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Abstract

An N-tiling of triangle ABC by triangle T is a way of writing ABC as a union of N triangles
congruent to T , overlapping only at their boundaries. The triangle T is the “tile”. The tile
may or may not be similar to ABC. We wish to understand possible tilings by completely
characterizing the triples (ABC, T, N) such that ABC can be N-tiled by T . In particular, this
understanding should enable us to specify for which N there exists a tile T and a triangle ABC
that is N-tiled by T ; or given N , to determine which tiles and triangles can be used for N-tilings;
or given ABC, to determine which tiles and N can be used to N-tile ABC. This is our fourth
paper on this subject. In this paper, we take up the last remaining case: when ABC is not
similar to T , and T has one angle equal to 120◦, and T is not isosceles (although ABC can be
isosceles or even equilateral).

Here is our result: If there is such an N-tiling, then the smallest angle of the tile is not
a rational multiple of π. In total there are six tiles with vertices at the vertices of ABC. If
the sides of the tile are (a, b, c), then there must be at least one edge relation of the form
jb = ua + vc or ja = ub + vc, with j, u, and v all positive. The ratios a/c and b/c are rational,
so that after rescaling we can assume the tile has integer sides, which by virtue of the law of
cosines satisfy c2 = a2 + b2 + ab. A simple unsolved specific case is when ABC is equilateral
and (a, b, c) = (3, 5, 7). The techniques used in this paper, for the reduction to the integer-sides
case, involve linear algebra, elementary field theory and algebraic number theory, as well as
geometrical arguments. Quite different methods are required when the sides of the tile are all
integers.

1 Introduction

For a general introduction to the problem of triangle tiling, see [1]. This paper is entirely
concerned with the non-existence of tilings, rather than their existence. In [1] we enumerated
the known tilings; it is our aim to prove that these families exhaust all the possible tilings, or
at least, exhaust all the triples (ABC,N, T ) such that ABC can be N-tiled by tile T .

As it turns out, one of the most difficult cases to analyze is the case of a tiling in which T
is not similar to ABC, and T has γ = 2π/3 and α < β. In analyzing this case, we alternated
several times between trying to construct such a tiling (using paper copies of the tile) and trying
to prove no such tiling exists. Although there are some quite interesting ways of fitting together
tiles of this shape, one never seems to be able to make a triangle. After Herculean efforts, we
have still not been able to rule out the existence of such tilings. The main theorem of this paper
is that, if there is such a tiling, then the tile is similar to a tile whose sides are all integers, such
as (3, 5, 7). Several different arguments are used. The proof involves the “vertex splitting”; let
P and Q be the numbers of α and β, and γ angles (respectively) occurring (in total) at the
vertices of ABC. Then the cases divide according as α is a rational multiple of π or not, and
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according as (P, Q) = (3, 3) or not, and the case (P, Q) = (3, 3) and α is not a rational multiple
of π divides further according to the values of P and Q. None of the cases is very simple. The
case when α is a rational multiple of π divides according as α = π/12, π/9, or 2π/15; all other
cases can be disposed of easily.

In [1], we introduced the d matrix and the d matrix equation,
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where a, b, and c are the sides of the tile, and X, Y , and Z are the lengths of the sides of ABC,
in order of size. The angles of ABC are, in order of size, A, B, and C, so X = BC, Y = AC,
and Z = AB. We keep this convention even if some the angles are equal. The d matrix has
nonnegative integer entries, describing how the sides of ABC are composed of edges of tiles.

The d matrix is used in almost all our proofs. To avoid having every page filled with
cumbersome subscript notation dij for the entries of the matrix, we introduce letters for the
entries. While this eliminates subscripts, it does require the reader to remember which element
is denoted by which letter. Here, for reference, we define
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2 A little number theory

The following lemma identifies those relatively few rational multiples of π that have rational
tangents or whose sine and cosine satisfy a polynomial of low degree over Q. The lemma and
its proof are of course well-known, but it is short and may help to make the paper more self-
contained.

Lemma 1 Let ζ = eiθ be algebraic of degree d over Q, where θ is a rational multiple of π, say
θ = 2mπ/n, where m and n have no common factor.

Then d = ϕ(n), where ϕ is the Euler totient function. In particular if d = 4, which is the
case when tan θ is rational and sin θ is not, then n is 5, 8, 10, or 12; and if d = 8 then n is 15,
16, 20, 24, or 30.

Remark. For example, if θ = π/6, we have sin θ = 1/2, which is of degree 1 over Q. Since
cos θ =

√
3/2, the number ζ = eiθ is in Q(i,

√
3), which is of degree 4 over Q. The number ζ is

a 12-th root of unity, i.e. n in the theorem is 12 in this case; so the minimal polynomial of ζ is
of degree ϕ(12) = 4. This example shows that the theorem is best possible.

Remark. The hypothesis that θ is a rational multiple of π cannot be dropped. For example,
x4 − 2x3 + x2 − 2x + 1 has two roots on the unit circle and two off the unit circle.

Proof. Let f be a polynomial with rational coefficients of degree d satisfied by ζ. Since ζ =
ei2mπ/n, ζ is an n-th root of unity, so its minimal polynomial has degree d = ϕ(n), where ϕ is
the Euler totient function. Therefore ϕ(n) ≤ d. If tan θ is rational and sin θ is not, then sin θ
has degree 2 over Q, so ζ has degree 2 over Q(i), so ζ has degree 4 over Q. The stated values of
n for the cases d = 4 and d = 8 follow from the well-known formula for ϕ(n). That completes
the proof of (ii) assuming (i).

Corollary 1 If sin θ or cos θ is rational, and θ < π is a rational multiple of π, then θ is a
multiple of 2π/n where n is 5, 8, 10, or 12.
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Proof. Let ζ = cos θ + i sin θ = eiθ. Under the stated hypotheses, the degree of Q(ζ) over Q is
2 or 4. Hence, by the lemma, θ is a multiple of 2π/n, where n = 5, 8, 10, or 12 (if the degree
is 4) or n = 3 or 6 (if the degree is 3). But the cases 3 and 6 are superfluous, since then θ is
already a multiple of 2π/12.

We will need the following well-known number theoretical results, which we state here at
the outset for reference later.

The following lemma only involves trigonometry in its statement, but involves some algebra
in the proof; strangely, it crops up in two quite different places in the paper.

Lemma 2 Suppose α + β = π/3, and (sin α)/ sin β is rational. Then (sin 2α)/ sin 2β is also
rational, and

cos α

cos β
=

a + 2b

2a + b

where a = sin α and b = sin β.

Proof. Suppose, for proof by contradiction, that (sin 2α)/ sin 2β is rational. Let a = sin α and
b = sin β. Let T be a triangle with one side a and one side b and an angle of 120◦ between those
sides, and let c be the opposite side. Then by the law of cosines we have

c2 = a2 + b2 − 2ab cos(2π/3)

= a2 + b2 + ab since cos(2π/3) = −1/2

0 = a2 + ab + b2 − c2

If we choose c = sin(2π/3) =
√

3/2, then we have a = sin α and b = sin β by the law of sines in
triangle T . Then c2 = 3/4. Setting x = a/b we have

x2 + x + 1 =
3

4

“ 1

b2

”

(1)

We also have

sin 2α

sin 2β
=

sin α cos α

sin β cos β

=
a

b

cos α

cos β

Hence (sin(2α)/ sin 2β) is rational if and only if (cos α)/ cos β is rational. Define

ξ :=
cos α

cos β

ξ2 =
cos2 α

cos2 β

=
1 − a2

1 − b2

1 − a2 = (1 − b2)ξ2

Dividing both sides by b2 we have

1

b2
− x2 =

“ 1

b2
− 1

”

ξ2

1

b2
(1 − ξ2) = x2 − ξ2

1

b2
=

x2 − ξ2

1 − ξ2
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Substituting the right side of this equation for 1/b2 in (1) we have

x2 + x + 1 =
3

4

“x2 − ξ2

1 − ξ2

”

Multiplying by 4(1 − ξ2) a we have

4(1 − ξ2)(x2 + x + 1) = 3(x2 − ξ2)

4(x2 + x + 1) − 3x2 = ξ2(4(x2 + x + 1) − 3)

x2 + 4x + 4 = ξ2(4x2 + 4x + 1)

(x + 2)2 = ξ2(2x + 1)2

ξ =
x + 2

2x + 1

Since x is rational, so is ξ. Replacing x by its definition a/b, we have the formula in the lemma.
That completes the proof of the lemma.

3 γ = 2π/3 and (P, Q) 6= (3, 3)

Lemma 3 Suppose ABC is N-tiled by a triangle T whose largest angle γ is 2π/3. Suppose
ABC is not similar to T , and T is not isosceles, i.e. is not the tile used in the equilateral
3-tiling. Let P and Q be the total numbers of α and β angles (respectively) at the vertices of
ABC. Suppose (P, Q) 6= (3, 3). Then

(i) P 6= Q and α = π
3
(Q − 3)/(Q − P ) and

(ii) Either α = π/9, or α = π/12, or α = 2π/15, and

(iii) When P < Q and α = π/9 we have (P, Q) = (1, 4), and if P < Q and α = π/12 we
have (P, Q) = (0, 4), and

(iv) In case α = 2π/15, triangle ABC is isosceles with base angles either β or 2β, and
(P, Q) = (0, 5).

Proof. Since ABC is not similar to T , we have vertex splitting. Since T is not isosceles, α < β.
Let P and Q be the total number of α angles and β angles, respectively, at vertices of ABC. The
number R of γ angles is either zero or 1, since 2γ = 4π/3 > π. If R = 0 we have Pα + Qβ = π,
and if R = 1 we have Pα + Qβ = π/3. Because ABC is not similar to T , at least two angles of
ABC are split, so P + Q + R ≥ 5. Since R ≤ 1, we have P + Q ≥ 4.

Fix any vertex V of the tiling, and let n, m, and ℓ be the number of α, β, and γ angles at
V . If ℓ = 2 then either m = n = 1 or m = 0 and n > 2. If ℓ = 1 then at least two more angles
are required. Thus, unless ℓ = 3, there are at least as many α and β angles at V as γ angles.
Since at the vertices of ABC, there are more α and β angles than γ angles, this cannot be the
case at every vertex, since altogether there must be N of each. This proves that at some vertex
V we have ℓ = 3, i.e. three γ angles meet. Let R be the number of γ angles at the vertices of
ABC. We have

0

@

0 0 3
1 1 1
P Q R

1

A

0

@

α
β
2π
3

1

A =

0

@

2π
π
π

1

A (2)

The determinant of the matrix on the left is 3(Q−P ). Suppose, for proof by contradiction, that
P = Q. Then R = 0, since if R = 1 we have π/3 = Pα+Qβ = P (α+β) = Pπ/3, so P = Q = 1,
contradicting P +Q ≥ 4. Now that we know R = 0 we have π = Pα+Qβ = P (α+β) = P (π/3)
since α + β = π/3. Hence π = P (π/3); hence P = 3. Since P = Q we have P = Q = 3. But
that contradicts the hypothesis. That contradiction shows that P 6= Q.
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Therefore the determinant of the matrix equation (2) is not zero, and we can solve for α by
Cramer’s rule:

α =
π

3(Q − P )

0

@

2 0 3
1 1 1
1 Q R

1

A

=
π

3

2R + Q − 3

Q − P
(3)

Since P 6= Q, there are only two possibilities, Q < P and Q > P . Consider the case Q < P . We
will show that α must be π/9 or π/12. The meaning of Q < P is that there are fewer β angles
than α angles at the vertices of ABC (taken together). Since each copy of the tile has one β
and one α vertex, there must exist a vertex of the tiling at which there occur more β angles
than α angles. Let V be such a vertex. Then at least one β angle occurs at V . The angle sum
at V is either π or 2π. Suppose first that it is π. If a γ angle occurs at V , then there is room
for only one β and one α angle in addition, contradicting the fact that more β angles than α
angles occur at V . Therefore no γ angles occur at V , and at least two β angles.

There cannot be exactly two β angles at V , since π − 2β = π/3 + 2α > 2α, so more than
two α angles must occur at V , contradiction. If exactly three β angles occur, then there is room
for only three α angles (since α + β = π/3); but that contradicts the fact that more β than α
angles occur at V . If four β angles occur, then let k < 4 be the number of α angles at V ; then
we have

4β + kα = π

(4 − k)β + k(α + β) = π

(4 − k)β + k
π

3
− = π since α + β = π/3

(4 − k)β = (3 − k)
π

3

Let us check the possibilities for k. With k = 3 we have β = 0, a contradiction. With k = 2
we have α = β = π/6, contradicting the hypothesis that T is not isosceles. With k = 1 we have
β = 2π/9 and α = π/9,as desired. With k = 0 we have β = π/4 and α = π/12, as desired.
contradicting the assumption that α 6= π/12. Hence, if the angle sum at V is π, the conclusion
of the lemma is verified.

If, on the other hand, the vertex V has angle sum 2π, and has two γ angles, that leaves 2π/3
to be composed of α and β angles. That could be done with two α and two β angles, but that
is not more α than β angles; it cannot be done with fewer than two β angles; and if three β
angles occur, with zero α angles, then their sum is 2π/3 = 3β = π− 3α, which implies α = π/9.
If three β angles occur with one α angle, then

3β + α = 2π/3

3(π/3 − α) + α = 2π/3 since α + β = π/3

α = π/6 contradiction, since α < π/6 < β

If three β angles occur with two α angles, then

3β + 2α = 2π/3

3(π/3 − α) + 2α = 2π/3 since α + β = π/3

α = π/3 contradiction, since α < π/6 < β

But since there are more β angles than α angles at V , this exhausts the possibilities. That
completes the proof of the claim that if Q < P then α = π/9 or α = π/12.
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Turning to the case Q > P , since α < π/6, we have by (3) that

π

3

2R + Q − 3

Q − P
<

π

6
.

Hence Q−P > 2(2R+Q−3). Hence 4R+P +Q < 6. Since P +Q ≥ 4, the case R = 1 is ruled
out, and we can assume R = 0. Then P + Q < 6. Hence P + Q = 4 or P + Q = 5. Since α > 0
we have Q > 3 by (3), so the possibilities for (P, Q) are (0, 4), (1, 4), (0, 5). The corresponding
values of α can be computed from (3), and β can then be found from α + β = π/3. The results
are shown in the following table:

P Q α α in degrees β β in degrees

0 4 π/12 15 π/4 45

1 4 π/9 20 2π/9 40

0 5 2π/15 24 π/5 36

Note that in case (P, Q) = (0, 4), the triangle ABC must be a right isosceles triangle, since
with four β angles to make three vertices of ABC, two of them must be β and the other one
2β = π/2. In case (P, Q) = (0, 5), five β angles are distributed among three vertices of ABC, so
the triangle ABC must also be isosceles, but there are two possibilities: either the base angles
are β and the vertex angle is 3β, or the base angles are 2β and the vertex angle is β. That is,
the base angles are either 36◦ or 72◦. That completes the proof of the lemma.

Now the reader might expect us to rule out the three remaining values of α and be done
with this section. It is not quite simple, because there are many possible shapes of ABC to
consider. Strangely, we have to divide the argument into cases not only by the value of α, but
by whether ABC is or is not isosceles.

4 γ = 2π/3 and α = π/12 and ABC isosceles

Lemma 4 Suppose that triangle ABC is isosceles. Then ABC cannot be N-tiled by a triangle
T whose largest angle is γ = 2π/3 and smallest angle is α = π/12.

Proof. Let a = sin α. We will work in the field Q(a), so it will be necessary to establish some
identities that determine arithmetic in Q(a). One can calculate a as follows:

a = sin
π

12

= sin
π/6

2

=

r

1 − cos π
6

2

=

s

1

2
−

√
3

4

=

√
3 − 1

2
√

2

The last step can be verified by squaring both sides and simplifying. Squaring and solving for√
3 we have √

3 = 2 − 4a2 (4)

Squaring and subtracting 3 we find 16a4 − 16a2 + 1 = 0. Hence

a4 = a2 − 1

16
(5)
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From the equation for a it now follows that both
√

2 and
√

3 belong to Q(a), which therefore
has degree 4 over Q, since

√
3 does not belong to Q(

√
2). Hence the fourth-degree polynomial

above is the minimal polynomial of a.
In triangle T , we have β = π/3−α = π/4. Hence b = sin β = 1/

√
2 already belongs to Q(a).

We need to find an explicit expression for b in powers of a.

a =

√
3 − 1

2
√

2

=
1√
2

√
3 − 1

2

= b

√
3 − 1

2

b =
2a√
3 − 1

=
2a√
3 − 1

√
3 + 1√
3 + 1

= a(
√

3 + 1)

= a(2 − 4a2 + 1) by (4)

= a(3 − 4a2)

with the final result
b = 3a − 4a3 (6)

The third side of the tile is c = sin(2π/3) =
√

3/2 = 1 − 2a2.
With these algebraic preliminaries in order, we now consider an isosceles triangle ABC,

with base BC and vertex angle at A. The possibilities for the base angles of ABC are kα, for
1 ≤ k ≤ 5, and the corresponding possibilities for the vertex angle A are the even multiples of
α up to 10α. In other words, since π/2 = 6α, the vertex angle A is either π/2, or π/2 ± 2α, or
π/2 ± 4α. That is, the angle at A is π/2 + 2Jα, for −2 ≤ J ≤ 2. Fix this number J .

Let X be the length of sides AC and BC. Then the area of triangle ABC is given by

AABC =
1

2
X2 sin(π/2 + 2Jα)

=
1

2
X2 cos(2Jα)

Next we calculate the area of the tile T . We have a = sin α, b = sin β, and by the cross-product
formula for the area of a triangle we then have

AT =
1

2
sin α sin β sin γ

=
1

4
ab since sin γ = sin 2π

2
= 1

2

=
1

2
a(3a − 4a3) by(6)

=
3

2
a2 − 2a4

=
3

2
a2 − 2(a2 − 1

16
) by (5)

=
1

8
− 3

2
a2

Since ABC is tiled by N copies of the tile T , we have

NAT = AABC
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N
“ 1

8
− 3

2
a2

”

=
1

2
X2 cos(2Jα)

Let p, q, and r be the numbers of a sides, b sides, and c sides of tiles on side AB. In other words,
p, q, r is the row of the d matrix corresponding to side AB. Then X = pa + qb + rc. Using the
expressions derived in (6) and (4) we have

X = pa + qb + rc

= pa + q(3a − 4a3) + r(1 − 2a2)

= r + (p + 3q)a − 2ra2 − 4qa3

Squaring both sides we have

X2 = (r + (p + 3q)a − 2ra2 − 4qa3)2

X2 = r2 + 2r(p + 3q)a + a2((p + 3q)2 − 4r2) − a3(8qr + 4r(p + 3q)) + a4(4r2 − 8q(p + 3q))

This expression for X2 does not depend on the shape of ABC, but only the shape of T . Now
we bring the shape of ABC into the equations. Using (5) to eliminate a4 we find

X2 = r2 + 2r(p + 3q)a + a2((p + 3q)2 − 4r2) − a3(8qr + 4r(p + 3q)) + (a2 − 1

16
)(4r2 − 8q(p + 3q))

=
3

4
r2 +

1

2
q(p + 3q) + 2r(p + 3q)a + a2((p + 3q)2 − 8q(p + 3q)) − a3(8qr + 4r(p + 3q))

=
3

4
r2 +

1

2
q(p + 3q) + 2r(p + 3q)a + a2(p + 3q)(p − 5q) − a3(8qr + 4r(p + 3q))

Assume, for proof by contradiction, that J = 0, i.e ABC has a right angle at A. Then

2NAT = 2AABC

2N
“1

8
− 3

2
a2

”

= X2

N

4
− 3Na2 =

3

4
r2 +

1

2
q(p + 3q) + 2r(p + 3q)a + a2(p + 3q)(p − 5q) − a3(8qr + 4r(p + 3q))

=
3

4
r2 +

1

2
q(p + 3q) + 2r(p + 3q)a + a2(p + 3q)(p − 5q) − a3(8qr + 4rp + 12rq)

Since {1, a, a2, a3} is a basis for Q(a), the coefficients of like powers of a are equal on both sides
of this equation. The linear term tells us that r(p + 3q) = 0. Hence either r = 0 or both p and
q are zero, since p and q are nonnegative. If both p and q are zero, then the quadratic term is
zero on the right, but is −3N on the left, contradiction. Hence r = 0. Equating the coefficients
of the quadratic term on both sides we have

3N = (p + 3q)(5q − p)

Equating coefficients of the constant terms we have

N

4
=

1

2
q(p + 3q)

Multiplying by 12 we have
3N = 6q(p + 3q)

Equating the two expressions we have derived for 3N we have

(p + 3q)(5q − p) = 6q(p + 3q)

We have already proved p + 3q 6= 0, so we can cancel it, obtaining 5q − p = 6q, which is
impossible, since p ≥ 0. This contradiction shows that the assumption J = 0 is untenable, i.e.
no such tiling exists with a right angle at vertex A.
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Assume, for proof by contradiction, that J = ±1, which corresponds to vertex angle π/2±2α.
Then

2NAT = X2 sin(
π

2
± 2α)

N

4
− 3Na2 = X2 cos 2α

= X2 cos
π

6

= X2

√
3

2

= X2(1 − 2a2) by (4)

Now we put in for X2 the expression calculated above:

N

4
− 3Na2 =

n3

4
r2 +

1

2
q(p + 3q) + 2r(p + 3q)a + a2(p + 3q)(p − 5q)

−a3(8qr + 4r(p + 3q))
o

(1 − 2a2)

=
3

4
r2 +

1

2
q(p + 3q) + 2r(p + 3q)a + a2((p + 3q)(p − 5q) − 3

2
r2 − q(p + 3q))

−a3((8qr + 4r(p + 3q)) + 4r(p + 3q)) − 2a4(p + 3q)(p − 5q) + 2a5(8qr + 4r(p + 3q))

Now we use (5) to eliminate a4 and a5

N

4
− 3Na2 =

3

4
r2 +

1

2
q(p + 3q) + 2r(p + 3q)a + a2((p + 3q)(p − 5q) − 3

2
r2 − q(p + 3q))

−a3((8qr + 4r(p + 3q)) + 4r(p + 3q)) − 2(a2 − 1

16
)(p + 3q)(p − 5q)

+2(a3 − a

16
)(8qr + 4r(p + 3q))

Equating coefficients of the linear term we have

0 = 2r(p + 3q) − 1

8
(8qr + 4r(p + 3q))

= 2r(p + 3q) − qr − 1

2
r(p + 3q)

=
3

2
r(p + q)

Hence either r = 0 or both p and q are zero. Assume, for proof by contradiction, that both
p and q are zero. Then equating the constant coefficients, we have N = 3r2. Equating the
coefficients of a2 we have

3N = −3

2
r2

Substituting N = 3r2 we have −9r2 = −(3/2)r2; hence r = 0. But we cannot have r = 0 when
p = q = 0, since r + p + q is the number of tiles along one side of ABC, and hence is positive.
This contradiction proves that not both p and q are zero. Therefore r = 0. Substituting r = 0
and collecting like powers of a we have

N

4
− 3Na2 =

1

2
q(p + 3q) + a2((p + 3q)(p − 5q) − q(p + 3q)) − 2(a2 − 1

16
)(p + 3q)(p − 5q)

=
1

2
q(p + 3q) +

1

8
(p + 3q)(p − 5q) + a2((p + 3q)(p − 5q) − 2(p + 3q)(p − 5q))

=
1

8
(p + 3q)(p − q) − a2(p + 3q)(p − 5q)
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Multiplying by 2 and equating the coefficients of like powers of a we have

2N = (p + 3q)(p − q)

6N = (p + 3q)(p − 5q)

Subtracting the second equation from three times the first, we have

0 = (p + 3q)(3(p − q) − (p − 5q))

= 2(p + 3q)(p + q)

But since p and q are nonnegative, and not both zero, this is a contradiction. That completes
the proof in case J = 1.

Therefore the one remaining possibility, J = 2, must be the case, and we have

2NAT = X2 sin(
π

2
± 4α)

N

4
− 3Na2 = X2 cos 4α

= X2 cos
π

3

=
1

2
X2

N

2
− 6Na2 = X2

The right hand side is the same as in case J = 0, and we reach a contradiction in the same way.
The factor of 2 on the left side makes no difference, as the two expressions we find for 3N are
both multiplied by 2, and hence can still be equated. That completes the proof of the lemma.

5 γ = 2π/3 and α = π/12

Lemma 5 Suppose triangle ABC is N-tiled by a triangle T whose largest angle γ = 2π/3, and
suppose ABC is not similar to T . Then α 6= π/12, where α is the smallest angle of T .

Proof. Suppose, for proof by contradiction, that triangle ABC is N-tiled by the tile T mentioned
in the lemma, and T is not similar to ABC. We start by calculating sin α and cos α:

sin α = sin
π

12

= sin
“π

3
− π

4

”

= sin
π

3
cos

π

4
− cos

π

3
sin

π

4
)

=

√
3

2

√
2

2
− 1

2

√
2

2

=
1

4
(
√

6 −
√

2)

cos α = cos
π

12

= cos
π

3
cos

π

4
+ sin

π

3
sin

π

4

=
1

2

√
2

2
+

√
3

2

√
2

2

=

√
6 +

√
2

4

10



We calculate the area of the tile

AT = sin α sin β sin γ/2

= sin(π/12) sin(π/4) sin(2π/3)

=

√
6 −

√
2

4

1√
2

√
3

2

=
3

8
−

√
3

8

Hence AT belongs to Q(
√

3), a proper subfield of Q(ζ).
Since AT belongs to Q(

√
3), it is fixed by all elements σ of the Galois group of Q(ζ) that

fix
√

3. The elements of the Galois group are σj for j relatively prime to 24. In particular
j = 13 will be of interest. The element σj takes ζ to ζj . Since 2i sin(jα) = ζj − ζ−j , σj takes
i sin(α) to i sin(jα). Since β and γ are multiples of α, we also have that σj takes i sin(β) to
i sin(jβ) and i sin γ to i sin(jγ). With j = 13 then we find that σ13 fixes i sin γ, σ13 fixes i, σ13

takes i sin β to −i sin β, and i sin α to −i sin α. Since σ13 fixes ρ = eiπ/3 = ζ4 and σ13 fixes i,
it fixes

√
3, since

√
3 = 4i(ρ − ρ−1). Hence σ13 fixes AT . Since 13 is congruent to 1 mod 12,

sin(13jα) = ± sin(jα) for every integer j, so σ13 takes i sin(jα) to i sin(jα) for j even and to
−i sin(jα) for j odd. Since it fixes i, it takes sin(jα) to ± sin(jα), according as j is even or odd.

Fix two sides U and V of ABC and let θ be the angle between those sides. Since all the
angles of ABC are composed of angles α, β, and γ (although we know γ cannot occur, we do
not need that fact here), θ is an integer multiple of α, θ = jα for some j. We then have from
the area equation

NAT = UV sin θ/2

We have, for some nonnegative integers p, q, and r, that

U = pa + qb + rc

= p sin α + q sin β + r sin γ

where not both p and q are zero, because all the sides of ABC have degree 2. For notational
simplicity we abbreviate σ13 to just σ. We now apply σ to U :

Uσ = p(sin α)σ + q(sin β)σ + r(sin γ)σ

= −p sin α − q sin β + r sin γ

Since p and q are nonnegative, we have |Uσ| ≤ U . By the same reasoning we have |V σ| ≤ V .
Since θ = jα for some j, we have (sin θ)σ = ± sin θ. Then

AT = AT σ

= (UV sin θ)σ

= (Uσ)(V σ)(sin θ)σ

= ±(Uσ)(V σ) sin θ since (sin θ)σ = ± sin θ

Taking absolute values we have

AT = |AT |
= |(Uσ)(V σ) sin θ|
= |(Uσ)||(V σ)|| sin θ|
≤ UV sin θ since sin θ > 0

= AT

11



Therefore equality holds throughout. Hence |Uσ| = U and |Vσ| = V . That implies that, for each
of U and V , either p = q = 0 (the side is composed of only c edges) or r = 0 (there are no c
edges). If r = 0 then Uσ = −p sin α − q sin β is negative, while if p = q = 0 then Uσ is positive.
Let J be the integer such that θ = Jα. Then sin θ changes sign under σ if and only if J is odd.
Say that a side of triangle ABC is “of type c” if it is composed entirely of c sides of tiles, i.e.
p = q = 0 for that side. Suppose J is even. Then sin θ does not change sign under σ, so either
both of U and V change sign (i.e. neither is of type c), or neither does (i.e. both are of type c).
If J is odd, then under σ, exactly one of U and V must change sign under σ, i.e. exactly one is
of type c. On the other hand, if J is even, then either both the adjacent sides are of type c, or
neither is of type c.

For example, if ABC is similar to T and the tiling is a quadratic tiling, then the long side
BC is of type c, and the other two sides are not of type c; one of them has p = 0 and the other
has q = 0.

Now we consider the effect of σ7. This automorphism changes the sign of i, and takes
2i sin α = ζ − ζ−1 to ζ7 − ζ−7 = 2i sin 7α = −2i cos α. Hence σ7 takes sin α to cos α. In general
σ7 takes sin Jα to − sin((7J mod 24)α, so it fixes sin β ( where J = 3) and changes the sign of
sin γ (where J = 8.) We have

2NAT = AABC

N sin α sin β sin γ = UV sin Jα

Suppose, for proof by contradiction, that angle A = α. Then the tile at A has its b side on one
side of ABC and its c side on the other. Let U be the side on which there is a c side, and V
the one on which there is a b side. Then U is of type c, and since σ = σ7 changes the sign of
sin γ = c, Uσ = −U . On the other hand if V = pa + qb, then V σ = p cos α + qb ≥ V , with
equality holding if and only if p = 0. Canceling sin α from both sides of the area equation, we
have

N sin β sin γ = UV

Applying σ to both sides, the left hand side changes sign, and we have

−N sin β sin γ = −U(Vσ)

Adding these two equations we find V = Vσ. Hence p = 0, i.e. only b sides of tiles occur on side
U . Suppose that T1 is the copy of T with its b side along U and one end at an endpoint of U
where ABC has an angle less than γ; Let V1 and V2 be the endpoints of this b side and suppose
the γ angle of T1 is at V2. Then the b side of T1 ends at V2, and since only b sides of tiles occur
on DE, there is another tile T2 on DE sharing vertex V2, with its b side on DE. Therefore its
β angle is not at V2. Its γ angle cannot be at V2 since the γ angle of T1 is there and 2γ > π.
Therefore T2 has its α angle at V2. Hence its γ angle is at the other end of its b side on U ;
call that vertex V3. Now we are in the same position with respect to T2 and vertex V3 as we
formerly were with respect to T1 and V2, and by induction there must be a sequence of such
pairs of tiles, reaching all the way to the endpoint of U . Therefore the angle at that endpoint
is at least γ, so that endpoint is vertex C of ABC. It cannot be the case that angle C = γ,
since that would make ABC similar to T . It cannot be the case that angle C = γ + 2α, since
if it were, then the third angle of ABC would be α, making ABC isosceles, which contradicts
Lemma 4. Therefore angle C = γ + α and the third angle is 2α.

The length of side AC (which is of type c) is qb = q sin β for some integer q. By the law of
sines, since 2α is the angle opposite side AC, the length of side AB is sin(γ + α)/ sin 2α times
the length of AC. But since AB is of type c, there is an integer r such that AB = rc. Equating
the two expressions for AB, we have

rc =
sin(γ + α)

sin 2α
q sin β

12



r

q
sin γ sin 2α = sin(γ + α) sin β since c = sin γ

r

q

√
3

2
sin 2α = sin β(sin γ cos α + cos γ sin α)

r

q

√
3(sin α cos α) =

√
2

2

“

√
3

2
cos α +

1

2
sin α

”

since sin β = 1/
√

2

Putting in the values calculated at the beginning of the proof for sin α and cos α we have

r

q

√
3

2

√
6 −

√
2

4

√
6 +

√
2

4
=

√
2

2

“

√
3

2

√
6 +

√
2

4
+

1

2

√
6 −

√
2

4

”

Multiplying by 16 and simplifying, we have

8
r

q

√
3 =

√
2(2

√
3 + 2

√
6 −

√
2)

= 2
√

6 + 4
√

3 − 2

This is an equation in Q(
√

3,
√

2), which is of degree 4 with basis {
√

2,
√

3,
√

6}. Hence the
constant coefficients on each side must be equal; but on the left the constant coefficient is zero
and on the right it is −2. This contradiction shows the impossibility of A = α.

Now suppose the smallest angle of ABC is 3α = β = π/4. Since ABC is not isosceles by
Lemma 4, the only possibility for the other angles is B = 4α = π/3 and C = 5α = γ−α. Either
side AB or side AC is of type c, since 3 is odd. If side AC, which is opposite angle B = 4α, is
of type c, then for some integer r we have AC = rc. Then side AB, which is opposite angle 5α,
has length rc sin(5α)/ sin(4α). The area equation becomes

N sin α sin β sin γ = sin A AC AB

= r2c2 sin β
sin 5α

sin 4α

N sin α sin γ sin 4α = r2c2 sin 5α

= r2c2(sin α cos γ + cos α sin γ)

N sin α

√
3

2
= r2c2

“

√
3

2
sin α +

1

2
cos α

”

N

√
6 −

√
2

4

√
3

2
=

√
3

2

“

√
6 −

√
2

4
+

1

2

√
6 +

√
2

4

”

Multiplying by 8 and simplifying, we have

N(2
√

3 −
√

6) = 4r2c2
√

2

This is an equation in Q(
√

3,
√

2), for which {1,
√

2,
√

3,
√

6} is a basis. Hence the coeffiencts
of

√
6 on both sides must be equal, but on the left we have −N and on the right 0. This

contradiction shows that it is impossible that angle A is 3α.
The smallest angle of ABC cannot be more than 4α = π/3. By Lemma 4, it cannot be

equal to π/3 either, since that would make ABC equilateral, and hence isosceles. Therefore the
smallest angle A is 2α, since α and 3α have already been ruled out. Either sides AC and AB
are both of type c, or neither is. First suppose they both are of type c. Then there are two
integers r and s such that the lengths of AC and AB are rc and sc, respectively. Then the area
equation becomes

N sin α sin β sin γ = rsc2 sin 2α

= 2rsc2 sin α cos α

13



Canceling sin α and putting in the values of the other trig expressions, we have

N

√
2

2

√
3

2
= 2rsc2

√
6 +

√
2

4

N

√
6

4
=

rsc2

2
(
√

6 +
√

2)

This is an equation in Q(
√

2,
√

3), and the coefficients of
√

2 are not equal on the two sides of
the equation. This contradiction shows that not both AB and AC can be of type c.

Hence neither AB nor AC is of type c. Therefore both AB and AC are composed entirely
of a and b tile edges. Let σ = σ7 be the automorphism of Q(ζ) defined above. Then σ7 fixes
sin β and sin 2α but takes sin α to cos α, and changes the sign of γ. Let U be the length of AB
and V the length of AC. The area equation is

N sin α sin β sin γ = UV sin 2α (7)

Applying σ we have

−N cos α sin β sin γ = −Uσ V σ sin 2α

= −Uσ V σ2 sin α cos α

Multiplying both sides by − sin α/ cos α we have

N sin α sin β sin γ = Uσ V σ2 sin2 α

Dividing this equation by (7) we have

1 =
Uσ V σ 2 sin2 α

UV sin 2α

=
Uσ V σ 2 sin2 α

UV 2 sin α cos α

=
Uσ V σ sin α

UV cos α

Hence
Uσ V σ

UV
=

cos α

sin α
On the other hand, U = pa + qb for some nonnegative integers p and q, and V = na + mb for
some nonnegative integers n and m. We have

U = p sin α + q sin β

Uσ = p cos α + q sin β

Uσ

U
=

p cos α + q sin β

p sin α + q sin β

with equality holding if and only if q = 0. To make the equations shorter we introduce d = cos α
and and use the already-defined a = sin α, so we have

d

a
=

Uσ V σ

UV
=

(pd + q)(nd + m)

(pa + q)(na + m)
(8)

This is possible if n = 0 = q or p = 0 = m. We claim those are the only conditions under which
this equation is solvable. To prove this we cross-multiply and subtract, obtaining

a(pd + q)(nd + m) − d(pa + q)(na + m) = 0

14



Expressing a and d in terms of ζ = eiπ/12 and expanding and simplifying (using a computer
algebra system–we used Sage), one finds

mqζ−1 + npζ3 + npζ = 0

Multiplying by ζ we have
mq + npζ2 + npζ4 = 0

The field Q(ζ) has degree ϕ(24) = 8; hence all three coefficients are zero. That is, mq = 0 and
np = 0. Hence either n = 0 or p = 0, and either m = 0 or q = 0. If p = 0 then by (8) we have

d

a
=

nd + m

na + m

which implies m = 0. Similarly if q = 0 we find n = 0. That establishes our claim about the
conditions for solvability of (8).

We have proved that one of the two sides U , V is composed entirely of a sides of tiles, and
the other is composed entirely of b sides. We may assume that U is the one composed entirely
of a sides, i.e. U = pa = p sin α and V = nb = n sin β.

The area equation (7) then becomes

N sin α sin β sin γ = pn sin α sin β sin 2α

Canceling sin α sin β we have

N sin γ = pn sin 2α

= 2pn sin α cos α

and putting in the values for sin γ and sin 2α, we find

N

√
3

2
= pn

√
6 −

√
2

4

√
6 +

√
2

4

=
pn

4

contradicting the irrationality of
√

3. This contradiction shows that angle A cannot be 2α, and
since that was the last remaining possibility, that completes the proof of the lemma.

6 γ = 2π/3 and α = 2π/15 or α = π/9

If we argue in the same way as we did for α = π/12, we will be working in the field generated
over Q by a = sin(2π/15) and b = sin(8π/15. The arithmetic in this field is more cumbersome,
and the number of possible vertex angles is greater. Instead, we use another method, involving
primes in the cyclotomic field. We use, for the first and only time in this paper, concepts going
beyond elementary field theory.

Lemma 6 Suppose that isosceles triangle ABC is N-tiled by a triangle T whose largest angle
γ = 2π/3. Then

(i) α 6= 2π/15

(ii) If α = π/9 then the vertex angle of ABC cannot be 3α = π/3 or 5α.

Proof. Define

ζ := e2πi/30 qquad when α = 2π/15

ζ := e2πi/18 qquad when α = π/9

ρ := eiπ/3

15



Then we have eiα = ζ2 in case (i) and eiα = ζ in case (ii). Let K = 5 when α = 2π/15 and
K = 3 when α = 2π/9. Then we have ρ = ζK . Since α + β + 2π/3 = π, we have β = π/3 − α.
We calculate sin α and sin β in terms of ζ. First, in case α = 2π/15 we have

2i sin α = ζ2 − ζ−2

2i sin β = ei(π/3−α) − e−i(π/3−α)

= ρζ−2 − ρ−1ζ2

= ζK−2 − ζ2−K

In case α = π/9 we have instead

2i sin α = ζ − ζ−1

2i sin β = ei(π/3−α) − e−i(π/3−α)

= ρζ−1 − ρ−1ζ

= ζK−1 − ζ1−K

These expressions belong to Z[ζ] and hence are algebraic integers of the field Q(ζ). Let X, Y ,
and Z be the sides of triangle ABC in non-decreasing order. Then

0

@

X
Y
Z

1

A = d

0

@

a
b
c

1

A = d

0

@

sin α
sin β
sin γ

1

A ,

so 2iX, 2iY , and 2iZ are algebraic integers of Q(ζ).
The area AT of the tile can be computed as a cross product

AT =
1

2
bc sin α

=
1

2
sin α sin β sin γ

Since the factor on the right are algebraic integers divided by 2i, it follows that 16i3AT belongs
to Z[ζ].

The area of triangle ABC is N times the area of the tile. That is,

NAT = AABC

The area of triangle ABC is given by 1
2
U2 sin θ, where U is the length of the two equal sides

of ABC, and θ is the vertex angle. Inserting the forms of these expressions given above, and
multiplying by 2, we have

N sin α sin β sin γ = U2 sin θ (9)

Example. To fix the ideas, we pause to give an example. Of course, the point of the theorem
is that no example exists, so to give an example we must choose α = β, which is not covered by
the theorem, but is not contradicted by the arguments so far. Consider the 3r2 tiling, in which
ABC is equilateral and T has α = β = π/6. Then only c sides share the boundary of ABC, so
in the formula for AABC , the coefficients of sin α and sin β are zero, and the coefficients of sin γ
are 3r, r, r, and r in the four terms, respectively. Hence

AABC = (r2 sin2 γ/4)
√

3

=
r2(

√
3/2)2

4

√
3

=
3
√

3r2

1
6
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We have AT = sin α sin β sin γ/2 =
√

3/16. Since N = 3r2 we check our equation: indeed
NAT = (3r2)

√
3/16 = AABC .

Now we return to the consideration of the area equation (9). Except for a factor of 16i, both
sides of (9) are algebraic integers of the field Q(ζ), because they belong to Z[ζ]. Dividing by
U2 sin α sin β and using sin γ =

√
3/2 we have

√
3N

2U2
=

sin θ

sin α sin β
(10)

Recall that 2iU is an algebraic integer of Q(ζ), since U is an integral linear combination of sides
of the tile, which are sin α, sin β, and sin γ, and each of these is an algebraic integer over 2i. We
claim that 2i sin θ is also an algebraic integer. When α = 2π/15, have shown in Lemma 3 that
triangle ABC is isosceles with vertex angle θ = 3β = 3π/5, or θ = β = π/5. We have already
shown that 2i sin β is an algebraic integer, and 2i sin(3β) = 2i(ζ3K−6 − ζ6−3K). On the other
hand, when α = π/9, Lemma 3 shows that the vertex splitting of ABC involves one α angle
and four β angles, and here β = π/3 − α = 2π/9 = 2α. If ABC is isosceles, then the vertex
angle θ is either α or α + β = π/3, and in either case 2i sin θ is an algebraic integer.

Now suppose that the right hand side of (10) has norm a (positive or negative) power of 2; or
more generally, at least the norm contains only an even power of 3, not an odd power. Suppose,
in addition, that the rational prime 3 does not split in Q(ζ), but ramifies with ramification
degree 2. Then there is just one prime P =

√
3 lying over the rational prime 3, and P divides

N to an even power (twice the power of 3 in N), and P divides U2 to an even power (twice
the power of P in U); and it divides

√
3 just once; hence the power of P in the left-hand side

is odd. Hence the norm of the left-hand side contains a (positive or negative) power of 3. But
that contradicts the assumption that the right-hand side contains only an even power of 3.

A similar argument also works in case the prime p = 3 ramifies as Pe, where e is congruent
to 2 mod 4. (We only need the case e = 6). Then again P divides N to an even power (twice
the power of 3 in N), and it divides U2 to an even power (twice the power of Pi in U). Now√

3 =
√

Pe = ±Pe/2, and since e is congruent to 2 mod 4, this is an odd power of P.
We need to know how the rational primes split and ramify in Q(ζ). Turning to number

theory textbooks for the solution to this problem, we found that many textbooks are content
to state the facts only for primes p relatively prime to m, where ζ is a primitive m-th root of
unity. But exercise 14, p. 337 of [4], states the facts in full generality: Let p be a rational prime,
and let m = pkm′ where p does not divide m′, then p factors into (P1 . . . Pg)e in Q(ζ), where
fg = ϕ(m′) and f is the smallest integer such that pf ∼= 1 mod m′, the norm of Pi is pf , and
the ramification degree e is ϕ(pk).

To prove (i), we apply this result when ζ = e2πi/30, so m = 30, and p = 3. Then m′ = 10
and k = 1, and f is the smallest integer such that 3f is congruent to 1 mod 10. Hence f = 4.
Since ϕ(m′) = ϕ(10) = 4, we have g = 1. The ramification degree e is ϕ(3) = 2. Hence there is
only one Pi =

√
3, and its norm is 34.

We now show that these assumptions do in fact hold when α = 2π/15. Then β = π/5, and
we have shown in Lemma 3 that triangle ABC is isosceles with vertex angle θ = 3β = 3π/5, or
θ = β = π/5. We need to compute the norms of sin(2π/15), sin(π/5), and sin(3π/5). We use
the definition of the norm of x: it is the product of the images of x under all members of the
Galois group. Since the Galois group of Q(ζ) consists of the maps σj that take ζ onto ζj for j
relatively prime to 15, we have the following formulas for the norms:

N (2i sin(2π/15)) =
Y

(j,30)=1

2i sin(4jπ/30) = 1

N (2i sin(π/5)) =
Y

(j,30)=1

2i sin(6jπ/30) = 25

N (2i sin(3π/5)) =
Y

(j,30)=1

2i sin(18jπ/30) = 25
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Since we know in advance that the norm of an algebraic integer is an integer, it suffices to
compute these numbers to a few decimal places using an ordinary scientific calculator (or a
computer algebra system or a short computer program), and round to the nearest integer. This
computation reveals that 2i sin(2π/15) = 2i sin α has norm 1, and hence is a unit in Z[ζ], while
2i sin(π/5) = 2i sin β and 2i sin(3π/5) = 2i sin(3β) each have norm 25. Since the vertex angle θ
is either β or 3β, in either case the norm of 2i sin θ is 25. Hence the ratio sin θ/ sin β has norm 1,
so it is a unit, and since ϕ(30) = 8, the norm of sin α = sin(2π/15) is 1/28 = 1/256. Hence the
norm of the right hand side of (10) is a power of 2, as claimed. We have already shown above
that the prime p = 3 ramifies with degree 2 and does not split in this Q(ζ). That completes the
proof of (i), i.e. the case α = 2π/15.

Now we take up the case of α = π/9. Then 3K = m = 18 and β = π/3 − π/9 = π/6 = 2α.
First we consider how the prime p = 3 splits and ramifies. With p = 3 we have m′ = 2 and
k = 2, and f is the smallest integer such that 3f is congruent to 1 mod 2. Hence f = 1. Since
fg = ϕ(m′) = ϕ(2) = 1, we have g = 1. The ramification degree e is ϕ(pk) = ϕ(32) = 6. Hence
3 ramifies as P6, where P has norm 3. We have shown above that this is sufficient for the proof,
provided the norm of the right hand side of (10) contains either no power of 3, or only an even
power.

It remains only to compute the norm of the right hand side of (10). We compute the norms
of 2i sin α and 2i sin β and the two possibilities sin(3α) and sin(5α) for sin θ:

N (2i sin(π/9)) = 64
Y

(j,18)=1

sin(jπ/9) = −3

N (2i sin(π/6)) = 64
Y

(j,18)=1

sin(jπ/6) = 1

N (2i sin(π/3)) = 64
Y

(j,18)=1

sin(jπ/3) = −27

N (2i sin(5π/9)) = 64
Y

(j,18)=1

sin(5jπ/9) = −3

These values show that the right hand side of (10) has norm 1 or 9, depending on whether the
vertex angle θ is 5π/9 or π/3. Since both are even powers of 3, the proof of (ii) is comnplete.
That completes the proof of the lemma.

Lemma 7 Suppose triangle ABC is N-tiled by tile T , with γ = 2π/3 and α = π/9 or α = π/12.
Then the area of the tile is not a rational number, and not a rational multiple of

√
3.

Proof. We begin by proving that the area of the tile is not a rational number. Since the sides
of the tile are given by a = sin α, b = sin β, and c = sin γ, we can find the area by taking the
cross product of two of the sides:

AT =
1

2
sin α sin β sin γ

Since 2i sin α = ζ − ζ−1, and similarly for 2i sin β and 2i sin γ, the area AT is i times an element
of the field Q(ζ), and if AT were rational, or even in Q(ζ), then i would belong to Q(ζ). When
α = π/9, i does not belong to Q(ζ) (see, for example, p. 145 of [5]), so we are done when
α = π/9.

Therefore we assume α = π/12. If AT were rational, then AT would be fixed by the Galois
group of Q(ζ). The elements of that Galois group are the σj , for j relatively prime to 24, where
ζ = e2πi/24 is a primitive 24-th root of unity, and σj takes ζ onto ζj . Choose j = 5, which is
relatively prime to 24. Consider σ5. Since i = ζ6, σ5 takes i to ζ30 = ζ6 = i; in other words,
σ5 fixes i. It takes i sin α = ζ − ζ−1 to i sin(5α) and, since β = 3α = π/4, it take i sin β to
i sin(5β) = −i sin(β). It takes i sin(γ) to i sin(5γ) = −i sin(γ). Thus σ5 changes the signs of
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sin β and of sin γ; hence it fixes sin β sin γ. Assume, for proof by contradiction, that the area of
the tile is rational. Then AT = sin α sin β sin γ is fixed by σ5; since sin β sin γ is fixed, sin α must
also be fixed. Since i is fixed that means i sin α is also fixed. But as we have already observed,
i sin α goes to i sin(5α) = i cos(α), which is not equal to i sin α. Hence the area of the tile is not
rational, also in case α = π/12.

Next we will show more: the area of the tile is not a rational multiple of
√

3. We have
proved above that σ5 changes the sign of i

√
3 and fixes i; so it changes the sign of

√
3. Assume,

for proof by contradiction, that AT is a rational multiple of
√

3. Then σ5 changes the sign of
AT = sin α sin β sin γ. But since it fixes sin β sin γ, it changes the sign of sin α. But on the
contrary, it takes sin α to cos α 6= − sin α. That completes the proof of the lemma.

Lemma 8 Suppose ABC is N-tiled by a triangle T whose largest angle γ = 2π/3, and ABC is
not similar to T . Then α 6= π/9, where α is the smallest angle of T .

Proof. Note that ζ = e2πi/18 has degree ϕ(18) = 6 over Q. Since Q(ζ) does not contain i
(because 4 does not divide 18), the field Q(sin α, cos α, i) has degree 12 over Q. Hence its real
subfield Q(sin α, cos α) has degree 6. Hence sin α and cos α are both irrational, as if either were
rational then the degree would be 4. The automorphism σj of Q(ζ) takes ζ to ζj , where j is
relatively prime to 18, namely j = 1, 5, 7, 11, 13, 17. Let a = sin α, b = sin β, c = sin γ, and
d = sin 4α = sin 5α. Note that i does not belong to Q(ζ), but 2i sin mα = ζm − ζ−m does.
There is no automorphism that fixes exactly two of a, b, and c. This complicates the algebra.
We will work with σ5, which takes ib to −ia, and ic to −ic, and ia to id.

Suppose, for proof by contradiction, that angle A = α. Let U and V be the lengths of the
sides AB and AC. Then the area equation is

N sin α sin β sin γ = UV sin α

Canceling sin α we have
Nbc = UV (11)

Let U = pa + qb + rc and V = ma + nb + ℓc. Then

(iU)σ = ipd − iqa − irc

(iV )σ = imd − ina − iℓc

(UV )σ = (pd − qa − rc)(md − na − ℓc)

Applying σ to (11) (after inserting two factors of i on each side) we have

Nac = (pd − qa − rc)(md − na − ℓc)

Dividing this equation by (11) we have

b

a
=

(pa + qb + rc)(ma + nb + ℓc)

(pd − qa − rc)(md − na − ℓc)

This equation is solvable when V is composed entirely of c sides (so n = m = 0) and U is
composed entirely of b sides (so p = r = 0), as in the quadratic tiling; and vice-versa when V
is composed entirely of c sides and U entirely of b sides. We will show that these are the only
possible solutions. Cross multiplying we have

a(pa + qb + rc)(ma + nb + ℓc) − b(pd − qa − rc)(md − na − ℓc) = 0

Then ζ14 times this expression is a polynomial in ζ. Taking its remainder under division by the
minimal polynomial of ζ, which is ζ6− ζ3 +1, we find (using the PolynomialRemainder function

19



in Mathematica)

0 = −2mp + np + mq − 2nq − 3ℓr

+ζ(2mp − np − mq + 2nq + 3ℓr)

+ζ2(−6ℓp + 4mp − 2np − 2mq − nq − 6mr)

+ζ3(4mp − 2np − 3q + 4nq + 6ℓr)

+ζ4(−4m + 2np + 3mq − 4nq − 6r)

+ζ5(3ℓp − 2mp + np + mq + nq + 3mr)

Each of the five coefficients is zero; but up to constant multiples there are really only two
different coefficients, so we have the following two equations:

2mp + 2nq + 3ℓr = np + mq

4mp = 2np + 2mq + 6mr

Adding twice the first equation to the second we find

6mr + 6ℓp + 2nq + 3ℓr = 0.

Since all these quantities are nonnegative, this implies mr = ℓp = nq = ℓr = 0. Eliminating
these terms, our two equations both become

2mp = np + mq (12)

Suppose ℓ 6= 0. Then since ℓp = 0 and ℓr = 0 we have p = r = 0. Then q 6= 0 because p + q + r
is the number of tiles on side U . Since nq = 0 we have n = 0. Then by (12) we have 0 = mq;
and since q 6= 0 we have m = 0. This is the first solution mentioned above, in which only ℓ and
q are nonzero; we have proved that this is the only solution with ℓ 6= 0. Now suppose ℓ = 0.
Then the c side of the tile at vertex A lies on side V , since it cannot lie on side U and cannot lie
opposite angle A. Hence r 6= 0. Since mr = 0 we have m = 0. Then by (12), we have np = 0.
But n 6= 0 since ℓ and m are both zero. Hence p = 0. Since nq = 0 and n 6= 0, we have q = 0.
Thus if ℓ = 0, it follows that only n and r are nonzero; that is the second solution mentioned
above. We have thus proved our claim that one of these two solutions must be the case.

Then one of the sides U , V is composed entirely of b sides of tiles. Let T1 be the tile sharing
vertex A = V1. Let V2 on side U be the vertex at the other end of the b side of T1. Then the
γ angle of T1 is at V2. Hence the γ angle of the next tile T2 on U cannot be at V2; and since
the b side of T2 is on U , the β angle is opposite that side, and not on U . Hence the β angle
of T2 is at V2, and the γ angle of T2 is at the next vertex V3. Continuing in this way down
side U , we find that the last tile Tk on U has its γ angle at the vertex of ABC, which must be
vertex C. Therefore angle C is at least γ. Suppose, for proof by contradiction, that it exceeds
γ. Then angle C must be γ +α and the third angle must be α, making ABC isosceles. But that
contradictions Lemma 3. This contradiction shows that angle C is equal to γ. But then ABC
is similar to T , which is contrary to hypothesis. That completes the proof by contradiction that
angle A cannot be equal to α.

The smallest angle A of ABC cannot be 3α, since then ABC would be equilateral, contra-
dicting Lemma 3. Hence angle A must be 2α = β. Then angle B is at least 3α, since ABC
cannot be isosceles. That means angle C is at most 4α. But since we cannot have angle B equal
to angle C, the only remaining possibility is that angle B = 3α and angle C = 4α. Let U and
V be the sides AB and AC (in some order). Then the area equation is

N sin α sin β sin γ = sin βUV

or in terms of a, b, and c, it is
Nabc = bUV
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Dividing sides by b and setting U = pa + qb + rc and V = ma + nb + rc, we have

Nac = (pa + qb + rc)(ma + nb + ℓc)

Applying σ we have
−Ndc = (pd − qa − rc)(md − na − ℓc)

Dividing these two equations we find

−a

d
=

pa + qb + rc

pd − qa − rc

ma + nb + ℓc

md − na − ℓc

Cross multiplying, we have

a(pd − qa − rc)(md − na − ℓc) + d(pa + qb + rc)(ma + nb + ℓc) = 0.

After multiplying by ζ16, this becomes a polynomial in ζ. Reducing that polynomial modulo
the cyclotomic polynomial 1 − ζ3 + ζ6 (using Mathematica) we find

0 = 2mp − np − mq + 2nq + 3ℓr

+ζ(mp − 2np − 3ℓq − 2mq + nq − 3nr)

+ζ2(−4mp + 2np + 2mq − 4nq − 6ℓr)

+ζ3(−4mp + 2np + 2mq − 4nq − 6ℓr)

+ζ4(mp − 2np − 3ℓq − 2mq + nq − 3nr)

+ζ5(2mp − np − mq + 2nq + 3ℓr)

Equating the coefficients to zero gives us only two different equations:

2mp − np − mq + 2nq + 3ℓr = 0

mp − 2np − 3ℓq − 2mq + nq − 3nr = 0

Subtracting the second equation from the first we have

3ℓq + mp + np + mq + nq + 3ℓr + 3nr = 0

Since all these quantities are non-negative this implies that each of ℓq, mp, np, mq, nq, ℓr, and
nr is zero. Suppose, for proof by contradiction, that ℓ 6= 0. Then q = r = 0, so p 6= 0. Hence
n = m = 0. Hence U is composed only of a sides of tiles, and V is composed only of c sides.
The tile T1 at A that shares side U therefore has its a side on U and its β angle at A. Hence its
γ angle is at vertex V2, the other vertex of T1 on U . Hence the next tile T2 on side U has its β
angle at V2 (since its a side is on U and its γ angle is too large to fit). Hence it has its γ angle
at the next vertex V3. Continuing down side U in this way we find that the last tile on side
U has its γ angle at the other vertex of side U of ABC. But this is impossible, as the largest
angle of ABC is 4α, which is less than γ. This completes the proof by contradiction that ℓ = 0.
Similarly, if r 6= 0 then n = ℓ = 0, so m 6= 0. Hence p = q = 0, and by considering tiles on side
V we find that the angle at the other end of side V must be at least γ, contradiction. Hence
r = ℓ = 0. Then no tile at A has a c side on the boundary of ABC, so the vertex at A must
be split, and there are two tiles T1 and T2 with their α angles at A, sharing their c sides and
having their b sides along U and V respectively. Hence q 6= 0 and n 6= 0. But this contradicts
nq = 0. That contradiction completes the proof of the lemma.

Theorem 1 Suppose γ = 2π/3 and there is an N-tiling of ABC by the tile with angles α, β,
and γ with α 6= β, and ABC is not similar to the tile. Then the vertex splitting is given by
(3, 3, 0), i.e., there are three α angles and three β angles and no γ angles at the vertices of ABC,
in total.
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Proof. Assume that the vertex splitting is not (3, 3, 0). Then by Lemma 3, α is π/9, or π/12,
or 2π/15. First suppose that α = 2π/15. By Lemma 3, ABC is isosceles with base angle β or
2β; hence the vertex angle is 3β or β. But these cases have been ruled out in Lemma 6. That
disposes of the possibility α = 2π/15. The case α = π/9 is ruled out in Lemma 8, and the case
α = π/12 is ruled out in Lemma 5. That completes the proof of the theorem.

7 Existence of an edge relation

Definition 1 An edge relation in a tiling of ABC by the tile with sides a, b, and c, is a integer
linear relation between a, b, and c, that is determined by an internal line segment of the tiling
(composed of tile boundaries) that has different numbers of tile edges of lengths a, b, or c on its
two sides.

For example, there might be 5 b edges on one side of a segment EF and on the other side, 3
a edges and 2 c edges, giving rise to the relation 5b = 3a + 2c. Of course, there could have been
one more b edge on each side, giving rise to the same relation. We emphasize that the concept
requires not just that a numerical equation be satisfied, but also that it actually be realized in
the tiling by some internal segment composed of tile boundaries.

Lemma 9 Suppose γ = 2π/3 and there is an N-tiling of ABC by the tile with angles α, β, and
γ with α 6= β. Then there are no vertices in that tiling at which an angle equal to β is made up
only of α angles. More generally, if β = kα then there is no vertex at which k tiles have an α
angle.

Remarks. In this section generally we do not assume α < β, but of course if α > β an angle
of β cannot be made up of α angles, so for this lemma we may assume α < β. Note that the
lemma does not say that β is not a multiple of α; only that if it is, at least the tiling makes no
use of that fact by using several α angles to fill a β angle.

Proof. Suppose that β = kα, for some integer k, and that there is a vertex V where k tiles each
have an α angle. Since α + β = π/3, we have (k + 1)α = π/3, or α = π/(3(k + 1)). We claim
that at vertex V , there are more α angles than β angles. Indeed, at every vertex, either there
are only three γ angles, or the number of α angles equals the number of β angles, or one or
more β angles are filled by k α angles. Hence, if the latter occurs (as it supposedly does at V )
then there are more α angles than β angles.

Since there are, by hypothesis, equal numbers of α and β angles at the vertices of ABC,
and there are of course N of each in total (since each tile contributes one α and one β), then
there must exist a vertex W with more β than α angles. Then there are zero, one, or two γ
angles at W . If there are exactly two, then the remaining angle is α + β; but since α < β, two
β angles cannot be place at W , contradiction. If there is exactly one γ angle at W , then the
angle remaining is 2γ = 2α + 2β. If three β angles occur at W then β = 2α, since β 6= α by
hypothesis. Then since α + β = π/3, we have α = π/9. But that contradicts Lemma 8, so it is
not the case that there is exactly one γ angle at W . Therefore there are no γ angles at W . We
therefore have 2π = uβ + vα, where u > v. Since 2π = 6(π/3) = 6β + 6α, we must have u > 6
and v < 6. Subtracting vπ/3 = v(α + β) from both sides of uβ + vα = 2π, we have

(u − v)β = 2π − vπ

3
= (6 − v)

π

3
.

Then

β =
“ 6 − v

u − v

”π

3

Since α + β = π/3 we have

α =
“ u − 6

u − v

”π

3
.

22



Since α < β we have u − 6 < 6 − v. Hence u + v < 12. But we showed above that α has the
form π/(3(k + 1)) for some positive integer k. Therefore

u − 6

u − v
=

1

k + 1

Cross multiplying, we have

u − v = (u − 6)(k + 1)

= ku − 6k + u − 6

6 = ku + v

But this is impossible, since u > 6 and k ≥ 1 and v > 0. That contradiction completes the
proof that there are no vertices at which an angle equal to β is made up only of α angles.

The following terminology will shorten some statements:

Definition 2 A suspicious edge is a tile boundary PQ in (the opposite of) Direction A or
Direction C between two tiles that share a vertex P , and one of the tiles has a b edge along PQ
and the other tile has an a or c edge along PQ.

Remark. Such an edge is “suspicious” because it looks as if it might lead to an edge relation;
it can only fail to do so if it turns out that there are an equal number of edges of each length
on each side of the maximal segment containing the suspicious edge.

When we say a line segment has “direction AB” we mean that it is parallel to AB, and
similarly with AC or BC or other specified directions. In addition to the directions given by
the sides of ABC, we will also need two other directions.

Definition 3 “Direction C” is given by a line making angle of α with BC and having a
negative slope with smaller magnitude than the slope of BC. “Direction A” is given by a line
making an angle of α with AB and having a positive slope of smaller magnitude than the slope
of AB.

Thus the bottom edge of the top tile (the one at B) is either in Direction A or Direction C,
depending on its orientation.

Definition 4 Suppose triangle ABC has angle B = β. Tiles with their c edge parallel to BC
and their a edge parallel to AB are said to be “ of Type I”. Tiles with their a edge parallel to
BC and their c edge parallel to AB are “ of Type II.”

Type I tiles have their b edges in Direction C, and Type II tiles have their b edges in Direction
A; Type I tiles have no edges at all in Direction A, and Type II tiles have no edges in Direction
C.

Lemma 10 Suppose γ = 2π/3 and α 6= β, and there is an N-tiling of triangle ABC by the tile
with angles α and β, and angle ABC = β, and ABC is not similar to the tile. Suppose there
are no edge relations jb = ua + vc with integers j > 0 and v > 0 and u ≥ 0. Let RW be a line
segment in direction C (and contained in the closed triangle ABC) with R northwest of W , and
such that all tiles wholly or partially above RW are of Type I or Type II, but there is a point
Q on RW that is on the boundary of a tile (below RW ) that is neither of Type I nor of Type
II. Suppose that Q is the northwest end of a maximal segment lying on RW . Then there is a
suspicious edge in direction A ending at Q.

Remark. Note that the hypothesis allows the case when a/b is rational, i.e., a relation jb = ua+vb
with v = 0 is allowed.

Proof. Let G be a point on QW such that QG is a maximal segment; by hypothesis, such a
point G exists. Let Tile 4 be the tile above QG, with their b edges on QG, and a vertex at Q.
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Figure 1: A suspicious edge QJ must exist southwest of Q.
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Then Tile 4 has its γ angle at Q and its b edge on QG. Suppose for the moment that Q doe not
lie on AB. Then there is a tile west of Tile 4; call it Tile 5. Since Tile 5 lies above RW it is of
Type I or Type II. Either way, it has its β angle at Q. Let Tile 6 be the tile southwest of Tile 5;
then Tile 6 is partly above RW , so it is of Type I or Type II. Tile 6 is not of Type I, since then
its α angle would be at Q and it would have an edge on RW northwest of Q, contradicting the
fact that QG is a maximal segment. Hence Tile 6 is of Type II. See Fig. 1 for an illustration.
Tile 6 has its γ angle at Q, and its b edge on the southeast. Let J be the southern vertex of
Tile 6.

Now (whether or not Q lies on AB), let Tile 3 be the tile below QG with an edge on QG
and a vertex at Q. We have assumed there is no relation jb = ua + vc with j and v both
positive; that still allows for a relation jb = ua, i.e. v could be zero. Since there is no relation
jb = ua + vc, all the tiles below QG with an edge on QG have their b edges or their a edges
on QG, so Tile 3 has its b or its a edge on QG. We claim that Tile 3 does not have its γ angle
at Q. If Q lies on AB this is immediate, since angle ARG is less than γ. In case Q does not
lie on AB, then Tiles 5 and 6 exist, and angle QJG is equal to 2α + β, which is less than γ,
so Tile 3 cannot have its γ angle at Q. Therefore Tile 3 has its α angle at Q. The remaining
angle at Q is α + β. By Lemma 9, this angle must be filled by two tiles, say Tile 7 and Tile 8,
in counterclockwise order from Tile 6 back to Tile 3, one of which has an α angle at Q and the
other of which has a β angle at Q.

Suppose, for proof by contradiction, that Tile 7 has its b edge along QJ . Then Tile 7 cannot
have its β angle at Q, since the β angle must be opposite the b edge. It cannot have its γ angle
at Q since angle JQG is 2α + β < γ. Hence Tile 7 has its α angle at Q. But then, with its b
edge on JQ, it is of Type I. Then Tile 8 has its β angle at Q and the two adjacent sides parallel
to AB and BC, so it is of Type I or Type II, contradicting the fact that Q must lie on the
boundary of some tile that is neither of Type I nor of Type II. That contradiction shows that
Tile 7 does not have its b edge along QJ . Therefore it has its a or its c edge along QJ . See
Fig. 1. That completes the proof of the lemma.
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We need to state a more general lemma that is proved by the same proof as the previous
lemma. The previous lemma assumed that the top angle B of ABC does not split but has just
one tile with a vertex at B. The next lemma allows more than one angle at B, but ignores what
happens to the east of the tile boundary between the two tiles at B.

Lemma 11 Suppose γ = 2π/3 and α 6= β, and there is an N-tiling of triangle ABC by the
tile with angles α and β. Suppose there are two tiles at B, and the tile boundary between those
two tiles lies on the maximal segment BH, and angle ABH = β. Suppose there are no edge
relations jb = ua + vc with integers u, v ≥ 0 and j > 0. Let RW be a line segment in direction
C, with W on BH and R northwest of W , and such that all tiles wholly or partially above RW
are of Type I or Type II, but there is a point Q on RW that is on the boundary of a tile (below
RW ) that is neither of Type I nor of Type II. Suppose that Q is the northwest end of a maximal
segment lying on RW . Then there is a suspicious edge in direction A ending at Q.

Similarly, if ST is a line segment in direction A, with S on AB and T on BH, such that
all tiles wholly or partly above ST are of Type I or Type II, but there is a point Q on ST that
is on the boundary of a tile that is neither of Type I nor Type II, and Q is the northeast end of
a maximal segment lying on ST , then there is a suspicious edge in direction C ending at Q.

Remark. Nothing to the east of BH is relevant, but because the symmetry of the angle ABC is
broken by the existence of another tile to the east and the fact that BH may not reach to AC,
we need to state the second conclusion about ST separately.

Proof. Same as the previous lemma.

Lemma 12 Suppose γ = 2π/3 and there is an N-tiling of ABC by the tile with angles α, β,
and γ with α 6= β, and suppose ABC is not similar to the tile. We do not assume α < β in
this lemma. Suppose there is exactly one tile at vertex B, having angle β at V . Then for some
integers j > 0 and u, v ≥ 0, the tiling gives rise to an edge relation jb = ua + vc.

Remark. Definition 1 specifies that an “edge relation” actually arises from some internal segment
in the tiling; more is being asserted than the arithmetical relationship between the side lengths.

Proof. Assume, for proof by contradiction, that there are no edge relations jb = ua + vc of
the type mentioned in the lemma. For purposes of description, we suppose ABC is drawn
with vertex B at the top of the picture, which we call “north”, and its angle bisector vertical
(“north-south”). The orientation of side AC is not known, because we do not know the other
angles of ABC. The tile at B, say Tile 1, has its β angle at B, by hypothesis; and relabeling A
and C if necessary we can assume without loss of generality that Tile 1 has its c side on BC,
the eastern side of ABC, and its a side on AB (at the west). In other words, Tile 1 is of Type I.
We remind the reader that the (unoriented) direction of the bottom edge of Tile 1 is “Direction
C”. Lines in Direction C make an angle of α with BC.

We consider lines RW in Direction C with R on AB and W on BC, and maximal segments
FH (composed of tile boundaries) lying on RW , such that all the tiles wholly or partly above
RW that have an edge or vertex on FH are of Type I or Type II. There is at least one such
line RW , namely the southern border of the tile at vertex B. Let FH be a maximal segment
on such a line RW , with F northwest of H . Then all the tiles above FH with an edge on FH
have their b edges on FH . Since FH is a maximal segment, there is a tile below FH with an
edge on FH and a vertex at F , and there is a tile below FH with an edge on FH and a vertex
at H .

Since there are no edge relations jb = ua + vc, all the tiles below FH with an edge on FH
have their b edges on FH . We claim that all these tiles are of Type I. To show that, we must
show that they are all oriented with their γ angles to the southeast and their α angles to the
northwest. There cannot be two γ angles belonging to tiles below FH at any vertex on FH ,
since γ > π/2. Let Tile 3 be the tile below FH with an edge on FH and a vertex at F . By
Lemma 10, there is a suspicious edge QJ extending southwest in Direction A from Q. Since
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angle JQW is equal to 2α + β, Tile 3 cannot have its γ angle at Q. Then by the pigeonhole
principle, all the tiles below FH with an edge on FH have their γ angles to the southeast. Since
there are no edge relations jb = ua + vc, those tiles all have their b edges on FH ; hence they
are all of Type I.

Similarly, we consider lines S in Direction A with S on AB and T on BC, and maximal
segments FH (composed of tile boundaries) lying on ST , with F southwest of H , such that all
the tiles wholly or partly above ST that have an edge or vertex on FH are of Type I or Type
II. The entire argument we gave for lines in direction RW did not involve the base AC of the
triangle at all, so it is symmetric under reflection in the angle bisector of angle B. (Or we could
appeal to Lemma 11). Hence the conclusions we reached about maximal segments on RW also
apply to line segments ST in Direction A.

Now we fix RW as the lowest such line (segment) in direction C such that any tile wholly or
partially above RW is of Type I or Type II. There must be some such lowest segment, even if
only because W = C makes RW the lowest segment in direction C with W on BC. Similarly,
we let ST be the lowest line (segment) in direction A, with S on BC and T on AC, such that
any tile wholly or partially above ST is of Type I or Type II. For proof by contradiction, we
now assume that W 6= C and S 6= A. The segments RW and ST contain zero or more maximal
segments FH lying on tile boundaries, and may also contain some segments that pass through
Type II tiles (which have no tile boundaries in Direction C). By definition of RW and ST ,
unless W = C or S = A, there exists a point Q on RW such that Q is a vertex of a tile, say
Tile 2, neither of Type I nor of Type II. We now show that several a priori possible locations
of Q are actually not possible.

Case 1, Q lies in the interior of a maximal segment FH on RW (so FH lies on tile boundaries)
with F northwest of H . Then as shown above, all the tiles below FH with an edge on FH are
of Type I, and have their b edges on FH . These tiles form “notches” between them. Each such
notch has sides parallel to AB and BC, and the angle remaining to be filled at each notch is
β. By Lemma 9, an angle of β cannot be filled by a number of α angles. Hence each notch
must be filled by a single tile. That tile is necessarily of Type I or Type II, since it has its a
and its c edge parallel to AB and BC, or vice-versa. Hence Q does not occur at a vertex on the
interior of segment FH , i.e. Case 2 is impossible. (One such notch can be seen in Fig. 1 along
the maximal segment QG in that figure.)

Case 2, Q = F lies on the boundary AB, that is F = R, where FH is a maximal segment
on RW . Then there is a tile below FH with a vertex at F and its α angle at F , so the angle
between that tile and FC is β, and that angle must be filled by a Type I or Type II tile. Hence,
if Q = F , then Q does not lie on AB, i.e. Case 2 is impossible.

Case 3, Q lies on the boundary BC. Then by Case 1, Q = H for some maximal segment FH
on RW . Let Tile 1 be the tile above FH with a vertex at H ; since angle BHF = α, there is
only one such tile, and it is of Type I. As shown above, all the tiles below FH with an edge on
FH have their b edge on FH and are of Type I; let Tile 2 be the tile below FH with a vertex
at H and an edge on FH . Then Tile 2 is of Type I, so it has its γ angle at H . There is then
an unfilled angle of β at H , whose sides are parallel to AB and BC, respectively. By Lemma 9,
that angle is filled by a single tile, Tile 3, whose β angle is at H . Then Tile 3 is of Type I or
Type II. But that is a contradiction, since Q is supposed to lie on the boundary of some tile
that is neither of Type I nor Type II. That rules out Case 3.

Case 4, Q is the southeastern end H of a maximal segment FH on RW , and Q does not lie
on BC. Let Tile 1 be the tile above FH with an edge on FH and a vertex at H ; let Tile 2 be
the tile below FH with an edge on FH and a vertex at H . Then Tile 1 and Tile 2 both have
their b edges on FH ; Tile 1 has its α angle at H and Tile 2 has its γ angle at H . Let Tile 3 be
the tile northeast of Tile 1; then it has an edge in Direction C, so it is not of Type II, but it is
above RW , so it must be of Type I. Then it shares its c edge with Tile 1 and has its β angle
at H . Let Tile 4 be east of Tile 3. If H should not be a vertex of Tile 4, but instead lie on the
interior of an edge of Tile 4, then H would not be the northern vertex of some tile not of Type
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I or Type II, contrary to the hypothesis of Case 4. Hence Tile 4 has a vertex at H . It cannot
be of Type I, since then it would have a boundary extending FH past H , but FH is a maximal
segment. Hence Tile 4 is of Type II. Hence it has its α angle at H and its c edge along the
boundary with Tile 3. Let Tile 5 be south of Tile 4, with a vertex at H . Then Tile 5 is at least
partly above RW , so it is of Type I or Type II. Since it has an edge in Direction A (shared with
Tile 4), it is not of Type I. Therefore Tile 5 is of Type II. Then it has its γ angle at H . Now
the gap between Tile 2 and Tile 5 leaves an unfilled angle at H of β. By Lemma 9, that gap
must be filled by a single tile, say Tile 6. But the sides of Tile 6 that meet at H are parallel to
AB and BC, so Tile 6 must be of Type I or Type II, contradiction, since H is supposed to be
the northern vertex of some tile that is neither of Type I nor of Type II. That disposes of Case
4. See Fig. 2 for an illustration.

Figure 2: Case 4, Q does not occur at the southeast end of a maximal segment FH .
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There are only two remaining possibilities: Q could occur at the northwest end F of a
maximal segment FH on RW , or it could occur in a region of Type II tiles, i.e. Q might not lie
on any maximal segment FH on RW . By Lemma 10, in the former case there is a suspicious
edge southwest of Q in Direction A. We will show that this is also true in the latter case.
Suppose that Q (which by definition lies on RW ) does not lie on any tile boundary on RW .
Since the tiles partly above RW with a vertex at Q are of Type I or Type II, they must be of
Type II (or they would have their b edge on RW ). Then there is a tile, say Tile 1, with its b
edge in Direction A northeast of Q, and its α angle at Q. West of Tile 1 there is Tile 2, also of
Type II, with its β angle at Q. Southwest of Tile 2 is Tile 3, which still lies partly above RW ,
so it too is of Type II, and it has its γ angle at Q. Southeast of Tile 1 is Tile 4, also of Type II,
with its γ angle at Q. Let J be the southwest vertex of Tile 3. Then JQ is in Direction A. We
are trying to prove that JQ is a suspicious edge. Let Tile 5 be the tile east of Tile 4; if it has
its a or c edge on JQ, we are finished. Assume, for proof by contradiction, that it has its b edge
on QJ . Since there is not for its γ angle between Tiles 3 and 4, Tile 5 must have its α angle
at Q. Then Tile 5 is of Type II, and the angle remaining between Tile 5 and Tile 4 is β. By
Lemma 9, it is filled by a single tile. The edges of that tile that meet at Q are parallel to AB
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and BC, so it is of Type I or Type II, contradiction. That proves that there is a suspicious edge
in direction A ending at Q. See Fig. 3 for an illustration. The figure shows the contradictory
situation in which Tile 5 has its b edge on QJ , so the remaining angle can only be filled by a
Type I or Type II tile.

Figure 3: There is a suspicious edge QJ ending at Q when Q lies in a Type II region.

3

5

2 1

4

bA

b B

bR

b

Q

bW

bJ

We claim that RW and ST intersect. If not then one lies entirely below the other; by
symmmetry we may assume ST lies below RW . Then every tile below RW with an edge on
RW is above ST , and hence is of Type I or Type II. But then RW can be lowered slightly and
still have every tile wholly or partially above it of Type I or Type II, contradicting the definition
of RW . Hence RW and ST have an intersection point. Since their slopes are different they
have exactly one intersection point. Call that point F . We claim that F does not lie on the
boundary of ABC. Suppose, for proof by contradiction, that it does; by symmetry we may
assume F = W lies on BC and ST lies below RW except at F . By definition of RW , there is
a point Q on RW that lies on the boundary of a tile, say Tile 2, that is not of Type I or Type
II; and we proved above that Q does not lie on BC, and hence, since ST is now assumed to
lie below RW , Q lies above ST . But then Tile 2 is at least partially above ST , and hence, by
definition of ST , Tile 2 is of Type I or Type II, contradiction. That contradiction completes
the proof that RW and ST do intersect in an interior point F .

We now fix Q on RW as the northernmost point on RW that lies on the boundary of a tile
not of Type I or Type II, and similarly we fix P as the northernmost point on ST that bounds
a tile not of Type I or Type II. Then P is southwest of F (or equal to F ), since otherwise P
would lie above RW , and hence all tiles on whose boundary P lies would be of Type I or Type
II. Similarly, Q is southeast of F (or equal to F ).

Suppose, for proof by contradiction, that Q = F . Then also P = F , by definition of P . As
shown above, either F lies at the northwest end of a maximal segment FH on RW , or T lies
in a region of Type II tiles. If F lies in a region of Type II tiles, then F is the northeast end
of a maximal segment GF lying on STE. But then, the tile northeast of F is not of Type II
(since F is an endpoint of a maximal segment), and since it lies at least partly above RW , it
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is of Type I. Hence it has a tile boundary on RW . Hence F does not lie in a region of Type II
tiles, after all. Then F must lie at the northwest end of a maximal segment FH on RW . Then
the tile northwest of F cannot be of Type I, but since it lies at least partly above ST , it must
be of Type II. Then it has a boundary on ST . Hence F lies at the northeast end of a maximal
segment GF on ST , as well as at the northwest end of a maximal segment FH on RW . Then
there are Type I and Type II tiles (only) above GFH .

Angle SFW is equal to β + 2α. Let Tile 3 be the tile below EF with its b edge on EF and
a vertex at F , and let Tile 4 be the tile below FG with its b edge on FG and a vertex at F .
Then as shown above (or simply because γ is larger than angle SFW ), Tile 3 and Tile 4 have
their α angles at F . The unfilled angle between Tile 3 and Tile 4 is thus equal to β, and its
two sides meeting at F are parallel to AB and BC. By Lemma 9, it is filled by the β angle of a
single tile, which must therefore be of Type I or Type II. But that is a contradiction, since now
every tile with a vertex at Q is of Type I or Type II. That completes the proof that Q 6= F . See
Fig. 4.

Figure 4: Q cannot occur at the intersection of RW and ST .
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So far, P and Q are just any points on ST and RW that lie on the boundary of tiles not
of Type I or type II. Now we fix P and Q to be the northernmost such points. Thus every tile
below FP with an edge or vertex on PF or PQ (except at P or Q) is of Type I or Type II. We
now define J to be the point such that PFQJ is a parallelogram; that is, QJ is parallel to AB
and PJ is parallel to BC. Since P and Q each lie at the northern vertex of a tile not of Type I
or Type II, neither P nor Q lies on the boundary of ABC (but J might lie on the boundary or
even outside ABC).

We consider the configuration of tiles at Q. As proved above, whether Q is on tile boundaries
in Direction C or not, there is a suspicious edge southwest of Q in Direction A, with a b edge
above it and an a or c edge below. Applying reflection in the angle bisector of angle ABC, we
obtain a similar result for vertex P . Under reflection, Direction C changes to Direction A, Type
I changes to Type II and vice-versa, and Q changes to P . We find that the tile above PJ at P
has its b edge on PJ , and the tile below PJ at P has its a edge or its c edge on PJ .
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Using the terminology introduced in Definition 2, what we have proved is that there is a
suspicious edge southwest of Q in Direction A, and a suspicious edge southeast of P in Direction
C.

Now consider other parallelograms PF ′HG, where F ′G is in Direction C (hence parallel to
FQ), and F ′ lies between P and F , and HG is in direction A (hence parallel to QJ and PF ),
and H lies inside the open parallelogram PFQJ , or H ′ = Q. such that, with Q′ the intersection
point of lines QJ and F ′H , we have

(i) All the tiles wholly or partially above F ′Q′ (not just F ′H) are of Type I or Type II, and

(ii) There is a suspicious edge in direction A ending at H (i.e., extending southwest from
H).

We have shown that there is at least one such parallelogram, namely the one with F ′ = F
and H = Q. For notational simplicity, we drop the primes, and assume that FQJP is the
smallest such parallelogram, that is, the one with F as close to P as possible. That means, in
effect, that while we keep the assumption that tiles even partially above ST are of Type I or
Type II, now we only assume that tiles (even partially) above RQ are of Type I or Type II,
where we formerly had RW in place of RQ. We will derive a contradiction by constructing a
smaller such parallelogram.

We claim that there is some tile in the parallelogram FQJP that is neither of Type I nor
Type II. Suppose, for proof by contradiction, that there is no such tile. Since there are no tile
boundaries in Direction A among Type I tiles, all the tiles in FQJP with edges on JQ are of
Type II, and since Type II tiles all have their b edges in Direction A, all the tiles in FQJP with
an edge on JQ have their b edges on JQ. But because a suspicious edge lies on JQ, ending
at Q, there is at least one a or c edge on JQ belonging to a tile below JQ. (Note that this
argument is valid even if J lies outside ABC.) Let M be a point on JQ southwest of Q, chosen
so that MQ is the longest segment composed of tile boundaries in direction A containing point
Q extending to the southwest from Q. At Q there are tiles both above and below MQ with a
vertex at Q, by the definition of “suspicious edge”. Hence all the tiles above MQ with an edge
on MQ have their b edge on MP . But since there is at least one tile with an a or c edge on MQ
below MQ, there is an edge relation jb = ua + vc, contrary to hypothesis. That completes the
proof that there is some tile in the parallelogram FQJP that is neither of Type I nor of Type
II.

Now let us lower FQ. Specifically, let F ′Q′ be the lowest line in Direction C (thus parallel
to FQ), with F ′ on PF and Q′ on JQ, such that all the tiles above F ′Q′ with an edge (or part
of an edge, but more than a point) on F ′Q′ are of Type I or Type II. Because of the existence
of a tile in FQJP that is neither of Type I nor of Type II, F ′Q′ is still above PJ . But because
we chose Q as far to the north as possible, Q′ does not lie on FQ, i.e., F ′Q′ definitely lies below
FQ. See Fig. 5.

Then all the tiles in the (nonempty) parallelogram F ′FQQ′ are of Type I or Type II, since
otherwise F ′Q′ would have been higher. Then Q′Q, being in Direction A, has only Type II tiles
with edges on its upper side, since Type I tiles do not have any tile boundaries in Direction A.
These edges must all be b edges, since Type II tiles have their b edges in Direction A. Since
there is at least one a or c edge below Q′Q (at Q), and since by hypothesis there are no edge
relations jb = ua + vc, we see that Q′ is not a vertex of a tile below QQ′ with an edge on QQ′,
since if it were, there would be an edge relation jb = ua + vc, contrary to hypothesis.
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Figure 5: Lowering FQ to F ′Q′. Then H is the new Q.
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Let MP be the longest segment composed of tile boundaries in direction A southwest of Q.
Then M lies (strictly) southwest of Q′, since otherwise MP has only b edges on its northwest
side, but at least one a or c edge below it (at P ), contradicting the hypothesis that there are
no edge relations jb = ua + vc. Hence segment Q′Q is composed of tile edges (and one part of
a tile edge near Q′, which is not a vertex of a tile below QQ′). Since Q′Q is in Direction A,
and the tiles above it are of Type I or Type II, the tiles above Q′Q with an edge on Q′Q are
of Type II and have their b edges on Q′Q. There is a point H on F ′Q′ such that H is a vertex
of a tile that is neither of Type I nor of Type II, since otherwise F ′Q′ would have been lower.
Let E be a point on PJ such that EH is in direction A. We claim that F ′HEP is a smaller
parallelogram than FQJP , but still satisfies conditions (i) and (ii).

Condition (i) says that all the tiles wholly or partially above F ′Q′ are of Type I or Type II.
That is true by the definition of F ′Q′.

The segment F ′Q′ fulfills the hypotheses of Lemma 10, with (R, W,Q) in the lemma instan-
tiated to (F ′, Q′, H). Hence there is a suspicious edge in direction A extending southwest from
H . That is condition (ii). Hence our claim is proved: we have indeed constructed a smaller par-
allelogram than FQJP that satisfies conditions (i) and (ii). But that contradicts the definition
of FQJP as the smallest such parallelogram.

This contradiction was obtained under the assumptions that S 6= A and W 6= C. Therefore,
we have now proved that either S = A or W = C. Suppose, for proof by contradiction, that
W = C. Let Tile 1 be the tile with an edge on BC and vertex at C. Then Tile 1 is of Type I
or Type II, since it is partly above RW . It cannot be of Type II, since then it would have its
γ angle at C, but by assumption there are only α and β angles at the vertices of ABC. Hence
Tile 1 is of Type I. Hence there is a maximal segment QC on RW . All the tiles above QC are
of Type I and have their b edges on QC. Hence all the tiles below QC also have their b edges on
QC. Let Tile 6 be southwest of Tile 5 with a vertex at Q. Then Tile 6 lies partly above RW ,
since besides Tile 6 there are only two tiles, Tile 5 and Tile 3, above RW with vertices and Q,
and those tiles have one γ and one β angle at Q. Hence Tile 6 is of Type I or Type II. It cannot
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Figure 6: C = W is impossible: another tile can’t fit below QW .
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be of Type I, since then it would have its α angle at Q and an edge on RW , so QC would not
be a maximal segment. Hence Tile 6 is of Type II. The western boundary of Tile 5 is parallel
to BC, so Tile 6 has its a side against Tile 5 and its γ angle at Q. Now Tiles 3, 5, and 6 have
together 2γ +α at Q. Let Tile 4 be the tile below QC with its b edge on QC and a vertex at Q.
Then Tile 4 cannot have its γ angle at Q. Since γ > π/2, no vertex on CQ has two tiles below
CQ with their γ angles there. Since every tile below CQ with an edge on CQ has its b edge on
CQ, each such tile has a γ angle at a vertex on CQ. But neither endpoint (C or Q) has a γ
angle. That contradicts the pigeonhole principle. This contradiction proves W 6= C. See Fig. 6.
The figure does not show Tile 4, because it is impossible to fit it in, which is the point.

By symmetry about the angle bisector of angle ABC, it is also impossible that S = A. This
final contradiction completes the proof of the lemma.

We now consider the case when, instead of an unsplit vertex at B, we have a vertex where
two tiles meet, one with angle α and the other with angle α or angle β.

Lemma 13 Suppose γ = 2π/3 and there is an N-tiling of ABC by the tile with angles α, β,
and γ with α 6= β, and suppose ABC is not similar to the tile. We do not assume α < β in
this lemma. Suppose there are exactly two tiles at B, one of which has an edge on AB and has
angle α at B, and suppose there is no edge relation ja = ub + vc with j > 0 and u, v ≥ 0. Let
BH be the maximal segment extending the boundary between the two tiles at B. Then there is
a point S on AB such that angle BSH is β, and only Type I and Type II tiles lie above SH,
where Type I and Type II tiles are the two types of tiles with their b and c edges parallel to AB
and BH.

Proof. The proof is similar to the proof of the previous lemma, but it has some differences. Let
Tile 1 and Tile 2 be the two tiles at B, with Tile 1 having a side on AB and angle α at B. We
orient ABC so that the boundary between Tile 1 and Tile 2 is exactly north-south, and Tile
1 is on the west. Let E be the point on AC such that angle ABE = α; then AE contains the
tile boundary between the two tiles at B. The point H mentioned in the lemma lies on AE.
If H = E then the tiling induces a tiling of triangle EAC, which has a single tile with angle
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α at B, and hence Lemma 12 (with α and β switched) implies that there is an edge relation
ja = ub + vc, contradicting our present hypothesis. Therefore H 6= E.

In Lemma 12, we did not assume α < β, and the orientation of side AC and the exact angles
at B and C were important only at the end of the proof. Therefore we can use the technique of
that lemma on ABE, which has vertex angle α. In applying the proof, the “new vertical” is the
angle bisector of angle ABE, and so “Type I” and “Type II” have different meanings; the new
Type I tiles have their c edges parallel to BE and their b edges parallel to AB. The new Type
II tiles have their b edges parallel to BE and their c edges parallel to AB. ( Note that since β
and α have been switched, b and a also are switched. But the conclusion of the lemma has been
altered to allow for that, by mentioning edge relations ja = ub + vc instead of jb = ua + vc.)
This time R and S lie on AB, and W and T lie on BE. We modify the conditions defining
RW and ST to include the new condition that W and T should lie on the closed segment BH .
Then, the situation is as in Lemma 11, so the suspicious edges from P and Q still exist. Then,
as in the proof of Lemma 12, unless W = H and S = A, we are finished. If S = A then all the
tiles below ST have their a edges on ST and since angle A is less then γ, all the tiles below ST
with an edge on ST have their β angles towards A and their γ angles towards T . In particular
the tile below SH at H has its γ angle at H , so T = H , since that tile will be partly east of
BE. But since T lies above W , and W lies above H , this is impossible. Hence S 6= A. Hence
we may assume without loss of generality that W = H . But we still can lower ST until T = W ;
T will hit H before S hits C, since S = C is contradictory. Then the situation in triangle BAE
is this: All the tiles above SH are of Type I or Type II. That completes the proof of the lemma.

Lemma 14 Suppose γ = 2π/3 and there is an N-tiling of ABC by the tile with angles α, β,
and γ with α 6= β, and suppose ABC is not similar to the tile. We do not assume α < β in this
lemma. Suppose there are exactly two tiles at B, one of which has angle α at B, and the other
has angle β at B. Then there is an edge relation ja = ub+ vc, or an edge relation jb = ua+ vc.

Proof. Suppose, for proof by contradiction, that there is no edge relation of either type mentioned
in the lemma. Let E be the point on AC such that the boundary between the two tiles at B lies
on BE. Arrange triangle ABC as in the proof of the previous lemma, with B at the north and
BE exactly north-south. Let H be the southern end of the maximal segment on BE starting
at B. By Lemma 12, H 6= E. By Lemma 13, there is a point S on AB such that SH is in
Direction A, and above SH all tiles are Type I or Type II.

Now we consider what happens east of BE. Lemma 13 will apply here, if we interchange
α and β. (To make the pictures match we would also need to switch east and west.) Since we
have supposed there is no edge relation of either type, the hypothesis of the lemma is fulfilled.
Types I and II in the lemma become new types, say Type III and IV, where Type III tiles have
their c edge parallel to BH and their a edge parallel to BC, and Type IV tiles have their a edge
parallel to BH and their c edge parallel to BC. Surprise, Type III is the same as Type I, but
that is not important now. Now Lemma 13 gives us a point W on BC such that angle BWH
is α, and above HW all tiles are Type III or Type IV.

All tiles west of BH with an edge on BH have their b or c edges on BH , and all tiles
east of BH with an edge on BH have their a or c edges on BH . We thus have some relation
ub + vc = Ua + V c, with nonnegative coefficients. If U > 0 then Ua = ub + (v − V )c, which is
a forbidden relation if v ≥ V and if v < V then ub = Ua + (V − v)c, and we have u > 0 since
V − v > 0, so this is also forbidden. If u > 0, then ub = Ua + (V − v)c, which is forbidden if
V ≥ v; and if V < v then Ua = ub + (v−V )c, also forbidden. Hence the only possibility is that
the entire segment BH is composed of c edges on both the east and the west. These tiles are
Type I west of BH , and Type III east of BH ; on the west they have their α angle to the north
and their β angle to the south, and on the east they have their β angle to the north and their α
angle to the south. (Again we note that Type III and Type I are actually the same type.) Let
Tile 7 be the tile west of BH with its c edge on BH and a vertex at H . Then Tile 7 is of Type
II and has its β angle at H . Let Tile 8 be the tile southwest of Tile 7. It lies partly above SH ,
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so it must be of Type II (as Type I tiles have no edges in the direction of southwest boundary of
Tile 7). These two tiles share an a edge. Tile 8 has its γ angle at H and SH passes through its
interior. See Fig. 7. In the figure, the dashed line on the left is ST for ABE; the other dashed
line is R′W . Above SHW , that is, above the two dashed lines, are only Type I and Type II
tiles (Type II shown).

Figure 7: Part of the proof of Lemma 14
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We argue similarly on the eastern side of BH . Let Tile 9 be the tile east of BH with an edge
on BH and a vertex at H ; then Tile 9 is of Type III, has its α angle at H , and its southwest
edge on HT . Let Tile 10 be the tile below HT , sharing an edge with Tile 9. Then Tile 10 has
its γ angle at H , and is also of Type III. Now Tiles 7, 8, 9, and 10 together account for an angle
of 2γ + α + β at H , leaving α + β unfilled. This must be filled by two tiles, one with angle α at
H and the other with angle β at H , by Lemma 9. The boundary between these two tiles cannot
extend line BH , since BH is a maximal segment. Let Tile 6 be the tile south of Tile 10 with a
vertex at H ; then Tile 6 has its α angle at H , not its β angle. Therefore, it does not have its a
side along Tile 10. Let P be the point farthest southeast of H on RH extended such HP lies
on tile boundaries.

Now we “lower HT”. That is, we consider lines V U parallel to HT , with V on HP and F
on TW , and let V U be the lowest such line such that all tiles in the quadrilateral HTUV are
of Type III or Type IV. Then all tiles above V U with an edge on V U have their b edges on
V U , and as in the proof of Lemma 12, at the endpoints of segments on V U composed of tile
boundaries, there are tiles above and below V U with vertices at the endpoints (since beyond
those endpoints are Type II tiles, which have no edges in the direction of V U). Since there
are no edge relations, all the tiles below V U with an edge on V U have their b edges on V U .
As in the proof of Lemma 12, there cannot be two γ angles at the northeast end of a maximal
segment on V U , so the tiles below V U with an edge on V U are oriented with their γ angles at
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the southwest, so they are of Type III. But since V U is as low as possible, unless V = P there
must be a “notch” between two of the tiles below V U that is filled by a tile not of Type III.
Since its two sides are parallel to BE and BC respectively, and the notch angle is β, that tile
must be of Type IV. Hence V U can be lowered further, unless V = P . But since V is as low as
possible, by definition, we must have V = P . Then all the tiles above V P with an edge on V P
have their a edges on V P , and since V P is composed of tile boundaries, V P is composed (on
its northeast side) entirely of a edges. But Tile 11, southwest of V P at H , does not have its
a edge on V P . Hence there is an edge relation of the form ja = ub + vc, contradiction. That
completes the proof of the lemma.

Lemma 15 Suppose γ = 2π/3 and there is an N-tiling of ABC by the tile with angles α, β,
and γ with α 6= β, and suppose ABC is not similar to the tile. We do not assume α < β in this
lemma. Suppose there are exactly two tiles at B, each of which has angle α at B. Then there is
an edge relation ja = ub + vc.

Remark. If we only wanted a relation ja = ub+vc or jb = ua+vc, we would not need a separate
argument, since by Theorem 1, there are only six tiles at the vertices of ABC, so there is either
a vertex that does not split, or a vertex with an α + β angle, so one of the previous lemmas
applies. But the conclusion of the lemma specifies a relation ja = ub + vc, so we do need a
direct proof.

Proof. The proof is similar to the proof of Lemma 14, but easier. Again we let E be the point
on BC such that the boundary between the two tiles at B lies on BE, and we let H be the
southern end of the maximal segment on BE starting at H . Again we apply Lemma 13 to
ABH and BCH ; this time we do not have to switch α and β in the application to BCH , so this
lemma can assert the existence of a relation ja = ub+ vc instead of allowing also the possibility
jb = ua + vc. The points S and W are constructed as in the previous proof, and as before, all
the tiles on the east or west of BH have their c edges on BH . But now, since there are two
α angles at B, all those tiles have their α angles to the north and their β angles to the south.
Hence Tiles 7, 8, 9, and 10 have vertices at H leaving only an angle of 2α below H . That angle
can only be filled by two more tiles with their α angles at H ; but the boundary between those
tiles will lie on BE, contradicting the definition of H as the southernmost point on BE such
that BH lies on tile boundaries. That completes the proof of the lemma. See Fig. 8. The last
part of the proof of Lemma 14 (about lowering HT ) is not necessary in this proof.
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Figure 8: The gap at H must be filled by two α angles, so BH is not maximal after all.
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Theorem 2 Suppose triangle ABC is N-tiled by a tile with γ = 2π/3 and side lengths (a, b, c),
and the tile is not similar to ABC. Then there is a maximal segment in the tiling that gives rise
to an edge relation ja = ub + vc or jb = ua + vc, where u and v are nonnegative integers and
j is a positive integer. Moreover, if there is a double angle 2α (or 2β) then there is a relation
ja = ub + vc (or jb = ua + vc).

Proof. This has been proved in Lemma 12 in case ABC has a vertex that does not split, and
in Lemma 14 in case ABC has a vertex with angle α + β. But one of these cases must hold,
since by Theorem 1, the vertex splitting is (3, 3, 0). There are thus a total of six α and β angles
of tiles at the vertices of ABC. If one vertex does not split then the first case applies. If all
vertices split then there are exactly two tiles at each vertex of ABC. Then at least one of the
vertices has angle α+β, so the second case applies. The last claim of the theorem is Lemma 15.
That completes the proof of the theorem.

8 Uniqueness of the edge relation when a/c is irra-

tional

In the previous section we proved that if (P, Q, R) = (3, 3, 0) then there must be at least one
edge relation. In this section we show there is at most one!
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Lemma 16 Suppose T is a triangle whose largest angle γ is 2π/3; let the sides of T be a, b,
and c, with c opposite γ. (We do not assume a < b.) Suppose b = λa + µc with λ and µ
rational. Then a/c is uniquely determined by λ and µ (whether or not a/c is rational). If a/c
is irrational, then λ and µ are also uniquely determined by a/c; that is, there is at most one
relation b = λa + µc possible for a given value of a/c.

Remarks. We do not assume λ and µ are nonnegative or even nonzero. If a/c and b/c are rational
(for example, (a, b, c) = (3, 5, 7)), there will of course be many true equations b = λa + µc;
whether they occur as edge relations in tilings is another question. This lemma reflects a
property of a tile with an angle of 120◦; it does not even mention a tiling.

Proof. We have a = sin α, b = sin β, and c = sin γ =
√

3/2. By the law of cosines

c2 = a2 + b2 − 2ab cos γ

= a2 + b2 − 2ab
“

− 1

2

”

c2 = a2 + b2 + ab (13)

(We could replace c2 by 3/4, since c =
√

3/2, but we just leave it c2.) By hypothesis, there exist
rational numbers λ and µ such that

b = λa + µc. (14)

We regard (13) and (14) as two equations in b, the first quadratic and the second linear. There-
fore the remainder of b2 + ab + (a2 − c2) on division by b − (λa + µc) is zero. Computing that
remainder we find

0 = (λa + µc)(λa + µc + a) + a2 − c2

Writing this as a quadratic equation for a we have

0 = a2(1 + λ + λ2) + a(2λ + 1)µc + (µ2 − 1)c2

Setting x = a/c we have

0 = x2(1 + λ + λ2) + (2λ + 1)µx + (µ2 − 1) (15)

This is a quadratic equation for x with rational coefficients. This equation shows the remarkable
fact that one edge relation (given by λ and µ) completely determines the shape of the tile, since
that is given once a/c is known.

Now we investigate when λ and µ are uniquely determined by a/c, that is, by x. Suppose,
for proof by contradiction, that there is a second edge relation b = La + Mc. Then λ 6= L since
if λ = L, we also have µ = M . Then λa + µc = La + Mc, and since λ 6= L, we have

x =
M − µ

λ − L
. (16)

Thus x is rational. Hence, if x is irrational, there cannot be a second such relation. That
completes the proof of the lemma.

9 Some consequences of the area equation

We take up the case when one angle (say angle B) does not split, i.e., there is just one tile with
a vertex at B. The conclusion is that in such a tiling, the sides are commensurate, i.e. a/c and
b/c are rational.
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Here is a sketch of the proof in this section (the details follow the sketch). An edge relation
can be used to express one of a, b, c linearly in terms of the other two; say b in terms of a and
c. Then the law of cosines (in the tile) shows that a2 is linear in ac, and the side lengths X
and Z of the triangle ABC are linear in a and c. Their product XZ involves terms in ac, a2,
and c2, but a2 is linear in ac, so XZ becomes a linear function of ac. On the other hand, if
angle B = β, then the area equation NAT = AABC gives us Nabc = XZb, or Nac = XZ, so
the two terms of XZ as a linear function of ac must each be zero, unless ac is rational. But
these equations turn out to lead to a contradiction, so ac is rational; and since c2 = 3/4, a/c is
rational. Then because of the edge relation, b/c is also rational.

That sketch (and the first lemma below) assumes angle B = β, but we do not assume α < β,
so it covers the case in which any vertex of ABC has only one tile at that vertex. Otherwise,
every vertex has exactly two tiles, so one of them must have angle α + β = π/3. Then we have
Nabc = XZc so Nab = XZ, where X and Z are the two sides of ABC adjacent to the π/3
angle, and we express X and Z in terms of ab instead of ac.

Recall the notation for the d matrix:

d =

0

@

p d e
g m f
h ℓ r

1

A.

Recall also that X is the length of side BC, Y the length of side AC, and Z the length of side
AB, so that

d

0

@

a
b
c

1

A =

0

@

X
Y
Z

1

A .

Lemma 17 Suppose ABC is N-tiled by a triangle T whose largest angle γ is 2π/3, and that no
angle of ABC is equal to γ. Suppose ABC is not similar to T , and T is not isosceles, i.e. is not
the tile used in the equilateral 3-tiling. Then none of the elements e, f , and r of the d matrix
are zero.

Remarks. This means that sides AB and BC must each contain at least one edge of length c.

Proof. Suppose, for proof by contradiction, that e = 0. That means that there are no c edges
on AB, so every tile with an edge on AB has a γ angle at a vertex on AB. Since γ > π/2,
there cannot be two γ angles at the same vertex. Since Tile 1 does not have a γ angle at B, the
pigeonhole principle tells us that all these tiles have the γ angle to the south, i.e. nearer to A
than to B. In particular, the last tile, the one with a vertex at A, has its γ angle at A. Hence
angle A is at least γ. But that is impossible, since ABC is not similar to T . The other three
cases are treated in the same way, changing AB to BC or AC. That completes the proof of the
lemma.

Lemma 18 Suppose ABC is N-tiled by a triangle T whose largest angle γ is 2π/3. Suppose
ABC is not similar to T , and T is not isosceles, i.e. is not the tile used in the equilateral
3-tiling. Let a, b, and c be the sides of the tile opposite α, β, and γ. Suppose b = λa + µc with
λ and µ rational and nonnegative. Then

a2 =
−µ(2λ + 1)

1 + λ + λ2
ac +

c2(1 − µ2)

1 + λ + λ2

and

XZ = (p + λd)(h + λℓ)
“−µ(2λ + 1)

1 + λ + λ2
ac +

c2(1 − µ2)

1 + λ + λ2

”

+ac
n

(dµ + e)(h + λℓ) + (p + λd)(ℓµ + r)
o

+ c2(dµ + e)(ℓµ + r)
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Remark. If we also assume that the tile is scaled so c = sin γ, then of course c2 can be replaced
by 3/4; but the lemma does not assume that hypothesis.

Proof. We have a = sin α, b = sin β, and c = sin γ =
√

3/2. By the law of cosines

c2 = a2 + b2 − 2ab cos γ
“

√
3

2

”2

= a2 + b2 − 2ab
“

− 1

2

”

c2 = a2 + b2 + ab (17)

Since λ ≥ 0 and b < c we have
µ < 1

Substituting b = λa + µc into (17), we have

c2 = a2 + (λa + µc)2 + a(λa + µc)

0 = a2(1 + λ + λ2) + ac(2λµ + µ) + c2(µ2 − 1)

a2 =
−µ(2λ + 1)

1 + λ + λ2
ac +

c2(1 − µ2)

1 + λ + λ2
(18)

Then

X = pa + db + ec

= pa + d(λa + µc) + ec

= a(p + λd) + c(e + dµ)

Z = ha + ℓb + rc

= ha + ℓ(λa + µc) + rc

= a(h + ℓλ) + c(r + ℓµ)

Multiplying these two expressions we have

XZ = (a(p + λd) + c(e + dµ))(a(h + ℓλ) + c(r + ℓµ))

= (p + λd)(h + λℓ)a2 + ac
n

(dµ + e)(h + λℓ) + (p + λd)(ℓµ + r)
o

+ c2(dµ + e)(ℓµ + r)

Now substitute for a2 from (18):

XZ = (p + λd)(h + λℓ)
“−µ(2λ + 1)

1 + λ + λ2
ac +

c2(1 − µ2)

1 + λ + λ2

”

+ac
n

(dµ + e)(h + λℓ) + (p + λd)(ℓµ + r)
o

+ c2(dµ + e)(ℓµ + r) (19)

That completes the proof of the lemma.

Lemma 19 Suppose ABC is N-tiled by a triangle T whose largest angle γ is 2π/3. Suppose
ABC is not similar to T , and T is not isosceles, i.e. is not the tile used in the equilateral
3-tiling, and that angle ABC = β (but we do not assume α < β). Let a, b, and c be the sides of
the tile opposite α, β, and γ. Then a/c and b/c are rational.

Remark. For this lemma and proof, we drop the convention we sometimes use, that the vertices
A, B, and C are labeled in order of size of the angle, and instead specify B to be a vertex that
does not split, i.e., at which only one tile has a vertex.

Proof. By Lemma 12, there exist integers j, u, v ≥ 0 such that jb = ua + vc. It will be
convenient to introduce λ = u/j and µ = v/j, so that λ and µ are nonnegative rational numbers
and b = λa + µc. Since vc ≤ jb and b < c implies vc < jc, so v < j, and dividing by j we have

µ < 1 (20)
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By Lemma 18, we have

a2 =
−µ(2λ + 1)

1 + λ + λ2
ac +

c2(1 − µ2)

1 + λ + λ2

and

XZ = (a(p + λd) + c(e + dµ))(a(h + ℓλ) + c(r + ℓµ))

= (p + λd)(h + λℓ)a2 + ac
n

(dµ + e)(h + λℓ) + (p + λd)(ℓµ + r)
o

+ c2(dµ + e)(ℓµ + r)

The area of triangle ABC is given by the formula 2AABC = XZ sin B. Now we assume
that the tile is scaled so that c = sin γ =

√
32. Since angle B is β and sin β = b, we have

2AABC = XZb. On the other hand the area of the tile is given by 2AT = ac sin β = abc. Since
there is an N-tiling, we have AABC = NAT . Writing this out we have

2NAT = 2AABC

Nabc = XZb

Canceling b we have

Nac = XZ

= (p + λd)(h + λℓ)
“−µ(2λ + 1)

1 + λ + λ2
ac +

c2(1 − µ2)

1 + λ + λ2

”

+ac
n

(dµ + e)(h + λℓ) + (p + λd)(ℓµ + r)
o

+ c2(dµ + e)(ℓµ + r)

Suppose, for proof by contradiction, that a/c is not rational. Since c2 = 3/4 is rational, 1 and ac
are linearly independent in Q(a, c), and hence {1, ac)} can be completed to a basis. Therefore we
can equate the coefficients of ac and the rational parts in the formulas of Lemma 18. Equating
the rational parts we have

0 =
3

4
(p + λd)(h + λℓ)

1 − µ2

1 + λ + λ2
+

3

4
(dµ + e)(ℓµ + r) (21)

Since µ < 1 by (20), both terms on the right are nonnegative. Therefore both are zero. In
particular the second term is zero. That is,

(dµ + e)(ℓµ + r) = 0.

Then dµ + e = 0, so e = 0, contradicting Lemma 17. That contradiction proves that a/c is
rational.

It remains to prove that b/c is also rational. Since b = λa + µc, we have b/c = λ(a/c) + µ,
which is rational since a/c is rational. That completes the proof of the lemma.

Next we take up the case where one angle of ABC is α + β.

Lemma 20 Suppose ABC is N-tiled by a triangle T whose largest angle γ is 2π/3. Suppose
ABC is not similar to T , and T is not isosceles, i.e. is not the tile used in the equilateral
3-tiling, and that angle ABC = α + β = π/3. Let a, b, and c be the sides of the tile opposite α,
β, and γ. Then

(i) a/c is rational if and only if b/c is rational, and

(ii) a/b is rational (whether or not a/c is irrational), and
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Proof. We do not assume α < β in the proof. We will prove (i) by contradiction, so we assume
that one of a/c is irrational and the other rational. By relabeling a and b if necessary, we can
assume without loss of generality that a/c is irrational and b/c is rational.

By Lemma 13, there is an edge relation jb = ua + vc or ja = ub + vc for integers j, u, v with
j > 0 and u, v ≥ 0. First assume the relation is ja = ub + vc. If u = 0 then a/c is a rational
multiple of v/c and we are finished, so we may assume u 6= 0. Then we have ub = ja − vc, and
dividing by u we have b = λa − µc with λ = u/j 6= 0 and µ ≥ 0, and b/c = λ(a/c) − µ. Since
λ 6= 0, b/c is rational if and only if a/c is rational, and we are finished with part (i).

Therefore we may assume, without loss of generality, that there is an edge relation of the
form jb = ua + vc. Then dividing by j we have b = λa + µc for rational λ and µ, with λ and
µ nonnegative. Then b/c = λ(a/c) + µ, so provided λ 6= 0, b/c is rational if and only if a/c is
rational. Hence, to prove (i), it suffices to prove that λ 6= 0.

We have the area equation

Nabc = XZ sin B

But now, B = α + β = π/3, so sin B = sin(π/3) = sin(2π/3) = c, so

Nabc = XZc

and canceling c we have

Nab = XZ (22)

instead of Nac = XZ as in the previous lemma. Then

XZ = Nab

= Na(λa + µc) since b = λa + µc

= Nλa2 + Nµac

From Lemma 18 we have

a2 =
−µ(2λ + 1)

1 + λ + λ2
ac +

3
4
(1 − µ2)

1 + λ + λ2

Substituting that in the previous equation we have

XZ = Nλ
3
4
(1 − µ2)

1 + λ + λ2
+ ac

n

Nµ − µ(2λ + 1)

1 + λ + λ2

o

(23)

The coefficients of 1 and ac in XZ have already been calculated in Lemma 18:

XZ = (p + λd)(h + λℓ)
“−µ(2λ + 1)

1 + λ + λ2
ac +

3
4
(1 − µ2)

1 + λ + λ2

”

+ac
n

(dµ + e)(h + λℓ) + (p + λd)(ℓµ + r)
o

+
3

4
(dµ + e)(ℓµ + r) (24)

Since a/c is irrational and c2 is rational, ac is irrational, so we can work in the field Q(ac).
Equating the rational part of XZ as given by (23) and (24), we have

N
3
4
λ(1 − µ2)

1 + λ + λ2
= (p + λd)(h + λℓ)

3
4
(1 − µ2)

1 + λ + λ2
+

3

4
(dµ + e)(ℓµ + r)

Subtracting the first term on the right from both sides, and canceling 3/4, we have

“

N − (p + λd)(h + λℓ)
” λ(1 − µ2)

1 + λ + λ2
= (dµ + e)(ℓµ + r) (25)
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Our aim is to prove λ 6= 0. Assume, for proof by contradiction, that λ = 0. Then (25) becomes

0 = (dµ + e)(ℓµ + r)

Since µ, d, and ℓ are all nonnegative, we have 0 ≥ er; but by Lemma 17, we have er > 0,
contradiction. That contradiction shows that λ 6= 0. That completes the proof of (i).

Now to prove (ii). If a/c is rational, then a/b = (a/c)/(b/c) is also rational, so we may
assume without loss of generality that a/c is irrational. By Lemma 13, there is an edge relation
of the form ja = ub + vc or jb = ua + vc (and this is actually realized in the tiling along
some maximal segment EF ). For convenience above, we relabel a and b, if necessary, so we can
assume the relation has the form jb = ua+ vc. By part (i) of Lemma 20, the hypotheses “a/c is
irrational” and “b/c irrational” are equivalent, so this relabeling does not affect the hypothesis.
Dividing by j we have b = λa + µc.

Assume, for proof by contradiction, that a/b is irrational. Then µ 6= 0. Now let x = a/c and
y = b/c. Then y = λx + µ. The law of cosines for the tile is c2 = a2 + b2 + ab. Dividing by c
we have 1 = x2 + y2 + xy. Substituting y = λx + µ we find

x2(1 + λ + λ2) + x(2λ + 1)µ + (µ2 − 1) = 0. (26)

Thus x is quadratic over Q. Then Q(x) = Q(
√

D), where D is a square times the discriminant
of the quadratic equation for x (just displayed). So for some constants P , Q, R, and S, we have

x = P + Q
√

D

y = R + S
√

D

y

x
=

r + S
√

D

P + Q
√

D

=
(P + Q

√
D)(R − S

√
D)

R2 − DS2

=
Pr − QSD +

√
D(QR − PS)

R2 − DS2

from which we see that y/x is rational if and only if QR = PS. Now y2 + xy + x2 − 1 = 0 is a
quadratic equation for y over Q(x), with discriminant x2 − 4(x2 − 1) = 4− 3x2. Then y belongs
to Q(x) if and only if 4 − 3x2 is a square in Q(x); that is, if and only if 4 − 3x2 is a rational
square times D, say ρ2D. Substituting x = P + Q

√
D, we have

ρ2D = 4 − 3x2

= 4 − 3(P + Q
√

D)2

= 4 − 3P 2 + 6PQ
√

D) + 3DQ2

Since D is not a rational square, this implies PQ = 0. If Q = 0 then x is rational, contrary to
our assumption, so we may assume Q 6= 0. Then P = 0 and x = Q

√
D. Hence x2 is rational.

Solving (26) for the linear term in x we have

x =
1 − µ2 − x2(1 + λ + λ2)

(2λ + 1)µ
.

The right side is rational, since x2 is rational. But that contradicts the fact that x is irrational.
That completes the proof of the lemma.

Lemma 21 Suppose ABC is N-tiled by a triangle T whose largest angle γ is 2π/3. Suppose
ABC is not similar to T , and T is not isosceles, i.e. is not the tile used in the equilateral
3-tiling, and that angle ABC = α + β = π/3. Let a, b, and c be the sides of the tile opposite α,
β, and γ. Then a/c is rational.
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Proof. Define λ = b/a, so by Lemma 20, λ is rational. Assume, for proof by contradiction,
that a/c is irrational. Then by Lemma 19, every vertex angle of ABC splits; since the vertex
splitting must be (3, 3, 0), at least one angle of ABC must be α + β. We can assume it is angle
B. Then we can equate the coefficients of ac in XZ from Lemma 18 and (23), obtaining

(p + λd)(h + λℓ)
“−µ(2λ + 1)

1 + λ + λ2

”

+ (dµ + e)(h + λℓ) + (p + λd)(ℓµ + r)

=
“

Nµ − µλ(2λ + 1)

1 + λ + λ2

”

(27)

We have µ = 0 since b = λa. Putting µ = 0 this equation becomes

e(h + λℓ) + (p + λd)r = 0

Since both terms on the left are nonnegative, they are each zero; in particular e(h + λℓ) = 0.
By Lemma 17, e 6= 0. Hence h + λℓ = 0. Since λ > 0 we have h = ℓ = 0. That means that side
AB, whose length is Z, is made entirely of c edges. With h = ℓ = 0 we obtain (p + λd)r = 0;
but by Lemma 17, r 6= 0, and since λ > 0 we have p = d = 0. That means that side X is made
entirely of c edges. We have Z = rc and X = ec. The area equation tells us Nab = XZ; then
we have

Nλa2 = Nab since b = λa2

= XZ

= (ec)(rc)

= erc2

Nλa2

c2
= er

“a

c

”2

=
er

Nλ

Hence a/c has a rational square root. Define x = a/c; then as shown in (26), we have

x2(1 + λ + λ2) + x(2λ + 1)µ + (µ2 − 1) = 0.

and substituting the rational expression er/(Nλ) for x2 we obtain a linear equation for x:

er(1 + λ + λ2)

Nλ
+ x(2λ + 1)µ + (µ2 − 1) = 0

Since 2λ + 1 6= 0, we can solve this equation for x. Hence x = a/c is rational, contrary to
assumption. That completes the proof of the lemma.

10 Conclusions

Theorem 3 Suppose ABC is N-tiled by a tile non-isosceles tile T with a 120◦ angle, and T is
not similar to ABC. Then T is similar to a triangle with sides a, b, and c, where a, b, and c
are integers.

Proof. By Lemma 20, a/c is rational. Applying Lemma 21, b/c is rational too. Now just
multiply a, b, and c by the least common multiple of their denominators. That completes the
proof of the theorem.

Theorem 4 Suppose ABC is N-tiled by the tile with angles α, β, and γ = 2π/3. Then α is
not a rational multiple of π.
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Proof. We may assume (by scaling the tile) that a = sin α. Then c = 1
2

√
3. By Theorem 3, a/c

is rational. Hence a is a rational multiple of
√

3, so a belongs to Q(
√

3). We will prove that
cos α is a rational multiple of a/c. From Lemma 2, we know that cos β is a rational multiple of
cos α; let ξ be a rational number such that cos β = ξ cos α. Let λ = b/a; then since a/c and b/c
are rational, λ is also rational. Then

c = sin(π/3)

= sin(α + β)

= sin α cos β + cos α sin β

= a cos β + b cos α

= a(ξ cos α) + λa cos α

= a cos α(ξ + λ)

Solving for cos α we have

cos α =
“ c

a

” 1

ξ + λ

The right side is a rational multiple of c/a, since ξ, and λ are rational. But c/a is a rational
multiple of a/c, since (a/c)2 is rational. Hence cos α is a rational multiple of a/c, as claimed.

By Corollary 1, since a/c is rational, if α is a rational multiple of 2π, then it is an integer
multiple of π/4, π/5, π/6, or 2π/5. Since α < β and α + β = π/3, we have α < π/6, ruling out
all four possibilities. That completes the proof of the theorem.
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