Let triangle ABC be equilateral. Suppose it is N -tiled using a tile with
angles (α, β, π

3
), where α is not a rational multiple of π. Let (a, b, c) be the sides of

the tile. Then
ab

c2
=

4M2N

(3N −M2)2

Proof. We start with the formulas for a and b from Theorem 2, namely that a/c
and b/c are given by choosing the + and − signs respectively in

1

2

(

3N +M2

3N −M2
±
√

(9N −M2)(N −M2)

3N −M2

)
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Using the identity (u− v)(u + v) = u2 − v2 we have

ab

c2
=

1

4

(3N +M2)2 − (9N −M2)(N −M2)

(3N −M2)2

Simplifying the numerator we have

ab

c2
=

1

4

16M2N

(3N −M2)2

Canceling 4 we have the formula mentioned in the lemma. That completes the
proof.

Theorem 3. Let triangle ABC be equilateral. Suppose it is N -tiled using a tile
with angles (α, β, π

3
), where α is not a rational multiple of π. Then for some integer

M <
√
N (the coloring number of the tiling),

(i) (9N −M2)(N −M2) is a square, and

(ii) N is not prime.

Remarks. (1) In particular N cannot be 7, 11, or 19. In [1], we proved that there
is no 7 or 11 tiling, and the case studied here was handled purely computationally,
by a method that does not work for N = 19.

(2) Laczkovich has shown that each rational tile with an angle γ = π/3 in which
α is not a rational multiple of π can be used to tile some equilateral triangle. But
the N required might be very large. Indeed, we tried to construct a tiling following
Laczkovich’s instructions in [2], but N came out to be over a million, so we could
not draw the tiling. In 2018, we could not present even one picture of a tiling of an
equilateral triangle by a tile with an angle π/3 and incommensurable angles. That
changed in 2024, as we shall see in the Appendix.

Proof. Suppose equilateral ABC is N -tiled as in the statement of the theorem. Let
the sides of the tile be (a, b, c). According to Theorem 2, M <

√
N as mentioned

in the theorem, and the ratios a/c and b/c are given by

1

2

(

3N +M2

3N −M2
±
√

(9N −M2)(N −M2)

(3N −M2)

)

According to Theorem 3.3 of [3], the tile (a, b, c) is rational, so a/c and b/c are
rational. Therefore the expression under the square root is an integer square. That
proves part (i) of the theorem.

Recall the area equation X2 = Nab. Since the tile is rational, we may re-scale
it so that (a, b, c) are integers with no common factor. (That changes the size of
ABC and makes X an integer.) Let s be the square-free part of ab. Then s divides
X2, so (being square-free) it divides X . Hence s2 divides Nab. Hence s divides N .
Now assume, for proof by contradiction, that N is prime. Then s is either 1 or N .
If s is 1, then ab is a square, so N = X2/ab is a rational square, and since N is
an integer, it is an integer square. But that contradicts the assumption that N is
prime. Hence the other case must hold: s = N . Since N is presumed prime, s is
also prime, and thus one of (a, b) is N times a square and the other is a square. Say
it is a that is not square; then a = Nd2 and b = e2. Then ab = Nd2e2 is N times a
square. Well, that does not contradict Lemma 1, provided (3N −M2) divides 2M .
Let the quotient be q; then (3N −M2)q = 2M , so qM2+2M = 2N = (qM +2)M .
Since N is prime we must have M = 2 and qM + 2 = N . But with M = 2, we



TILING AN EQUILATERAL TRIANGLE 11

then have qM + 2 = 2q + 2 = 2(q + 1) = N , contradicting the assumption that N
is prime unless q = 0, but in that case N = 2, which is impossible, as at least three
tiles are required, one with its π/3 angle at each vertex of ABC. That completes
the proof of the theorem.

3.1. An algorithm to decide if there is an N-tiling with γ = π/3.

Theorem 4. Given N and an equilateral triangle ABC, there is a finite set S of
not more than

√
3N tiles such that, if any tile with angles (α, β, π/3) and α not a

multiple of π can N -tile ABC, then one of the tiles in S can do so. Whether such
a tiling exists is computable in a finite (though perhaps large) number of steps.

Remark. We are not claiming an efficient algorithm.

Proof. By Theorem 2, the coloring number M of any N -tiling of ABC is at most√
3N , and (N,M) together determine the sides (a, b, c) of the tile. This provides

the finite set S of tiles, and Theorem 2 says that any N -tiling uses one of those
tiles. All of the tiles in S satisfy the area equation that the area of ABC is N
times the area of the tile. Given such a tile (a, b, c), it is solvable by well-known
graph-search algorithms (for example depth-first search) whether (a, b, c) can tile
ABC. This may seem obvious, but we consider the details briefly.

We can consider connected partial tilings as nodes in a graph, where there is an
edge between two nodes p and q if partial tiling q is obtained from p by adding one
more tile within the boundaries of ABC, the new tile sharing at least one vertex
and at least part of at least one edge with the tiling p, and not overlapping any tile
of p. Each partial tiling p has finitely many neighbors, which can be algorithmically
generated by enumerating the possible ways to extend a given partial tiling. In so
doing we need to test whether a triangle overlaps another triangle; the precision
issue involved is discussed below. No path has length more than N , since the area
of a partial tiling cannot exceed N times the area of the tile. Finally, we can test
algorithmically whether a given partial tiling is actually a tiling of ABC; again
a precision issue arises. The point of these precision issues is that we need to
determine in a finite number of steps of computation whether two points coincide
or not, whether two tile edges coincide or not, and whether a point lies on a given
line segment.

We represent a partial tiling as a list of triangles, where a triangle is three points,
and a point is given by a pair of coordinates in a suitable field K, or perhaps just
by finite-precision complex numbers. It is well-known that algebraic number fields
have “decidable equality”, so if we use algebraic numbers as coordinates of points,
the precision issues will be not arise, i.e. the computations will be exact. That
completes the proof.

Remark. We could write the program described in the proof in Python, calling
on SageMath for arithmetic in algebraic number fields. We have not done that.
Instead we wrote the program in C++, using fixed-precision real numbers. The-
oretically finite-precision real numbers would always work, although the precision
might theoretically have to be large if the tile has a very small angle. Since the
angles of the tiles at each vertex are made of α, β, and γ, two tile edges either
coincide, or they miss by a lot. In practice we did not compute with triangles con-
taining tiny angles, so the usual fixed-precision real numbers caused no problems.
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This program played no role in our proofs, and did not succeed in finding any new
tilings. It did, however, enable us to rule out values of N < 105, as described below.

3.2. Comparison with Laczkovich’s results. Given N , we have shown how to
determine a finite set of “possible tiles” that include every tile (with a π/3 angle
and α not a rational multiple of π) that can be used in an N -tiling of an equilateral
triangle. In other words, given N , the tile (and hence ABC) are determined; or
more accurately, all other possibilities for (N,ABC) are eliminated. We don’t know
if a tiling really exists, except by trial and error.

Laczkovich proved that any such tile can be used to N -tile an equilateral triangle
ABC, if we choose N large enough. In other words, given the tile, at least one pair
(N,ABC) is determined such that a tiling exists.

Comparing those results, the question naturally arises, whether the tile actually
determines N . That is, can the same tile be used for tiling two equilateral triangles
of different sizes? Well, given one tiling, we can always replace each tile by a
quadratic tiling of m2 smaller tiles, thus producing an m2N tiling. So the best we
can hope for is that the squarefree part of N might be determined by the tile. Since
we have explicit formulas for a/c and b/c, this question can be answered.

Theorem 5. Suppose T is a triangle with angles (α, β, π/3) with β not a rational
multiple of π/3. Suppose T can be used to N -tile an equilateral triangle, and also
to K-tile a (different) equilateral triangle. Then N and K have the same squarefree
part.

Proof. Let M be the coloring number of the N -tiling and J the coloring number of
the K-tiling. By Lemma 1 we have

3N +M2

3N −M2
±
√

(9N −M2)(N −M2)

3N −M2
=

3K + J2

3K − J2
±
√

(9K − J2)(K − J2)

3K − J2

(where the same sign is taken for both ± signs). Adding the two equations (obtained
by taking different signs for ±) we have

3N +M2

3N −M2
=

3K + J2

3K − J2
(4)

Define

f(x) :=
3x+ 1

3x− 1

We are interested only in the domain of rational x > 1. Then f ′ is negative, so f
is decreasing and hence one-to-one. By (4),

f

(

N

M2

)

= f

(

K

J2

)

Since f is one-to-one, N/M2 = K/J2. Hence J2N = M2N . Hence M and N have
the same square-free part. That completes the proof of the theorem.

4. Laczkovich’s graph Γc

Laczkovich has proved (already in 1995 [2]) that, given a rational tile of the shape
we are now considering, there is an N -tiling of some sufficiently large equilateral
ABC; but N might have to be large. As mentioned above, following Laczkovich we
found N = 10935, which Herdt improved in 2024 to N = 1215. See Figs. 4 and 5.
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In 2012 [3], Laczkovich made a significant advance: a tile with a 2π/3 angle that
tiles an equilateral triangle must either have both its other angles π/6, or else both
the following conditions hold:

(i) the tile is rational (that is, the ratios of the sides are rational), and

(ii) the other two angles of the tile are not rational multiples of π.

These statements are proved in Theorem 3.3 and Lemma 3.2 of [3], respectively.
It is the rationality of the tile that is the significant advance of 2012 [3], as (ii)
was already proved in 1995 [2]. The main tool is a directed graph Γc. We give the
definition and slight modifications of two important lemmas, which we will apply
below.

We need some terminology. Given a tiling of (in our case) a triangle ABC,
an internal segment is a line segment connecting two vertices of the tiling that is
contained in the union of the boundaries of the tiles, and lies in the interior of
ABC except possibly for its endpoints. A maximal segment is an internal segment
that is not part of a longer internal segment. A left-maximal segment is an internal
segment XY that is not contained in a longer segment UXY , i.e., a segment UY
with X between U and Y . A tile is supported by XY if one edge of the tile lies on
XY . The internal segment XY is said to have “all c’s on the left” if the endpoints
X and Y are vertices of tiles supported by XY and lying on the left side of XY ,
and all tiles supported by XY lying on the left of XY have there c edges on XY .
Similarly for “all c’s on the right.”

An internal segment XY is said to witness the relation jc = ℓa+mb in case the
endpoints X and Y are vertices of tiles on both sides of XY , and either

• XY has all c’s on one side, and exactly j of them (that is, the length of
XY is jc), and on the other side XY supports ℓ tiles with their a edges
on XY and m tiles with their b edges on XY (in any order) and no other
tiles, or

• XY has j + n tiles with c edges on one side, and on the other side X
supports ℓ tiles with their a edges on XY and m tiles with their b edges on
XY and n tiles with their c edges on XY .

Exercise. Identify the relations that are witnessed in Fig. 11.

This condition implies that c is not a linear combination of a and b with non-
negative rational coefficients, but it is stronger than that statement, in some way
limiting the size of the (numerators and denominators of the) coefficients. In par-
ticular, if XY witnesses jc = ℓa + mb, then since XY is an interior segment, the
length of X is less than the diameter (which for an equilateral triangle is the side)
of ABC. That places a bound on ℓ and m.

Similarly we use the terminology “XY witnesses a relation jc = ℓa+mc”, which
implies “c is a rational multiple of a”, but is stronger.

Laczkovich defined a tiling to be regular if there are two angles (say α and β) of
the tile such that at each vertex V of the tiling, the number of tiles having angle α at
V is the same as the number of tiles having angle β at V . According to Lemma 3.2 of
[3], in an irregular tiling, (α, β, γ) are linear combinations with rational coefficients
of the angles of the tiled polygon. In this paper the tiled polygon is the equilateral
triangle, so an irregular tiling has angles that are rational multiples of π. Therefore,
the case of interest in this section, when α and β are not rational multiples of π
and γ = 2π/3, only can occur in regular tilings.
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In the work below, we shall make use of Lemmas 4.5 and 4.6 of [3]. These lemmas
make use of the directed graph Γc defined on page 346. We review that definition
now.

Definition 1 (The directed graph Γc). Given a tiling of some triangle, the nodes
of the graph Γc are certain vertices of the tiling. An edge of Γc connects vertices X
and Y if the segment XY is a left-maximal internal segment having all c’s on one
side of XY , and there is another tile supported by XY on that side of XY past Y
that does not have its c edge on that side. Γa and Γb are defined similarly.

Example. In Fig. 4, look at the longest side of one of the light blue components
of the tiling. That segment is composed of 21 c edges. At one end it cannot be
extended: that is X . At the other end, it does extend beyond the blue triangles,
but there it has a edges on both sides. Hence, there is an edge of Γc from X to Y .

Exercise. Identify the graphs Γa, Γb, and Γc in Fig. 11 and Fig. 4.

We now state the versions of Laczkovich’s lemmas that we need. These lemmas
presuppose a regular tiling of a convex polygon, in our application an equilateral
triangle.

Lemma 2 (Laczkovich’s Lemma 4.5). Suppose the tiling does not witness any
relation jc = ℓa + mb. Let XY be a segment of the tiling (internal or on the
boundary) and let V be a vertex of the tiling lying on the interior of XY , lying
either on the boundary or on an internal point of an edge of some tile. Suppose
that of the two tiles supported by XY with a vertex at V , one has edge c on XY
and the other has edge a or b on XY . Then there is an edge of Γc starting from V .

Remark. In Fig. 4, the edge of Γc mentioned as an example does witness a relation
21c = 24a+ 15b.

Proof. Laczkovich’s statement replaces the first sentence of the lemma by “c is not a
linear combination of a and b with nonnegative rational coefficients.” But the proof
actually proves our version; only the last sentence uses the weakened hypothesis. 2

Lemma 2 begins to reveal the beauty of Laczkovich’s definition of Γc. If the tiling
does not witness any relation jc = ℓa+mb, then by the lemma, each ending point
(head) of an edge is the starting point (tail) of a new edge. That is, the out-degree
of each node is at least the in-degree. Since every edge has a head and a tail, the
total in-degree is equal to the total out-degree. Therefore the out-degree at each
node is equal to the in-degree. In particular, by the definition of Γc, no ending point
of a edge lies on the boundary of ABC; hence no edge begins on the boundary. This
leads to Laczkovich’s next lemma, in which similarly the hypotheses need a minor
adjustment to be expressed in terms of relations not witnessed in the tiling.

Lemma 3 (Laczkovich’s Lemma 4.6). Suppose there is a tiling of an equilateral
triangle by (a, b, c) with γ = π/3 or 2π/3 and a and b integers. If the tiling does
not witness any relation of the form jc = ℓa+mb, then the graph Γc is empty.

2Laczkovich’s proof is easier in case ABC is equilateral, which is the case we need. Namely,
if γ = π/3 then the complicated second paragraph is not needed, and if γ = 2π/3 then in that
paragraph we have p = 3.
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Proof. Laczkovich’s hypothesis is that a and b are commensurable and c is not a
rational multiple of a. In our case a, b, and c are integers so the first hypothesis
is trivial and the second is false. The hypotheses are used in the last sentence of
penultimate paragraph of the proof, namely (in his symbols)

Xuℓ = ioc+ ra with r a positive rational.

We replace this line by

Xuℓ = ioc+ ka+mb for nonnegative integers k and m.

which of course is the justification for Laczkovich’s claim, with r = k+mb/a. Then
the last two paragraphs of Laczkovich’s proof show that some relation jc = ℓa+mb
is witnessed in the tiling. (“ℓ” in Laczkovich is not to be conflated with our “ℓ”.)
Hence, the opening assumption that Γc contains an edge contradicts the assumption
that no such relation is witnessed. That completes the proof.

We would like to have the analogue of Lemma 3 for relations ja = ℓb+mc and
relations jb = ℓa +mc as well. Laczkovich takes up this matter in Lemma 8.1 of
[3], pointing out that to do so requires an additional argument. The reader who
studies that lemma will have no doubt that it implies the extension of Lemma 3 to
the relations mentioned. The reader who doubts it may have to allow a few more
entries in Table 6 of unsolved cases below.

5. A tile (α, β, 2π/3) with α/π irrational

Every vertex of the tiling with total angle π either is composed of α+ β + γ or
of 3α + 3β. Since the latter form has six tiles meeting at the vertex, there is no
coloring equation, since that would require an odd number of tiles at each vertex
with total angle π. Even in a tiling without such vertices, there still could not be a
coloring equation, because there will have to be a “center” somewhere in the tiling,
with three tiles each having angle 2π/3. The existence of a “center” follows from
the observation that at each vertex of ABC, there will have to be two tiles with
angles α and β; we do not give details since our only purpose here is to explain
why we cannot use the coloring equation for these tilings.

Before coming to the main theorem, we prove a lemma. It may seem obvious,
but it does actually need a proof.

Lemma 4. In an N -tiling of any triangle ABC with N > 3, no segment of the
tiling can support all N tiles.

Proof. Suppose segment XY supports all N tiles. If there is no vertex of the tiling
lying on the interior of XY then there is only one tile on each side of XY . Then
N = 1 if XY lies on the boundary of ABC, and otherwise N = 2, contradiction.
Therefore there is a vertex V between X and Y . If at least three tiles meet at V on
the same side of XY , then the middle one is not supported by XY . Hence exactly
two tiles on the same side of XY meet at V . Then both tiles must have their γ
angle at V (assuming here that α < β < γ), since otherwise the sum of the angles
cannot be π. Then γ = π/2. Let T be one of those two tiles and let W be its other
vertex on XY . Then T does not have its γ angle at W . If W is in the interior
of XY then the other two tiles on the same side of XY as T and with a vertex
at W must together make more than a π/2 angle at W , so there must be at least
two such tiles. Then the one adjoining T is not supported by XY , contradiction.
Therefore W is not in the interior of XY , but must be X or Y . Hence only two
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tiles on that side of XY are supported by XY , and their other sides (the ones not
shared between the two tiles or lying on XY ) lie on the boundary of ABC, and
the angles of those tiles at X and Y are acute. Now if XY lies on the boundary of
ABC, then N = 2, contradiction. Hence XY is an interior segment. Then the same
argument applies to the other side of XY , so there are exactly two tiles supported
on that side of XY as well, whose other edges lie on the boundary of ABC and
have acute angles at X and Y . But then ABC is a quadrilateral, with diagonal
XY . (Note that some quadrilaterals can indeed be tiled in such a way that the
diagonal supports all four tiles.) That contradicts the hypothesis that ABC is a
triangle. That completes the proof.

Theorem 6. Let equilateral triangle ABC be N -tiled by a tile with angles (α, β, γ),
with γ = 2π/3 and α not a rational multiple of π. Then N is not a prime number.

Proof. By Theorem 3.3 of [3], (a, b, c) are pairwise commensurable. Without loss
of generality we can assume that (a, b, c) are integers with no common factor. As
explained above, Lemma 3.2 of [3] implies the tiling is regular. Assume, for proof
by contradiction, that N is a prime number. Let X be the length of the sides of
equilateral ABC. Then the area equation is

X2 sin(π/3) = Nab sin(2π/3)

Since sin(π/3) = sin(2π/3) we have

X2 = Nab area equation

Since each side of ABC is the disjoint union of a set of tile edges, we have for some
non-negative integers (p, q, r),

X = pa+ qb+ rc.

Then X is an integer. Since X2 = Nab, N divides X2, which we write as usual
N |X2. Then we have

N |X2

N |X since N is prime

N2|X2

N2|Nab since X2 = Nab

N |ab

Since N is prime, N divides a or N divides b. Since so far, nothing distinguishes α
from β except the name, we may assume without loss of generality that N divides
a. Then there is an integer e ≥ 0 such that a = Ne. Then X2 = N2eb. Then eb is
a rational square, and hence an integer square.

By the law of cosines, we have

c2 = a2 + b2 − cos(2π/3) ab

c2 = a2 + b2 + ab since cos(2π/3) = −1/2

c2 = N2e2 + b2 +Neb(5)

Therefore c is congruent to ±b mod N and also N does not divide b, since if N |b
then also N |c2 and hence N |c, contradiction, since then N would divide all three of
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(a, b, c), but (a, b, c) have no common divisor. Since X is a sum of tile edges, there
are nonnegative integers (p, q, r) such that

X = pa+ qb+ rc

Moreover, we may assume not both q and r are zero, since at each vertex of ABC,
one of the tiles there has its α angle at that vertex, and hence does not have its
a edge on the boundary of ABC. We choose such a side of ABC to pick the
decomposition of X . Then not both q and r are zero. Substitute for c from (5).
Then

X = pNe+ qb + r
√

N2e2 + b2 +Neb

Since N |X , looking at the equation mod N we have

0 = (q ± r)b mod N(6)

But N does not divide b. Therefore either N |(q+ r) or N |(q− r), according as c is
congruent to b or −b mod N . We have q + r < N , since at least one tile does not
have an edge on the side of ABC that decomposes into pa+qb+rc. (We can choose
one at a vertex of ABC, for example.) Since not both q and r are zero, we have
0 < (q + r) < N , so N cannot divide q + r. Therefore N |q − r. Hence q = r and
c ≡ −b mod N . Hence b+ c is divisible by N . Then the equation X = pa+ qb+ rc
becomes

X = pa+ q(b+ c)

Suppose jc = ℓa+mb is witnessed on some internal segment of the tiling. Then

jc+ jb = ℓa+ (m+ j)b

and mod N we have j(b+ c) ≡ 0, and since N |a and N does not divide b, and N is
prime, we have N |(m+ j). But since the relation is witnessed in the tiling, (m, ℓ, j)
are each less than N , hence m+ j = N . Then every tile touches that internal line,
which is impossible, by Lemma 4. (This is the only place we use that lemma, but
it does seem to be needed here if ℓ = 0.) Hence no internal segment of the tiling
witnesses a relation jc = ℓa+mb.

Hence, by Lemma 3, the graph Γc is empty. Therefore, by Lemma 2, every
maximal segment XY in the tiling that supports a tile with a c edge with a vertex
at X has only c edges on that side of XY .

In particular, each side of ABC consists only of c edges if it has any c edges
at all. But we also proved that it has equal numbers of b and c edges. Hence the
number of b and c edges on the boundary is zero. In that case, however, each tile
on side AB of ABC would have a γ angle on AB, and since γ > π/2, there is
at most one γ angle at each vertex, and no γ angle at the endpoints A and B,
since γ = 2π/3 is greater than the angles of an equilateral triangle. Then by the
pigeonhole principle, one vertex on AB must have two tiles with their γ angles at
that vertex. But that is a contradiction, since 2γ > π. That completes the proof.

Remark. The proof above works also for the case of an equilateral triangle
tiled by (α, β, π/3). Then the law of cosines gives us c2 = a2 + b2 − ab instead of
c2 = a2+b2+ab, but the argument still goes through (including the last paragraph,
which does not really rely on γ > π/2). Since we already gave one proof that N
cannot be prime in that case in Theorem 3, we do not spell out the details.
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6. Necessary conditions when γ = π/3

In this section we restrict attention to tiles with angles (α, β, π/3) where α and
β are not rational multiples of π. Suppose there is an N -tiling of an equilateral
triangle: what can we say about N? Above we proved that N cannot be prime;
but certainly there are many composite N for which there is no N -tiling. Let
us consider the question, given N , can we determine whether or not there is an
N -tiling of an equilateral triangle with γ = π/3 and α not a rational multiple of π?

We have reduced the problem to two computational steps:

• Determine if the equations of Lemma 1 have rational solutions for the ratios
a/c and b/c. If they do not, there is no N -tiling. If they do, let (a, b, c) be
integers with no common divisor whose ratios solve the equations.

• Determine, given N and (a, b, c) whether a tiling actually exists.

The first of these two steps is easy, since M is bounded in terms of N . The first
few values of N that survive this test are shown in Table 6.

Table 1. Tilings not ruled about by the area and coloring equations

N M the tile side of ABC
54 6 (3,8,7) 36
66 4 (11,96,91) 254
70 5 (7,40,37) 140
85 6 (17,80,73) 340
96 8 (3,8,7) 48

105 7 (5,21,19) 105
105 9 (7,15,13) 105
130 9 (40,117,103) 780
150 10 (3,8,7) 60
153 5 (17,225,217) 755
156 9 (13,48,43 ) 312
198 10 (72,275,247) 1980

· · · · · ·

Evidently there are some entries in Table 6 with improbably large (a, b, c) com-
pared to X . We can use Lemmas 2 and Lemma 3 to eliminate rows of the table
where there is no relation rc = pa+ qb, with r > 0 and p, q ≥ 0. For example, we
will show that N = 66 can be rejected, because (a, b, c) must be (11, 96, 91), the
side X of ABC must be 264, and there is no relation

11p+ 96q = 91r with 91r < 264

These observations will enable us to reject N = 66 using Lemma 3, once we also use
Lemma 2 to prove that Laczkovich’s directed graphs are not empty. The following
theorem and proof supply the details:

Theorem 7. Suppose there is an N -tiling of any equilateral triangle ABC by a
tile with angles (α, β, π/3) where β is not a rational multiple of π. Then the tile
and coloring number satisfy the area and coloring equations discussed above. In
addition:

(i) The tiling must witness at least one relation jc = ℓa +mb, where jc is less
than the side of ABC, and j > 0 and ℓ,m ≥ 0.
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(ii) It must also witness at least one relation ja = ℓb+mc with ja < X, and at
least one relation jb = ℓa+mc with jb < X.

Example. In Fig. 11, we have N = 1440, and (a, b, c) = (5, 8, 7), andX = 240. Then
we have the relations 5c = 7a and 5b = 8a, 8c = 7b, and 8b = 3a+ 7c. Identify the
segments in that tiling that witness these relations. Identify the graphs Γc and Γb.

Proof. First we note that, by the definition of “witness a relation”, there must be
tiles on both sides of the witnessing segment of length jc; so that segment does
not lie on the boundary of ABC. Any line segment lying inside triangle ABC has
length strictly less than the side X of ABC. Therefore if a relation jc = ℓa+mb
is witnessed, necessarily jc < X .

Suppose there is an N -tiling of equilateral triangle ABC by a tile as in the
theorem. Then the tiles at each vertex of ABC have their γ angle, namely π/3,
at the vertex. Hence they have their a and b sides along the boundary of ABC.
Therefore at least one side of ABC supports a tile with its a edge on the boundary.
Renaming the vertices of ABC if necessary, we can assume AB has an a edge at A.

Suppose, for proof by contradiction, that no relation jc = ℓa+mb is witnessed
in the tiling. Then, by Lemma 3, the graph Γc is empty.

Suppose AB consists only of a edges. Then each tile supported by AB has β
and γ angles on AB. Each vertex on AB has one each of α, β, and γ angles, since
otherwise there would be three γ angles at some vertex on AB, which is impossible
since the tiling is regular. (Otherwise put, reproving that the tiling is regular, if
there were such a vertex, an edge of Γc would start there, see [3].) Since the γ
angles of the end tiles are at A and B, the β angles are not at A and C. Then
the vertices on AB different from A and B together contain one more β angle than
there are such vertices, contradicting the pigeonhole principle. Therefore, it is not
the case that AB consists only of a edges.

Then, since the tile at A has its a edge on AB, there is a vertex on AB with an
a edge on one side and a b or c edge on the other side. If there is any c edge on
AB, then there is a vertex V on AB with a c edge on one side and an a or b edge
adjacent. Then by Lemma 2, there is an edge of Γc with its tail at V . Now assume
that no relation jc = ℓa + mb is witnessed. Then by Lemma 3, the in-degree of
Γc at V is equal to the out-degree. Therefore there is also an edge with its head
at V . But by definition of Γc, no edge has its head on the boundary of ABC,
contradiction. Therefore there is no c edge on AB. Therefore every tile supported
by AB has a γ angle on AB. As remarked above, we do not have three γ angles
at any vertex on AB. Since the angles at the vertices A and B are γ, the interior
vertices on AB cannot all have a γ angle, by the pigeonhole principle, contradiction.
That completes the proof of part (i).

Now to prove part (ii). Suppose there is no witnessed relation ja = ℓb + mc.
Then by Laczkovich’s Lemma 8.1 (formulated as an extension of our Lemma 3 to
relations ja = ℓb + mc, Γa is empty. By Lemma 2, there is no vertex V on the
boundary of ABC with an a edge supported by the boundary on one side of V , and
a b or c edge on the other side. As above, at least one side of ABC (which we may
assume is AB) does support at least one a edge. Then AB must consist entirely of
a edges.
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The tile at C has its a edge either on AC or BC; we may assume it is on AC.
Side AC does not consist entirely of a edges, since the tile at A has its a edge on
AB. Therefore somewhere on AC there is a vertex V with an a edge supported
by the boundary on one side of V , and a b or c edge on the other side. But that
contradicts Lemma 2, as mentioned above. Hence, there is no witnessed relation
ja = ℓb+mc. Similarly, there is no witnessed relation jb = ℓa+mc. That completes
the proof of the theorem.

To put the theorem into computational practice, we have to eliminate lines from
Table 6 for which there is no relation jc = ℓa +mb with jc < X ; since of course
if there is no possible such relation, then none can be witnessed in a tiling. Some
lines of the resulting table are shown in Table 6. The last line shown corresponds to
the tiling in Fig. 11. It is not known if any of the other lines correspond to tilings.

Table 2. Tilings not ruled out by the area and coloring equations
and Lemma 3

N M (a, b, c) side of ABC
54 6 (3, 8, 7) 36
96 8 (3, 8, 7) 48

105 7 (5, 21, 19) 105
105 9 (7, 15, 13) 105
150 10 (3, 8, 7) 60
216 12 (3, 8, 7) 72
220 11 (16, 55, 49) 440
270 15 (8, 15, 13) 180
280 10 (7, 40, 37) 280
294 14 (3, 8, 7) 84
374 18 (88, 153, 133) 2244
384 16 (3, 8, 7) 96
385 15 (11, 35, 31) 385
399 18 (57, 112, 97) 1596

· · · · · ·
1360 24 (17, 80, 73) 1360
1377 15 (17, 225, 217) 2295
1394 36 (369, 544, 481) 16728
1404 27 (13, 48, 43) 936
1440 36 (5, 8, 7) 240

The computation of both these tables is instantaneous, and we could compute
as many pages of either table as we want to read. In particular, if we compute
the tables up to N = 1440 (which corresponds to the tiling in Fig. 11), there are
81 lines in Table 6, and 55 lines in Table 6, including quite a few occurrences of
the simple tiles (3, 8, 7) and (5, 8, 7). One of these 55 lines represents the smallest
possible value of N corresponding to a tiling, but we do not know which.

The SageMath code for computing Table 6 up to N = 200 is given in Fig. 8. We
have not included the additional lines needed to compute Table 6.
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Figure 8. SageMath code to produce Table 6

def nov19(J):

var(’N,M’)

for N in range(3,J):

for M in range(1,int(sqrt(N))):

x = (9*N-M^2)*(N-M^2)

if not is_square(x):

continue

den = 3*N-M^2

num = 3*N+M^2

C = 2*den;

A = num - sqrt(x)

B = num + sqrt(x)

assert(C^2 == A^2 + B^2 - A*B) # because gamma is pi/3

g = gcd(A,gcd(B,C))

(a,b,c) = (A/g,B/g,C/g)

X = M*(a+b+c)/3 # length of the side

assert(X*X == N*a*b)

print(N,M,(a,b,c),X)

7. Appendix: Tilings found by Bryce Herdt

In 2024, Bryce Herdt found new tilings of equilateral triangles using tiles (3, 8, 7)
and (5, 8, 7) (for which γ = π/3), and (3, 5, 7) (for which γ = 2π/3). These tilings
dramatically lowered the N for the “smallest known tiling” of equilateral triangles.
Herdt found these tilings by first finding new dissections of an equilateral triangle
into similar triangles, and then refining those to tilings by congruent tiles.

Herdt’s key innovation is the realization that a parallelogram can often be broken
into two parallelograms, which can then be tiled with tiles in different orientations,
dramatically reducing the number of tiles required. Fig. 9 illustrates the technique.

Figure 9. Decomposing a parallelogram with top pc+ qb and side bc
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Figure 10. Herdt’s 1944-tiling with tile (3, 8, 7)
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Figure 11. Herdt’s 1440-tiling with tile (5, 8, 7)
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