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Abstract

An N-tiling of triangle ABC by triangle T is a way of writing ABC as a union of N triangles
congruent to T , overlapping only at their boundaries. The triangle T is the “tile”. The tile
may or may not be similar to ABC. We wish to understand possible tilings by completely
characterizing the triples (ABC, T,N) such that ABC can be N-tiled by T . In particular, this
understanding should enable us to specify for which N there exists a tile T and a triangle ABC
that is N-tiled by T ; or given N , determine which tiles and triangles can be used for N-tilings;
or given ABC, to determine which tiles and N can be used to N-tile ABC. This is the second
of four papers on this subject. In [1], we dealt with the case when ABC is similar to T , and the
case when T is a right triangle. In this paper, we assume that ABC is not similar to T , and T
is not a right triangle, and furthermore that if T has a 120◦ angle then T is isosceles.

The main theorem is that under those hypotheses, the only N-tilings are of an equilateral
triangle by an isosceles tile with base angles π/6, and N three times a square.

Under those hypotheses, there are only two families of tilings. There are tilings of an
equilateral triangle ABC by an isosceles tile with base angles π/6; and there are newly-discovered
“triquadratic tilings”, which are treated in the third paper [2] in this series. These arise in the
special case that 3α+ 2β = π or 3β + 2α = π with α not a rational multiple of π, where α and
β are the two smallest angles of the tile, and the sides of the tile have rational ratios.

The case when the tile has an angle 2π/3 and is not isosceles is taken up in [3]. At the time
of writing, our analysis of that case is incomplete, but there are no known tilings of any ABC
in that case.

We use techniques from linear algebra and elementary field theory, and in one case we use
some algebraic number theory. We use some counting arguments and some elementary geometry
and trigonometry.

1 Introduction

For a general introduction to the problem of triangle tiling, see [1]. This paper is largely
concerned with the non-existence of tilings, rather than their existence. In [1] we enumerated
the known tilings; it is our aim to prove that these families exhaust all the possible tilings, or at
least, exhaust all the triples (ABC,N, T ) such that ABC can be N-tiled by tile T . There will
be few pictures of beautiful tilings here (though there will be at least some); most of the paper
is filled with calculations dedicated to showing that other apparently possible tilings actually
are not possible.

We begin by studying a number of special cases that we will need later; then we finish with
a frontal attack on the general case, in which the tile is neither a right triangle nor similar to
the tiled triangle ABC. This methodical approach succeeds in all but two cases. One of those
cases is treated in the third paper in this series [2], and the other is taken up in [3].

The following lemma identifies those relatively few rational multiples of π that have rational
tangents or whose sine and cosine satisfy a polynomial of low degree over Q. The lemma and
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its proof are of course well-known, but it is short and may help to make the paper more self-
contained.

Lemma 1 Let ζ = eiθ be algebraic of degree d over Q, where θ is a rational multiple of π, say
θ = 2mπ/n, where m and n have no common factor.

Then d = ϕ(n), where ϕ is the Euler totient function. In particular if d = 4, which is the
case when tan θ is rational and sin θ is not, then n is 5, 8, 10, or 12; and if d = 8 then n is 15,
16, 20, 24, or 30.

Remark. For example, if θ = π/6, we have sin θ = 1/2, which is of degree 1 over Q. Since
cos θ =

√
3/2, the number ζ = eiθ is in Q(i,

√
3), which is of degree 4 over Q. The number ζ is

a 12-th root of unity, i.e. n in the theorem is 12 in this case; so the minimal polynomial of ζ is
of degree ϕ(12) = 4. This example shows that the theorem is best possible.

Remark. The hypothesis that θ is a rational multiple of π cannot be dropped. For example,
x4 − 2x3 + x2 − 2x+ 1 has two roots on the unit circle and two off the unit circle.

Proof. Let f be a polynomial with rational coefficients of degree d satisfied by ζ. Since ζ =
ei2mπ/n, ζ is an n-th root of unity, so its minimal polynomial has degree d = ϕ(n), where ϕ is
the Euler totient function. Therefore ϕ(n) ≤ d. If tan θ is rational and sin θ is not, then sin θ
has degree 2 over Q, so ζ has degree 2 over Q(i), so ζ has degree 4 over Q. The stated values of
n for the cases d = 4 and d = 8 follow from the well-known formula for ϕ(n). That completes
the proof of (ii) assuming (i).

Corollary 1 If sin θ or cos θ is rational, and θ < π is a rational multiple of π, then θ is a
multiple of 2π/n where n is 5, 8, 10, or 12.

Proof. Let ζ = cos θ + i sin θ = eiθ. Under the stated hypotheses, the degree of Q(ζ) over Q is
2 or 4. Hence, by the lemma, θ is a multiple of 2π/n, where n = 5, 8, 10, or 12 (if the degree
is 4) or n = 3 or 6 (if the degree is 3). But the cases 3 and 6 are superfluous, since then θ is
already a multiple of 2π/12.

In [1], we introduced the d matrix and the d matrix equation,
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where a, b, and c are the sides of the tile, and X, Y , and Z are the lengths of the sides of ABC,
in order of size. The angles of ABC are, in order of size, A, B, and C, so X = BC, Y = AC,
and Z = AB. We keep this convention even if some the angles are equal. The d matrix has
nonnegative integer entries, describing how the sides of ABC are composed of edges of tiles.

The d matrix is used in almost all our proofs. To avoid having every page filled with
cumbersome subscript notation dij for the entries of the matrix, we introduce letters for the
entries. While this eliminates subscripts, it does require the reader to remember which element
is denoted by which letter. Here, for reference, we define
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2 An isosceles tile T with base angle π/6

In this section, we investigate the tilings that can be constructed from the tile T with two π/6
angles and one 2π/3 angle, in which T is not similar to ABC. One can find examples of such
tilings by first quadratically tiling an equilateral triangle, and then 3-tiling each tile; the first
12-tiling shown Fig. 1 is of that form.
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Figure 1: Tilings by the isosceles tile with base angle π/6

But this does not exhaust the possibilities, as we can also 3-tile an equilateral triangle ABC
and then quadratically tile the three resulting triangles. In this way we can produce, for example,
a (different) 12-tiling, illustrated in the second tiling in Fig. 1. These tilings are not prime; that
is, they are made by first constructing one tiling and then tiling the tile. We once thought that
the equilateral 3-tiling might be the only prime tiling constructed from T . That is incorrect,
however, as shown by the prime 27-tiling in Fig. 2.

Figure 2: A prime 27-tiling by the isosceles tile with base angle π/6

Lemma 2 Let triangle T be isosceles with a vertex angle of 2π/3. Suppose triangle ABC is
N-tiled by T and not similar to T . Then ABC is equilateral, and N has the form 3m2 for some
integer m.

Remark. For each integer N of the form mentioned in the lemma, there does exist an N-tiling
of an equilateral triangle by the tile T of the lemma, as discussed above.

Proof. Let α = π/6 and γ = 2π/3 be the angles of T . We note that no tile has its γ angle at
a vertex of ABC, since that would force the other two vertices of ABC to have angle α and
hence ABC would be similar to T , contrary to hypothesis. Hence the vertex angles of ABC
are composed (altogether) of six α angles. The only two ways of writing 6 as a sum of smaller
positive integers are 6 = 1 + 2 + 3 and 6 = 2 + 2 + 2. Hence, ABC is either equilateral, or it is
a 30-60-90 right triangle.

We are free to choose the size of T ; let us suppose that the sides of T are a = 1 and c =
√

3,
so the altitude of T is 1/2 and its area is

√
3/4 (because its base is

√
3 and its height is 1/2). If
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X, Y , and Z are the sides of ABC, then the fundamental tiling equation is
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Our equations will be slightly simpler if we recall the convention that when the tile is isosceles,
as it is in this proof, so that b = a, that we take the middle column of the d matrix to be zero
(counting short sides as a rather than b, since it is arbitrary).

We begin by proving that it is not the case that along one side of ABC, all the tiles sharing
that side of ABC have an a edge on the boundary of ABC. Assume, for proof by contradiction,
that all the tiles on side BC have an a edge on BC. Then each of these tiles has a γ angle at one
of its vertices on BC. But there cannot be a γ angle at the endpoints B and C. Hence, there
is one more γ angle than vertices on (the interior of) BC, so by the pigeonhole principle, some
vertex has more than one γ angle. But this is impossible since γ > π/2. That contradiction
shows that it is impossible for all the tiles with an edge on BC to have an a edge on BC. The
same argument applies to each side of ABC, since all the angles of ABC are less than γ. To
phrase this result in terms of the d matrix: it is not the case that any entry in the third column
is zero. That is, e 6= 0, f 6= 0, and r 6= 0.

We now take up the case when ABC is equilateral. Let X be the side of equilateral triangle
ABC. Then the altitude of ABC is X

√
3/2, and its area is X2

√
3/4. But this area is also N

times the area of T . Since the area of T is
√

3/4, we have N
√

3/4 = X2
√

3/4. Hence N = X2,
and X =

√
N . The tiling equations are
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We can assume that the components of this vector equation correspond to edges AB, AC, and
BC respectively. Then, remembering that the middle column of d is zero because the tile is
isosceles, we have

√
N = p+ e

√
3

N = (p+ e
√

3)2

= p2 + 3e2 + 2pe
√

3

Since
√

3 is irrational, we have pe = 0. Since we proved above that e 6= 0, we have p = 0. That
is, no a sides of the tile occur on the side BC of ABC corresponding to the first row of the tiling
equation. Then BC is entirely composed of c edges (as it indeed is in the 27-tiling). Since each
side of ABC has length X and c =

√
3, the number of tiles on each edge is X/

√
3, which must

be an integer, say m. Then X2 = 3m2, so N = X2 = 3m2. That completes the proof in case
ABC is equilateral.

We may therefore assume that ABC is a 30-60-90 triangle. Let the π/6 angle of ABC be at
A, the right angle at C and the π/3 angle at B. Let the sides of ABC be X, X

√
3, and 2X.

Then the area of ABC is X2
√

3/2, which must be equal to the area of N tiles, namely N
√

3/4.
Hence X2 = N

2
, or X =

p

N/2. Then we have
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From the first row of this equation, we have

p+ e
√

3 =

r

N

2
.
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Squaring this equation we have

N

2
= (p+ e

√
3)2

= p2 + 3e2 + 2pe
√

3

Since the left side is rational, we have pe = 0, and since e 6= 0, we have p = 0. Then

N

2
= 3e2

N = 6e2. (1)

From the second row of the d matrix equation, we have

g + f
√

3 =

r

N

2

√
3.

Squaring this equation, we have

g2 + 3f2 + 2gf
√

3 = 3N

Since
√

3 is irrational, we have gf = 0. Since f 6= 0 we have g = 0. Then

3f2 = 3N

N = f2

But by (1), we have N = 6e2. Hence f2 = 6e2, so
√

6 = f/e, contradicting the irrationality of√
6. That completes the proof of the lemma.

3 An isosceles tile T with base angle π/5

Lemma 3 Let α = π/5. Let T be an isosceles triangle with two angles α and one angle 3α. Let
ABC be an isosceles triangle with base angles 2α and vertex angle α. Then there is no tiling of
ABC by tile T .

Proof. Let a = sinα. We will work in the field Q(a) so we begin with some identities in that
field. We have

a = sinα =
1

4

q

10 − 2
√

5

a2 =
1

16
(10 − 2

√
5)

16a2 − 10 = −2
√

5√
5 = 5 − 8a2

(8a2 − 5)2 = 5

64a4 − 80a2 + 25 = 5

16a4 − 20a2 + 5 = 0

This is the minimal polynomial of a over Q. It is irreducible by Eisenstein’s criterion, since 20
and 5 are divisible by 5, but 16 is not, and 5 is not divisible by 52. So Q(a) has degree 4 over
Q and {1, a, a2, a3} is a basis for Q(a) over Q. From the minimal polynomial we see

a4 = 20a2 − 5 (2)
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We have

b = cosα

1 +
√

5

4

=
1 + (5 − 8a2)

4
since

√
5 − 5 − 8a2

=
3 − 4a2

2

Hence

b =
3

2
− 2a2 (3)

We have sin 2α = 2ab = 2a( 3
2
− 2a2. Hence

sin 2α = 3a− 4a3 (4)

Recall (or prove) the trig identity (which is true for any α)

sin 3α

sinα
= 3 − 4 sinα

Expressing this more briefly using a we have

sin 3α

sinα
= 3 − 4a (5)

With these algebraic preliminaries in hand, we turn to the proof of the lemma. The sides of
T are sinα and sin(3α). The altitude of T is sin2 α, so the area of T is 1

2
sin(3α) sin2 α. On the

other hand, for some number λ, the sides of ABC are λ sin 2α and λ sinα. The altitude of ABC
is 1

2
λ sinα sin(2α), so its area is 1

2
λ2 sinα sin2 2α. Since the area of ABC must be N times the

area of T , we have

N
1

2
sin(3α) sin2 α =

1

2
λ2 sinα sin2 2α

N sin(3α) sinα = λ2 sin2 2α

λ =

p

N sinα sin(3α)

sin(2α)

Let d be the d matrix of the tiling. Since the tile is isosceles, we only have sides a and c, not
b, and the middle column of the d matrix is zero. Then we have

d
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Writing the second of these three equations out we have

g sinα+ fsin 3α =
p

N sinα sin(3α)

Dividing both sides by sinα we have

g + f
sin 3α

sinα
=

r

N
sin 3α

sinα
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Expressing this in terms of a = sinα, we have

g + f(3 − 4a) =
p

N(3 − 4a)

Squaring both sides we have

(g + f(3 − 4a))2 = N(3 − 4a)

g2 + 2gf(3 − 4a) + f2(3 − 4a)2 = N(3 − 4a)

g2 + 6gf + 9f2 + a(−8gf − 24f2) + a2(16f2) = 3N − 4aN

Since {1, a, a2, a3} is a basis for Q(a) over Q, the coefficients of like powers of a must be equal on
both sides. Therefore the coefficient of a2 on the left is zero; that is, f = 0. Then the equation
becomes

g2 = 3N − 4aN

But now there is a nonzero coefficient of a on the right, and no a term on the left. This
contradiction completes the proof of the lemma.

4 A non-isosceles tile T with largest angle 2π/5

Lemma 4 Suppose ABC is N-tiled by a triangle T . Suppose ABC is not similar to T , and T
is not isosceles. Then the largest angle γ of T cannot be 2π/5.

Proof. Since ABC is not similar to T , we have vertex splitting. As before, let P , Q, and
R be the total number of α, β, and γ angles, respectively, at vertices of ABC. Since T is
not similar to ABC, we have P + Q + R ≥ 5. Since T is not isosceles, α < β. We have
β > (π− γ)/2 = 3π/10 = (3/4)γ. The number R of γ angles is at most 2, since 3γ = 6π/5 > π.

Assume, for proof by contradiction, that R = 2. Then Pα + Qβ = π/5, and since β >
3π/10 > π/5, we must have Q = 0. Hence α = π/(5P ) and β = π − γ − α = 3π/5 − π/(5P ).
Since β < γ, we have

3

5
π − π

5P
<

2

5
π

3

5
− 1

5P
<

2

5
3P − 1 < 2P

P < 1

This contradicts P + Q ≥ 5. That completes the proof by contradiction that R 6= 2. Since
R ≤ 2, that implies R = 1 or R = 0.

Now assume, for proof by contradiction, that R = 1. Then the equation Pα+Qβ+Rγ = π
becomes Pα+Qβ = 3π/5, and since β > 3π/10, we must have Q ≤ 1. We have two equations
for α and β:

Pα+Qβ =
3π

5
since R = 1

α+ β =
3π

5
since α+ β + γ = π

We cannot have P = Q = 1, since P + Q ≥ 5. Hence P 6= Q, and the equations are uniquely
solvable for α and β. By Cramer’s rule we have

α =
3π

5

1 −Q

P −Q

β =
3π

5

P − 1

P −Q
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Since Q ≤ 1, the equation for α shows that Q = 0, since α > 0. Hence

α =
3π

5P

β =
3π

5

P − 1

P

We have β < γ = 2π/5. Hence

3π

5

P − 1

P
<

2π

5

Dividing by π and multiplying by 5P , we have

3(P − 1) < 2P

3P − 3 < 2P

P < 3

But this contradicts P + Q + R ≥ 5, since R = 1 and Q = 0. That completes the proof that
R 6= 1.

Hence R = 0. The equation Pα+Qβ +Rβ = π then becomes Pα+ Qβ = π, and we have
the two equations

Pα+Qβ = π

α+ β =
3π

5
since α+ β + γ = π

If P = Q, then we have α + β = π/P = (3π)/5. Hence P = 5/3, which is impossible since
P is an integer. Therefore P 6= Q, and the equations can be solved uniquely for α and β. By
Cramer’s rule we have

α =
π − (3π/5)Q

P −Q

β =
(3π/5)P −Qπ

P −Q

Assume, for proof by contradiction, that Q > 1. Then the numerator of α is negative, so the
denominator P −Q is also negative, so Q > P . Then

β =
Q− (3/5)P

Q− P
π

Since β < γ = 2π/5, we have

Q− (3/5)P

Q− P
<

2

5

Multiplying both sides by 5(Q− P ), which is positive since Q > P , we have

5Q− 3P < 2Q− 2P

3Q < P

But we have P < Q, so 3Q < P < Q, which is a contradiction. Thus our assumption that Q > 1
is untenable. Hence Q ≤ 1.
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Now assume Q = 0. Then the formula for β above simplifies to 3π/5, which is more than γ,
contradiction. Hence Q = 1. Then we have

β =
(3/5)P − 1

P − 1
π

The equation β < γ then implies

(3/5)P − 1

P − 1
<

2

5

Multiplying both sides by 5(P − 1) we have

3P − 5 < 2(P − 1)

P < 3

But that contradicts P + Q + R ≥ 5, since R = 0 and Q = 1. This contradiction does not
depend on any assumption, and hence completes the proof of the lemma.

5 The case α = π/11 and β = 3α

In this section and the next, we prove there are no tilings of any triangle ABC in which the
tile T is not similar to ABC, for two special tiles T that seem to slip through the cracks
of our arguments in subsequent sections. We deal with these two special cases using some
field theory computations in the relevant cyclotomic fields, combined with simple geometric
arguments. Some of the computations were made using a computer algebra system, but they
could have been made by hand with enough patience, and they can be checked (once made)
with a calculator, as we shall now explain.

We used the computer algebra systems Sage and Mathematica. The results we obtained
are of two kinds. Some are polynomial equations in a root of unity ζ, with integer coefficients.
You can check these with a scientific calculator, and verify that the two sides agree to many
decimal places. While that is not a proof, it is good evidence that no mistake has been made in
preparing input for Sage or typesetting the output, or by Sage itself. On the other hand, some
of the results are equations containing not only ζ but also parameters for unknown integers p, q,
r, etc. Here a computer algebra system is used to divide one polynomial (with variables in the
coefficients) by another and get the remainder. The computations would be very difficult, but
not impossible, to perform by hand. To check whether a mistake has been made in the input or
the typesetting, you would have to give the problem to Sage or Mathematica or Maple yourself.
Mathematica and Maple are also capable of doing these calculations, and we checked some of
them in both Mathematica and Sage.

The most curious thing about this part of the work is that the two special cases are surpris-
ingly different. The two arguments have a method in common (field theory), but the fields are
different, and the resulting equations are different, and the geometric arguments at the end are
different. They do not seem to be special cases of a more general proof.

Lemma 5 Let ABC be tiled using as a tile the triangle T with α = π/11, β = 3π/11, and
γ = 7π/11, and suppose the angles of triangle ABC are anything but 2α, 4α, and 5α. Then
ABC is similar to T .

Remark. We were not able to deal with the exceptional case mentioned by this method of proof.

Proof. First we note that sinα and cosα are not rational, by Corollary 1. Let

a := sinα

ζ := eiα
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Then ζ22 = 1. Since 22 is not divisible by 4, i does not belong to Q(ζ). The degree of Q(ζ)
over Q is ϕ(22) = 10, and Q(ζ, i) then has degree 20. There are no convenient automorphims
of Q(ζ) that fix two of ia, ib, and ic and move the third, so we are forced to consider the area
equation directly.

The minimal polynomial of ζ is the cyclotomic polynomial

x10 − x9 + x8 − x7 + x6 − x5 + x4 − x3 + x2 − x+ 1.

We note that sin2 α is not rational, since if it were, then sinα and cosα would be of degree 2, so
Q(sinα, cosα) would be of degree 1, 2, or 4, and Q(ζ, i) = Q(sinα, cosα, i) would be of degree
1, 2, 4, or 8, but we have shown that it is 20. Hence Q(a2) 6= Q. Since a2 = −(ζ− ζ−1)2 belongs
to Q(ζ), it is of degree dividing 10. Since it is fixed under the automorphism σ21 that takes ζ
to ζ21 = ζ−1, in fact Q(a2) is of degree 5 over Q.

The minimal polynomial of a = sin(π/11) is

x10 − 11

4
x8 +

11

4
x6 − 77

64
x4 +

55

256
x2 − 11

1024

according to Sage. We will show that cosα belongs to Q(a). We have

sin 6α = sin 5α

Expanding both sides in sinα and cosα (using one’s favorite computer algebra system, or pencil
and paper), subtracting one from the other, and then using cos2 α = 1 − sin2 α, one finds

0 = (32 sin4 α cosα− 16 sin4 α− 32 sin2 α cosα+ 20 sin2 α+ 6 cosα− 5) sinα

Dividing by sinα we have

0 = 32 sin4 α cosα− 16 sin4 α− 32 sin2 α cosα+ 20 sin2 α+ 6 cosα− 5

= cosα(32 sin4 α− 32 sin2 α+ 6) − 16 sin4 α+ 20 sin2 α− 5

Solving for cosα we find

cosα =
16 sin4 α− 20 sin2 α+ 5

32 sin4 α− 32 sin2 α+ 6

=
16a4 − 20a2 + 5

32a4 − 32a2 + 6

Squaring and using cos2 α = 1−sin2 α, one soon can confirm the minimal polynomial reported
by Sage; we stop here, having proved that cosα belongs to Q(a2). It is awkward to have cosα
expressed as a fraction; we want to have it expressed in terms of the basis elements of Q(a2).
Sage can do that for us, and we can verify the result numerically to check that there was no
human or machine error.1

cosα = 128a8 − 288a6 + 216a4 − 60a2 +
9

2
(6)

We next wish to express b = sin β and c = sin γ in terms of a = sinα and cosα. We have

b = sin 3α

= 3a− 4a3

1If we wanted to do it by hand, we would use the extended Euclidean algorithm to find polynomials λ and
µ such that λ(32x4 − 32x2 + 6) + µψ(x) = 1, where ψ is the the minimal polynomial of a; then the answer is
(16x4 − 20x2 + 5)λ mod ψ. This is tedious by hand, easy with Mathematica or Sage, but then you might as well just
let Sage do the whole calculation.
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and

c = sin 4α

= sin(2 · 2α)

= 2 sin 2α cos 2α

= 4 sinα cosα(1 − 2 sin2 α)

= 4a(1 − 2a2) cosα

= 4a(1 − 2a2)
“

128a8 − 288a6 + 216a4 − 60a2 +
9

2

”

Now we ask Sage to evaluate this expression in Q(a). It tells us

c = −64a7 + 112a5 − 56a3 + 7a

As a check, this value is numerically equal to sin(4α) to many decimal places.
Let θ be one of the angles of triangle ABC and let U and V be the adjacent sides. Let p, q,

r, m, n, and ℓ be the rows of the d matrix associated with U and V , i.e. the numbers of tiles
with a, b, and c sides on U and V , respectively. Explicitly,

U = pa+ qb+ rc

V = ma+ nb+ ℓc

The area equation 2NAT = 2AABC becomes

Nabc = UV sin θ

= (pa+ qb+ rc)(ma+ nb + ℓc) sin θ

= (pa+ q(3a− 4a3) + r(−64a7 + 112a5 − 56a3 + 7a))
“

ma+ n(3a− 4a3) + ℓ(−64a7 + 112a5 − 56a3 + 7a)
”

sin θ

Dividing both sides by a2 sin θ we have

Nbc

a sin θ
=

“

p+ q(3 − 4a2) + r(−64a6 + 112a4 − 56a2 + 7)
”

“

m+ n(3a− 4a2) + ℓ(−64a6 + 112a4 − 56a2 + 7)
”

Multiplying out, and reducing by the minimal polynomial of a, we have (according to Sage)

Nbc

a sin θ
= (256(q + 14r)ℓ+ 256(14ℓ + n)r − 7168ℓr)a8

+(−448(q + 14r)ℓ− 448(14ℓ + n)r − 64(p + 3q + 7r)ℓ− 64(7ℓ +m+ 3n)r + 13376ℓr)a6

+(16(q + 14r)(14ℓ + n) + 112(p+ 3q + 7r)ℓ+ 112(7ℓ +m+ 3n)r − 4576ℓr)a4

+(−4(q + 14r)(7ℓ +m+ 3n) − 4(14ℓ+ n)(p+ 3q + 7r) + 704ℓr)a2

+(p+ 3q + 7r)(7ℓ+m+ 3n) − 33ℓr

Expanding and simplifying the coefficients of a8 and a6 we find

Nbc

a sin θ
= 256(qℓ+ rn)a8

−(640(qℓ+ rn) + 64(ℓp+ ℓr +mr))a6

+(16(q + 14r)(14ℓ + n) + 112(p + 3q + 7r)ℓ+ 112(7ℓ +m+ 3n)r − 4576ℓr)a4

+(−4(q + 14r)(7ℓ +m+ 3n) − 4(14ℓ + n)(p+ 3q + 7r) + 704ℓr)a2

+(p+ 3q + 7r)(7ℓ+m+ 3n) − 33ℓr (7)
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Now suppose, for proof by contradiction, that θ = γ. Then sin θ = c and we can cancel c from
numerator and denominator on the left. Substituting b = 3a − 4a3 on the left, a factor of a
cancels and we obtain 3N − 4Na2 on the left. Comparing coefficients of a8 we have zero on the
left and qℓ+ rn on the right; hence qℓ = 0 and rn = 0 (since both quantities are nonnegative).
Then the coefficient of a6 is zero on the left, and on the right it is 64(ℓp + ℓr + mr). Hence
ℓp = 0 = ℓr = mr. Now we have proved that nr = mr = ℓr = 0, so r(n + m + ℓ) = 0. But
n+m+ ℓ > 0, so r = 0. Then the coefficient of a4 simplifies to 16nq; hence nq = 0. We have
also proved ℓp = 0 = ℓq = ℓr, so ℓ(p+ q + r) = 0. But p+ q + r > 0, so ℓ = 0. The coefficient
of a2 simplifies to −4(mq + np) on the right and −4N on the left. Therefore mq + np = N .
The constant term is 3N on the left and on the right it simplifies to mp + 3mp + 3np. Hence
mp + 3mp + 3np = 3N . Subtracting three times the equation mq + np = N we find mp = 0.
Assume for the moment that m 6= 0. Then p = 0; since ℓ = 0 we must have q 6= 0. Then
since nq = 0 we have n = 0, and side V is composed entirely of a sides of tiles, while side U
is composed entirely of b sides of tiles. On the other hand if m = 0 then side V is composed
entirely of b sides of tiles, so n 6= 0; then since nq = 0 we have q = 0 and side U is composed
entirely of a sides of tiles. Note that these deductions are consistent with the case when ABC is
similar to T and the tiling is quadratic. Interchanging the arbitrary labels U and V if necessary,
we may assume that side U is composed entirely of a sides of tiles. The other end of side U is
at either A or B. The angle of ABC at A cannot be α, for then ABC would be similar to T ,
since angle C = γ; but it must be less than β, since 2β + γ > π. Also the angle at B must be
less than β, since A+ B = α + β, and angle A > α. Hence the angle at the other endpoint of
U is less than β, whether that endpoint is A or B. Let T1 be the tile along U at that vertex
of ABC. Then T1 has its α angle in the corner of ABC. But then it cannot have its a side
along U , contradiction. That completes the proof that θ 6= γ. Since θ was originally any angle
of ABC, we can now assume that none of the angles of ABC are equal to γ.

Returning to (7), the last equation before we assumed θ = γ, we now assume, for proof by
contradiction, that θ = α. Then sin θ = a and on the left we have Nbc/a2. Substituting the
expressions derived above for b/a and c/a on the left, we have

N(3 − 4a2)(−64a6 + 112a3 − 56a2 + 7)

= 256(qℓ + rn)a8

−(640(qℓ + rn) + 64(ℓp+ ℓr +mr))a6

+(16(q + 14r)(14ℓ + n) + 112(p + 3q + 7r)ℓ+ 112(7ℓ +m+ 3n)r − 4576ℓr)a4

+(−4(q + 14r)(7ℓ+m+ 3n) − 4(14ℓ + n)(p+ 3q + 7r) + 704ℓr)a2

+(p+ 3q + 7r)(7ℓ+m+ 3n) − 33ℓr

Expanding the left hand side we have

N(256a8 − 640a6 + 560a4 − 196a2 + 21)

= 256(qℓ + rn)a8

−(640(qℓ + rn) + 64(ℓp+ ℓr +mr))a6

+(16(q + 14r)(14ℓ + n) + 112(p + 3q + 7r)ℓ+ 112(7ℓ +m+ 3n)r − 4576ℓr)a4

+(−4(q + 14r)(7ℓ+m+ 3n) − 4(14ℓ + n)(p+ 3q + 7r) + 704ℓr)a2

+(p+ 3q + 7r)(7ℓ+m+ 3n) − 33ℓr

Now we can equate coefficients of like powers of a. From the coefficient of a8 we see N = qℓ+rn.
Then from the coefficient of a6 we have

640N = 640(qℓ + rn) + 64(ℓp+ ℓr +mr)

= 640N + 64(ℓp+ ℓr +mr)
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Subtracting the left side from the right we see ℓp = ℓr = mr = 0. Turning to the coefficient of
a4, we have

560N = 16 · 14(qℓ + rn) + 16qn+ 3 · 112(qℓ + rn)

= 560(qℓ + rn) + 16qn

= 560N + 16qn

Subtracting the left side from the right, we see qn = 0. Finally, from the constant term we have

21N = pm+ 3pn+ 3qm+ 21(qℓ+ rn)

= pm+ 3pn+ 3qm+ 21N

Subtracting the left side from the right, we see pm = 0 = pn = qm. Since we already deduced
pℓ = 0 we now have p(m + n + ℓ) = 0, which implies p = 0. Similarly, having deduced
mp = mq = rm = 0, we have m(p+ q + r) = 0, which implies m = 0. Now, if q 6= 0 then since
nq = 0 we would have n = 0; and then since m = 0 we would have ℓ 6= 0, and since ℓr = 0 we
would have ℓ = 0. Thus if q 6= 0 then U is composed entirely of b sides of tiles (since p = r = 0)
and V is composed entirely of c sides of tiles (since m = n = 0). On the other hand, if q = 0
then since p = 0, we would have r 6= 0, so ℓ = 0, so n 6= 0, and then U would be composed
entirely of c sides of tiles and V entirely of b sides. Hence in either case, one of U and V is
composed entirely of b sides; we may assume without loss of generality that it is U . Let T1 be
the tile at vertex A (there is only one since the angle there is α). Let V2 be the next vertex
on side U , at the other end of the b side of T1. Then T1 has its γ angle at V2, since it has its
β angle opposite its b side on U , and its α angle at A. Since γ > π/2, there cannot be two γ
angles on the same side of U at any one vertex. Then by the pigeonhole principle, the last tile
Tk must have its γ angle at the vertex C of ABC, and U is the side AC.

But angle C cannot be exactly γ, since then ABC would be similar to T (and besides, we
already showed none of the angles of ABC are equal to γ). Assume, for proof by contradiction,
that angle C = γ + α. Let P be the point on side AB such that angle ACP is γ; since angle
C is more than γ, such a point P exists. Then triangle ACP is similar to T , and the similarity
factor is q, since the side opposite the β angle of ACP (which is AC) has length qb. Hence the
length of AP is qc and the area of triangle ACP is q2AT . Since the length of AP is qc and that
is less than the length of AB, which is ℓc, we have q < ℓ.

Observe that triangle CPB is similar to triangle ABC, since angle PCB is α and the two
triangles share angle B = 2α. The length of PC is qa, because q is the similarity factor between
T and triangle ACP . Side PC is opposite angle B in PCB; and AC, which has length qb, is
opposite angle B in triangle ABC. The similarity factor between CPB and ABC is thus a/b.
We now decompose triangle ABC into triangle ABP and triangle CPB (although we do not
claim that segment CP belongs to the tiling). We have

AABC = AACP + ACPB

= q2AT +
a

b
AABC

Solving for AABC we find

AABC =
q2

1 − a
b

AT

On the other hand AABC = NAT because ABC is N-tiled by T . Hence

NAT =
q2

1 − a
b

AT
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Canceling AT and simplifying, we find

q2 = N
“

1 − a

b

”

q2b = N(b− a)

Substituting b = 3a− 4a3 and canceling a from both sides we have

q2(3 − 4a2) = N(2 − 4a2)

−4q2a2 + 3q2 = −4Na2 + 2N

Comparing the coefficients of a2 we have N = q2. Comparing the constant coefficients we have
q2 = 2N/3. Since N > 0 this is a contradiction. Hence, if angle A = α, we do not have angle
C = γ + α.

Now suppose, for proof by contradiction, that angle A = α and angle C = γ + 2α. Then
angle B = α, so ABC is isosceles. Let P and Q be points on AB such that angle ACP = γ
and angle ACQ = γ +α. Then angle QCB = α. Since angle B = α, triangle ABC is similar to
triangle CAB, as both have two α angles. Angle PCQ = α and angle CPQ = π − β = α + γ.
Therefore triangle PCQ is similar to triangle CQA. Triangle ACP is similar to the tile, with
similarity factor q, so PC = qa. In the similarity between PCQ and CQA, side PC corresponds
to AC, so the similarity factor from CQA to PCQ is PC/AC = a/b. Then

AC = qb

AP = qc

PC = qa

QC = (a/b)AQ

= (a/b)(AP + PQ)

= (a/b)qc+ (a/b)PQ

PQ = (a/b)QC

Substituting this value of PQ into QC = (a/b)qc+ (a/b)PQ we have

QC = (a/b)qc+ (a/b)2QC

Solving for QC we have

QC =
abqc

b2 − a2

Since PQ = (a/b)QC this give us

PQ =
a2qc

b2 − a2

Since triangle ABC is isosceles we have BC = AC = qb. Since triangle QBC is isosceles we
have QB = QC. We compute

AB = AP + PQ+QB

= qc+ PQ+QB

= qc+
a2qc

b2 − a2
+QB

= qc+
a2qc

b2 − a2
+QCsince QB = QC

= qc+
a2qc

b2 − a2
+

abqc

b2 − a2
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= qc
“

1 +
a2 + ab

b2 − a2

”

= qc
“

1 +
a(b+ a)

b2 − a2

”

= gc
“

1 +
a

b− a

”

= gc
“ b− a+ a

b− a

”

= gc
“ b

b− a

”

But AB, which was the side V , is composed entirely of c edges. Hence gb(b− a) is an integer,
namely ℓ where V = ℓc. In particular b(b− a) = ℓ/g is rational. But b = 3a− 4a3, so we have

ℓ

g
= (3a− 4a3)((3a− 4a3) − a)

0 = (3a− 4a3)(2a− 4a3) − ℓ

g

But then a satisfies a rational polynomial of degree 6, contradicting the fact that its minimal
polynomial has degree 10. This contradiction shows that ABC cannot have an α angle and a
γ + 2α angle. But we have now checked all the possibilities for angle C if angle A = α. Hence,
angle A cannot be α.

Now assume, for proof by contradiction, that triangle ABC is isosceles, with two angles
equal to 2α. We may suppose the two angles are angles A and B. Then angle C = γ, since
γ + 4α = π. But we have already shown that triangle ABC cannot have a γ angle. Hence
triangle ABC cannot be isosceles with two 2α angles.

The smallest angle of triangle ABC cannot exceed 2α, since if it is 3α or more then the
second smallest angle is at least 4α, and the largest angle would exceed 5α, making the total at
least 12α, while it must be only 11α = π.

The smallest angle of triangle ABC must therefore be exactly 2α. Then the second smallest
angle is at least 3α = β. If the next smallest angle is β = 3α then the largest angle is γ, which
we have shown to be impossible. Hence the second smallest angle must be at least 4α. If it
is 4α then the third angle is 5α. The second smallest cannot be 5α or more because then the
sum of all three angles would exceed π = 11α. Hence there is only one possible shape of ABC
remaining when angle A = 2α, angle B = 4α, and angle C = 5α. But that shape is ruled out
by hypothesis. That completes the proof of the lemma.

6 The case α = π/14 and β = 4α

Here is a another special case that requires a separate treatment, which we provide by using a
cyclotomic field.

Lemma 6 Let ABC be tiled using as a tile the triangle T with α = π/14, β = 4π/14, and
γ = 9π/14. Suppose angle C is equal to γ or γ + α. Then ABC is similar to T .

Proof. Let ζ = e2πi/28. The degree of Q(ζ) over Q is ϕ(28) = 12. Since 28 is divisible by 4, i
belongs to Q(ζ). Let σ = σ15 be the automorphism of Q(ζ) that takes ζ to ζ15. Then σ takes i
to −i. Since 2 sin(jα) = −i(ζj − ζ−j), σ takes sin(jα) to − sin(15jα), so σ fixes a = sinα and
also fixes c since

cσ = − sin(15 · 9α)

= − sin 23α
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= sin 5α

= sin 9α

= sin γ = c

On the other hand bσ = − sin 60α = − sin 4α = −b.
Let U and V be (the lengths of) two sides of ABC, and let θ be the angle between sides U

and V . Then let the number of a, b, and c sides of tiles on side U be p, q, and r respectively,
and let m, n, and ℓ be the number of a, b, and c sides on V . Then we have

U = pa+ qb+ rc

V = ma+ nb+ ℓc

Uσ = pa− qb+ rc

V σ = ma− nb+ ℓc

All the angles of ABC are multiples of α. For which J do we have sin Jα fixed by σ? Exactly
for J even, because

(2i sin Jα)σ = (ζJ − ζ−J )σ

= (ζσ)J − (ζσ)−J

= ζ15J − ζ−15J

= (−ζ)J − (−ζ)−J

= (−1)J(ζJ − ζ−J )

= (−1)J2i sin Jα

But σ changes the sign of i, since iσ = ζ7σ = ζ7·15 = −i. Hence the left side is equal to
−2i(sin Jα)σ, and we can divide by −2i, obtaining

(sin Jα)σ = (−1)J+1 sin Jα

So for J odd, σ fixes sin Jα, and for J even, σ changes the sign of sin Jα.
For some integer J , angle θ = Jα. The area equation is

2NAT = 2AABC

Nabc = UV sin θ

= (pa+ qb+ rc)(ma+ nb + ℓc) sin θ (8)

Applying σ we find

−Nabc = (−1)J+1(pa− qb+ rc)(ma− nb+ ℓc)(−1)J+1 sin θ

since σ fixes a and c but changes the sign of b. Dividing the last two equations, and multiplying
by −1, we have

1 = (−1)J (pa+ qb+ rc)(ma+ nb+ ℓc)

(pa− qb+ rc)(ma− nb+ ℓc)

The fraction on the right can be 1 only if the b terms do not appear, i.e. q = n = 0, and it can
be −1 only if the a and c terms do not appear, i.e. p = r = m = ℓ = 0. That is, it can be 1 only
if U and V both have no b edges, and it can be −1 only if U and V are composed only of b edges.
(If that conclusion is not obvious, it can be be reached by multiplying by the denominator and
simplifying, remember that all the letters denote nonnegative quantities.) Hence: if J is even,
U and V have no b edges, and if J is odd, they have only b edges.
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Consider the case in which J is odd, and U and V both are composed of only b sides of tiles.
In that case the area equation becomes Nabc = qnb2 sin θ. Canceling b we have

Nac = qnb sin θ.

Now the plan is to express a, b, and sin θ in terms of ζ. The minimal polynomial ψ(x) of ζ is
the 28-th cyclotomic polynomial, so it is known. The degree of ψ is ϕ(28) = 12, where ϕ is the
Euler totient function. We will get a polynomial f(x) that is satisfied by ζ, so it must be zero
mod ψ. But it will turn out not to be zero mod ψ. Here are the details. First, the minimal
polynomial of ζ is

ψ(x) = x12 − x10 + x8 − x6 + x4 − x2 + 1 (9)

as can be found using the cyclotomic polynomial or the monopoly function of Sage, or by
factoring x28 − 1 in Mathematica or Maple, or by using techniques found in any number theory
book.

Next, we express a, b, and sin θ in terms of ζ:

a = sin
π

14
= − i

2
(ζ − ζ−1)

b = sin
4π

14
= − i

2
(ζ4 − ζ−4)

c = sin
9π

14
= − i

2
(ζ9 − ζ−9)

θ = sin
Jπ

14
= − i

2
(ζJ − ζ−J )

4Nac = −N(ζ − ζ−1)(ζ9 − ζ−9)

4qnb sin θ = −qn(ζ4 − ζ−4)(ζJ − ζ−J)

Since Nac = qnb sinC we can equate the last two right hand sides:

N(ζ − ζ−1)(ζ9 − ζ−9) = qn(ζ4 − ζ−4)(ζJ − ζ−J )

N(ζ10 − ζ8 − ζ−8 + ζ−10) = qn(ζJ+4 − ζJ−4 − ζ4−J + ζ−J−4)

Now we want to multiply by a sufficient power of ζ to kill the negative exponents; that power
has to be at least 10 and at least J + 4. Since 14α = π, if ABC has any angles that are odd
multiples of α, then it has at least two such, and the smallest one is less than π/2 = 7α, so we
only need to consider J = 1, 3, and 5 among odd J . Hence ζ10 is a sufficient power to kill the
negative exponents. Multiplying by ζ10 we have

N(ζ20 − ζ18 − ζ2 + 1) = qn(ζJ+14 − ζJ+6 − ζ14−J + ζ6−J )

Since ζ14 = −1 we can simplify this a bit:

N(−ζ6 + ζ4 − ζ2 + 1) = qn(−ζJ − ζJ+6 − ζ14−J + ζ6−J )

Define

f(x) := Nx6 −Nx4 − qnxJ+6 − qnxJ − qnx14−J + qnx6−J +Nx2 −N

Then f is a[ polynomial satisfied by ζ. Therefore f(x) must be zero mod the cyclotomic
polynomial ψ exhibited in (9), which has degree 12. The degree of f can only exceed 12 if
J+6 ≥ 12 or 14−J ≥ 12. We only have to consider J = 1, 3, or 5, and when J = 3 or J = 5 we
are done already, because the degree of f is less than 12 and the constant term −N is not zero,
so f is not the zero polynomial. That leaves only the case N = 1, in which we must compute f
mod ψ. We did this computation in Sage as follows for J = 1:
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sage: R.<x,N,q,n> = PolynomialRing(QQ,4)

sage: f = N*x^6 - N*x^4 - q*n* x^7 - q*n*x^13 + q*n*x^5 + N*x^2 - N

sage: psi = x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1

sage: f.quo_rem(psi)

(-q*n*x, -q*n*x^11 + q*n*x^9 - 2*q*n*x^7 +

2*q*n*x^5 + x^6*N - q*n*x^3 - x^4*N + q*n*x + x^2*N - N)

This tells us that f(x) mod ψ(x) is

−qnx11 + qnx9 − 2qnx7 +Nx6 + 2qnx5 −Nx4 − qnx3 +Nx2 + qnx−N

This is not the zero polynomial since its constant term N is not zero. Hence ABC has no angle
that is an odd multiple of α.

Now suppose θ is an even multiple of α. Since ABC has no angles that are odd multiples of
α, all its angles are even multiples of α, so the smallest one is less than or equal to 4α; hence
we only have to rule out angles θ = 2α and 4α. If θ is an even multiple of α, then (as shown
above) U and V have no b edges, and the area equation (8) becomes

Nabc = (pa+ rc)(ma+ ℓc) sin θ (10)

First we take up the case J = 4. Then θ = 4α = β, so sin θ = b. Then we can divide the
equation by b, obtaining

Nac = (pa+ rc)(ma+ ℓc)

The plan is the express everything in terms of ζ and then take the equation mod ψ. We have

N(ζ − ζ−1)(ζ9 − ζ−9) = (p(ζ − ζ−1) + r(ζ9 − ζ−9)(m(ζ − ζ−1) + ℓ(ζ9 − ζ−9))

Nζ10 −Nζ8 −Nζ−8 +Nζ−10 = ζ18rℓ+ ζ10(rm+ ℓp) + ζ2pm+ ζ−2pm

+ζ−10(rm+ ℓp) + ζ−18rℓ

Since ζ14 = −1 we have

Nζ10 −Nζ8 −Nζ−8 +Nζ−10 = ζ10(rm+ ℓp) − ζ4rℓ+ ζ2pm

+ζ−2pm− ζ−4rl + ζ−10(rm+ ℓp)

Bringing everything to one side of the equation we have

0 = ζ10(rm+ ℓp−N) +Nζ8 − ζ4rℓ+ ζ2pm

+ζ−2pm− ζ−4rℓ+Nζ−8 + ζ−10(rm+ ℓp−N)

Multiplying by ζ10 we have

0 = ζ20(rm+ ℓp−N) +Nζ18 − ζ14rℓ+ ζ12pm+ ζ8pm− ζ6rℓ+Nζ2 + (rm+ ℓp−N)

Again using ζ14 = −1 we have

0 = −ζ6(rm+ ℓp−N) −Nζ4 + rℓ+ ζ12pm+ ζ8pm− ζ6rℓ+Nζ2 + (rm+ ℓp−N)

= pmζ12 + pmζ8 − ζ6(rm+ ℓp−N + rℓ) −Nζ4 +Nζ2 + (rm+ ℓp−N)

This polynomial in ζ has the same degree as the minimal polynomial ψ, so it must be either
identically zero, or a constant multiple of ψ. It is not a constant multiple, since it lacks a term
in ζ10, while ψ has such a term. It is not identically zero, since the coefficient of ζ2 is N 6= 0.
This contradiction shows that ABC has no angle θ = 4α.

Therefore ABC must have an angle θ = 2α. There is no longer a canceling factor in the
area equation (10), so the algebra is more tedious. We reach for computer support:
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sage: R.<x,N,p,r,m,l> = PolynomialRing(QQ,6)

sage: a = x - x^-1

sage: b = x^4-x^-4

sage: c = x^9 - x^-9

sage: f = N*a*b*c - (p*a+r*c)*(m*a + l *c)

sage: t = x^2 - x^-2

sage: f = x^20*(N*a*b*c - (p*a+r*c)*(m*a + l *c)*t)

sage: f

-x^40*r*l + x^36*r*l + x^34*N - x^32*r*m - x^32*p*l - x^32*N

+ x^30*r*m + x^30*p*l + x^28*r*m + x^28*p*l - x^26*r*m - x^26*p*l

- x^26*N - x^24*p*m + x^24*N + 2*x^22*p*m + 2*x^22*r*l - 2*x^18*p*m

- 2*x^18*r*l + x^16*p*m - x^16*N + x^14*r*m + x^14*p*l + x^14*N

- x^12*r*m - x^12*p*l - x^10*r*m - x^10*p*l + x^8*r*m + x^8*p*l

+ x^8*N - x^6*N - x^4*r*l + r*l

That is,

f(x) = −rℓx40 + rlx36 + x34N − x32(rm− pℓ−N) + x30(rm+ pℓ) + x28(rm+ pℓ)

+x26(rm− pℓ−N) + x24(N − pm) + 2x22(pm+ rℓ) − 2x18(pm+ rℓ) + x16(pm−N)

+x14(rm+ pℓ+N) − x12(rm+ pℓ) − x10(rm+ pℓ) + x8(rm+ pℓ+N)

−Nx6 − rℓx4 + rℓ

Since x14 = −1 and x28 = 1 we have

f(x) = = rlx12 + rlx8 + x6N − x4(rm− pℓ−N) + x2(rm+ pℓ) + (rm+ pℓ)

−x12(rm− pℓ−N) − x10(N − pm) − 2x8(pm+ rℓ) + 2x4(pm+ rℓ) − x2(pm−N)

+(rm+ pℓ−N) − x12(rm+ pl) − x10(rm+ pℓ) + x8(rm+ pℓ+N)

−Nx6 − rℓx4 + rℓ

Collecting like terms we have

f(x) = x12(rℓ− 2rm+N) + x10(pm−N − rm− pℓ) + x8(−2pm− rℓ+ rm+ pℓ+N)

x4(−rm+ pℓ+N + 2pm+ rℓ) + x2(rm+ pℓ− pm+N) + (rm+ pℓ−N + rℓ)

This polynomial must vanish at ζ, and it has degree at most 12, so either it is identically zero
or it is a multiple of ψ. Since f has a zero coefficient of x6, it is not a multiple of ψ; hence it
must be identically zero. From the constant term we have N = rm+ pℓ+ rℓ; substituting that
value for N into the coefficient of x4 we have

0 = −rm+ pℓ+N + 2pm+ rℓ

= −rm+ pℓ+ (rm+ pℓ+ rℓ) + 2pm+ rℓ

= 2pℓ+ rℓ+ 2pm+ rℓ

= 2ℓ(p+ r) + 2pm

Hence pm = 0 and ℓ(p+ r) = 0. Hence either ℓ = 0 or p = r = 0. If p = r = 0 then the constant
term is −N 6= 0, so we are finished. Hence we can assume ℓ = 0. Then the constant term is
rm − N , so N = rm. Hence m 6= 0; but since pm = 0 we have p = 0. Then the coefficient
of x2 is rm + pℓ − ± + N = rm + N , but since rm = N that is 2N , which is not zero. That
contradiction completes the proof of the lemma.
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7 The case when 3α + 2β = π or 2α + 3β = π

For this section only, we drop the assumption that α ≤ β, assuming only that α ≤ γ and β ≤ γ.
We consider tilings of a triangle ABC that is not isosceles, by a tile with angles α, β, and γ,
where 3α+ 2β = π and α is not a rational multiple of π. Note that we must have γ = β + 2α,
since γ = π−α−β = 3α+2β−α−β = 2α+β. The possible shapes of ABC are quite limited:

Lemma 7 Let ABC be N-tiled by a tile with angles α, β, and γ, and suppose 3α + 2β = π.
Suppose ABC is not similar to the tile and not isosceles, and suppose that α is not a rational
multiple of π. Then either ABC has angles 2α, β, and β + α, or ABC has angles α, 2α, and
2β.

Proof. Note that β is not a rational multiple of α, since then the relation 3α + 2β = π would
make α a rational multiple of π; similarly β is not a rational multiple of π. Suppose first that
ABC does not have an α angle. If one angle (say A) is 2α, then the tiling must split that
angle into two α angles, since β 6= 2α. Suppose, for proof by contradiction, that the tiing split
one of the other two vertex angles of ABC into several α angles. It must be least 3 of them
since ABC is not isosceles. Hence at least five α angles are involved at the vertices of ABC.
Hence the equation that says the sum of the vertex angles is π is an integral relation of the
form nα + mβ + rγ = π, with n ≥ 5. Since γ = β + 2α we have (n + 2r)α + (m + r)β = π.
Since n+2r ≥ 5 this relation is not a multiple of 3α+2β = π, and hence the two equations can
be solved for α and β, which will be rational multiples of π. This contradicts the hypothesis,
and the contradiction shows that ABC does not have an angle that splits into α angles. As a
consequence of this observation, ABC does not contain an angle larger than γ − α = β + α,
since if it did, then the third angle would be less than β and so would have to split into α angles.
Hence the other two angles of ABC must be at least β and at most β + α. There is only only
possibility, namely the first triangle mentioned in the lemma.

Now suppose that ABC does have an α angle. If the second smallest angle is 2α, then
the remaining angle must be 2β; that is the second possibility mentioned in the lemma. If the
second smallest angle is greater than 2α, it must be at least β, since if not it will split into at
least three α angles, giving rise to an integral relation that is not a multiple of 3α+ 2β = π. It
cannot be exactly β as that would make ABC similar to the tile. Therefore the second angle is
more than β, and the third angle is therefore less than γ. If neither of these two angles splits
into α angles, then each one contains a β angle plus one or more α angles. But since ABC is
not isosceles, they cannot both be β + α; hence at least four α angles are involved in the tiling
at the vertices of ABC. That is contradictory, since 4α+ 2β > π. Hence one of the second two
angles does split into α angles. Since the second smallest angle is more than 2α, at least 3 α
angles are required, and that gives rise to an integer relation that is not a multiple of 3α+ 2β,
contradiction. That completes the proof of the lemma.

We next introduce notation and definitions that will be used throughout this section, i.e.,
regardless of the shape of ABC. As always, a, b, and c are the sides of the tile, and we assume
the tile and the triangle ABC are scaled so that

a = sinα

b = sin β

c = sin γ

For use in this entire section, we introduce the following notation:

z = eiπα/2

ζ = eiπβ

We note that
z6ζ2 = −1
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since 3α+ 2β = π. Hence ζ = iz−3. We have

2ia = z2 − z−2

2ib = ζ − ζ−1

= i(z3 + z−3)

2b = z3 + z−3

2 sin 2α = −i(z4 − z−4)

2ic = ei(2α+β) − e−i(2α+β)

= z4ζ − z−4ζ−1

= iz4z−3 + iz−4z3 since ζ = iz−3

= i(z + z−1)

2c = z + z−1

In other words, sin γ = cos(α/2). We have

sin(β + α) = sin(π − γ)

= sin γ

=
1

2
(z + z−1)

We note the factorizations

z2 − z−2 = (z + z−1)(z − z−1)

z3 + z−3 = (z + z−1)(z2 − 1 + z−2)

In view of these factorizations we have

a

c
= = −i(z − z−1)

b

c
= z2 − 1 + z−2

We introduce

t := 2 cosα

= z2 + z−2

s := 2 sin(α/2)

= −i(z − z−1)

Then t = 2 − s2, and

a

c
= = i(z − z−1)

= s
b

c
= z2 − 1 + z−2

= t− 1

= 1 − s2

sin 2α = 2 sinα cosα

= at

= a(2 − s2)
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The d matrix equation is

d

0

@

a
b
c

1

A =

0

@

X
Y
Z

1

A

We introduce individual names for the components of the d matrix to avoid so many subscripts:

d =

0

@

p d e
g m f
h ℓ r

1

A

Therefore we have for the three sides X, Y , and Z of triangle ABC

X = pa+ db+ ec

Y = ga+mb+ fc

Z = ha+ ℓb+ rc

Generally our convention is that X, Y , and Z are in order of size, so X is opposite the
smallest angle A, and Y is opposite the middle angle B, and Z is opposite the largest angle C.
In this section, however, we are not assuming α < β, and that means that we may not have
Y < Z either. In case triangle ABC has angles α, 2α, and 2β, we will assume that X is opposite
the α angle at A, and the 2α angle is at B, opposite Y , and that Z is opposite the 2β angle. In
case ABC has angles 2α, β, and β + α, we will assume X is opposite the 2α angle at A, and Y
is opposite the β angle at B, and Z is opposite the β + α angle at C. Thus in case β < α, we
may not have X, Y , Z in order of size.

Lemma 8 Suppose triangle ABC is N-tiled by a tile in which γ > π/2 (as is the case when
3α+ 2β = π). Suppose all the tiles along one side of ABC do not have their c sides along that
side of ABC. Then there is a tile with a γ angle at one of the endpoints of that side of ABC.

Proof. Let PQ be the side of ABC with no c sides of tiles along it. Then the γ angle of each of
those tiles occurs at a vertex on PQ, since the angle opposite the side of the tile on PQ must
be α or β. Let n be the number of tiles along PQ; then there are n− 1 vertices of these tiles on
the interior of PQ. Since γ > π/2, no one vertex has more than one γ angle. By the pigeonhole
principle, there is at least one tile whose γ angle is not at one of those n − 1 interior vertices;
that angle must be at P or Q. That completes the proof of the lemma.

Lemma 9 Suppose 3α+ 2β = π, and suppose triangle ABC has angles 2α, β, and β + α. Let
T be a triangle with angles α, β, and γ and suppose that ABC is N-tiled by T in such a way
that just five tiles share vertices of ABC. Then the following restrictions on the elements of the
d matrix apply: We have e 6= 0, f 6= 0, and r 6= 0. In other words, the third element in each
row is nonzero.

Proof. None of the angles of ABC is large enough to accommodate the γ vertex of a tile, since
those angles are 2α, β, and β + α < β + 2α = γ. The lemma then follows from Lemma 8, since
the three numbers e, f , and r are the numbers of c sides of tiles on the three sides of ABC.
That completes the proof of the lemma.

Lemma 10 Let 3α + 2β = π, and let ABC have angles α, 2α, and 2β, and suppose there is
an N-tiling of ABC by a tile with angles α, β, and γ such that exactly two tiles meet at the
2β vertex of ABC. Then we cannot have m = ℓ = 0, i.e. the bottom two entries in the second
column cannot both be zero. Also e 6= 0 and f 6= 0 and r 6= 0.

22



Proof. At vertex A, where the angle is α, there is just one tile. It must have its b side on AB
and its c side on AC, or vice-versa. The number of b sides on AC is m and the number of b
sides on AB is ℓ, so they cannot both be zero.

In triangle ABC, no γ angles of tiles can occur at any vertex, since the α and 2α angles
are too small and the 2β angle splits into two β angles. Hence the third column of the d
matrix cannot contain any zero entries, by Lemma 8. Hence e, f , and r are each nonzero. That
completes the proof of the lemma.

7.1 The case when ABC has angles α, 2α, and 2β

Lemma 11 Let 3α+ 2β = π, and let ABC have angles α, 2α, and 2β, and let N be arbitrary.
Then there is no N-tiling of ABC by a tile with angles α, β, and γ in which exactly two tiles
meet at the 2β angle of ABC. (Here we do not assume α < β.)

Proof. Let X, Y , and Z be the sides of triangle ABC opposite A, B, and C respectively. Let
λ be the ratio of the sides to the opposite angle, which (by the law of sines) is the same for all
three sides:

X = λ sinα

Y = λ sin 2α

Z = λ sin 2β

We note that

sinα = a

sin 2α = 2 sinα cosα

= ta

= (2 − s2)a

sin 2β = sin 3α

= 4 sin3 −3 sin2 α

= 4a3 − 3a2

The d matrix equation is

0

@

p d e
g m f
h ℓ r

1

A

0

@

a
b
c

1

A =

0

@

X
Y
Z

1

A = λ

0

@

a
sin 2α
sin 2β

1

A (11)

As noted above, we have sin 2β = 4a3 − 3a2 and sin 2α = a(2 − s2) we have

0

@

p d e
g m f
h ℓ r

1

A

0

@

a
b
c

1

A = λ

0

@

a
a(2 − s2)
4a3 − 3a2

1

A

Taking the ratio of the second row to the first row, we have

ga+mb+ fc

pa+ db+ ec
= 2 − s2

Multiplying by the denominator, we have

ga+mb+ fc = (2 − s2)(pa+ db+ ec)
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Dividing both sides by c and expressing a/c and b/c in terms of s we have

g
a

c
+m

b

c
+ f = (2 − s2)(p

a

c
+ d

b

c
+ e)

gs+m(1 − s2) + f = (2 − s2)(ps+ d(1 − s2) + e)

This is a fourth-degree polynomial equation for s over Q. Bringing the equation to polynomial
form we have

0 = ψ(s) := ds4 − ps3 + (m− 3d− e)s2 + (2p− g)s+ (2d+ 2e− f −m) (12)

If ψ is identically zero, then from the first two coefficients of ψ in (12) we have d = p = 0.
From the coefficient of s2 we have m − 3d − e = m− e = 0, so m = e. From the coefficient of
s we have 2p − g = 0, and since p = 0 we have g = 0. From the constant coefficient we have
2d+ 2e− f −m = 2e− f −m = e− f , so f = e. The d matrix then has the form

0

@

0 0 e
0 e e
h ℓ r

1

A

This is not immediately contradictory, and we shall return to proving that ψ is not identically
zero below.

From the first row of the d matrix equation we have

pa+ db+ ec = λa

Dividing by c and using a/c = s and b/c = 1 − s2 we have

λs = ps+ d(1 − s2) + e

Solving for λ we have

λ = p− ds+
e+ d

s
(13)

The d matrix equation (11) can be written as an eigenvalue problem this way:

0

@

p d e
gb

sin 2α
mb

sin 2α
fb

sin 2α
hc

sin 3α
ℓc

sin 3α
rc

sin 3α

1

A

0

@

a
b
c

1

A = λ

0

@

a
b
c

1

A

To find an eigenvector by the cofactor method, we need to compute the cofactors of the matrix

0

@

p− λ d e
gb

sin 2α
mb

sin 2α
− λ fb

sin 2α
hc

sin 3α
ℓc

sin 3α
rc

sin 3α
− λ

1

A

Taking the cofactors of the third row, and multiplying by sin 2α, we find a candidate for an
eigenvector (it is only a candidate until we prove that its components are all nonzero):

0

@

u
v
w

1

A =

0

@

(df − em)b+ eλ sin 2α
(eg − pf)b+ fλb
(pm− dg)b− (mb+ p sin 2α)λ+ λ2 sin 2α

1

A (14)

Now assume, for proof by contradiction, that ψ is identically zero. As shown above, the d
matrix then has the form

0

@

0 0 e
0 e e
h ℓ r

1

A

24



Then we have
0

@

u
v
w

1

A =

0

@

−be2 + eλ sin 2α
ebλ
ebλ+ λ2 sin 2α

1

A

Since e 6= 0 (otherwise the whole first row of the d matrix is zero), the second two components
are nonzero. Suppose, for proof by contradiction, that u = 0. Then since e 6= 0 we have

eb = λ sin 2α

Since λ sin 2α = ga+mb+ fc = eb+ ec, we have eb = eb+ ec, and hence ec = 0. Since e 6= 0 we
have c = 0, a contradiction. This contradiction shows that u 6= 0 (still under the assumption
that ψ is identically zero). Having proved u 6= 0, we conclude that the eigenspace has dimension
1, and (u, v, w) is a multiple of (a, b, c). Therefore v/w = b/c. Cross multiplying, we have
vc = bw. Putting in v = ebλ and w = ebλ+ λ2 sin 2α we obtain

ebλc = eb2λ+ bλ2 sin 2α

= eb2λ+ bλ2at since sin 2α = at)

Dividing by bcλ we have

e = e
b

c
+ λt

a

c

Since p = d = 0, the first row of the d matrix equation is ec = λa. Hence λ = ec/a. Putting
this value in for λ we have

e = e
b

c
+
ec

a
t
a

c

= e
b

c
+ et

= e(t− 1) + et since b/c = t− 1

Since e 6= 0 we can divide by e:

1 = t− 1 + t

= 2t− 1

Solving for t we find t = 1. Since t = 2 cosα we have cosα = 1/2, so α = π/3. Then
β = π/2 − 3α/2 = 0, contradiction. Note that this is a contradiction even if we do not assume
α ≤ β. This contradiction shows that ψ is not identically zero.

We next want to prove that the components of (u, v, w) are not zero, without the assumption
that ψ is identically zero. First assume, for proof by contradiction, that v = 0. Then

(eg − pf)b+ fλb = 0

Dividing both sides by b we have

eg − pf + fλ = 0

Putting in the value of λ from (13) we have

0 = eg − pf + f
“

p− ds+
e+ d

s

”

= (eg − pf)s+ f(ps− ds2 + e+ d)
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Collecting terms and changing the sign, we have

0 = dfs2 − egs− (e+ d)f

Let H(s) = dfs2 − egs− (e+ d)f . Then H(0) = (e+ d)f ≤ 0, and H(1) = df − eg− (e+ d)f =
−eg − ef ≤ 0. Since H is a quadratic polynomial with positive leading coefficient, it cannot
have a zero between 0 and 1. But s is such a zero, contradiction. Hence v 6= 0.

Next assume, for proof by contradiction, that u = 0. Then

0 = (df − em)b+ eλ sin 2α

= (df − em)b+ eλat since sin 2α = at

Dividing both sides by c and using (13) we have

0 = (df − em)
b

c
+ e
“

p− ds+
e+ d

s

”

t
a

c

Using b/c = 1 − s2 and t = 2 − s2 and a/c = s, we have

0 = (df − em)(1 − s2) + e
“

p− ds+
e+ d

s

”

s(2 − s2)

= (df − em)(1 − s2) + e(ps− ds2 + e+ d)(2 − s2)

= eds4 − eps3 + s2(em− df − 3ed− e2) + 2eps+ (df − em+ 2e2 + 2de)

By Lemma 8, we have e 6= 0, since there cannot be a tile with a γ angle at B (where the 2α
angle of ABC is), and there cannot be a tile with a γ angle at C, where the 2β angle of ABC
is, since by hypothesis, there are two tiles each with a β angle at that vertex.

Define

H(s) := ds4 − ps3 + s2
“

m− df

e
− 3d− e

”

+ 2ps+
“df

e
−m+ 2e+ 2d

”

Since e 6= 0, we can divide the previous equation by e, obtaining H(s) = 0:

0 = ds4 − ps3 + s2
“

m− df

e
− 3d− e

”

+ 2ps+
“df

e
−m+ 2e+ 2d

”

(15)

The first two terms of H are equal to the first two terms of ψ, so H − ψ is a quadratic in s:

0 = H(s) − ψ(s)

= s2
“

m− df

e
− 3d− e− (m− 3d− e)

”

+ s(2p− (2p− g))

+
“df

e
−m+ 2e+ 2d

”

− (2d+ 2e− f −m)

= −s2
“df

e

”

+ gs+
df

e
(16)

We have f 6= 0, by Lemma 10. Assume, for proof by contradiction, that d 6= 0. Then we can
divide by −df/e, obtaining

0 = s2 − eg

df
s− 1

This quadratic function is negative when s = 0, and negative when s = 1, and its leading
coefficient is positive. Therefore it has no zero between 0 and 1, contradiction. This contradiction
shows that d = 0.
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Since d = 0, equation (16) becomes gs = 0. Hence g = 0, since s 6= 0. The equation (12)
(ψ(s) = 0) then becomes

0 = −ps3 + (m− e)s2 + 2ps+ (2e− f −m)

On the other hand, the equation (15) (H(s) = 0) now becomes (with d = g = 0)

−ps3 + (m− e)s2 + 2ps+ (2e−m)

Subtracting that from the previous equation we find f = 0; but we already proved f 6= 0 using
Lemma 8. That contradiction depended on the assumption u = 0, and that completes the proof
by contradiction that u 6= 0.

Now assume, for proof by contradiction, that w = 0. That is,

0 = (pm− dg)b− (mb+ p sin 2α)λ+ λ2 sin 2α

To write this as a function of s, use sin 2α = at = cs(2 − s2) and b = c(1 − s2) and λ =
p − ds + (e + d)/s, and then multiply by s/c. We find (with the aid of a computer algebra
system) the following polynomial equation:

0 = −d2s7 + dps5 + (4d2 + 2de− dm)s4 + (dg − 3dp− ep)s3

(−5d2 − 6de− e2 + 2dm+ em)s2

+(−dg + 2dp+ 2ep)s+ (2d2 + 4de+ 2e2 − dm− em)

Computing the polynomial remainder of this on division by ψ, and changing the sign, we find

0 = G(s) := dfs2 − egs− f(d+ e)

Assume, for proof by contradiction, that d = 0. Then 0 = −egs − fe. By Lemma 10, e 6= 0
and f 6= 0, so fe > 0; since egs ≥ 0 this is a contradiction. Hence d 6= 0. Since f 6= 0 as
just noted, the leading coefficient df is not zero. Thus G is a quadratic function such that
G(0) = −f(d+e) < 0. We have G(1) = df −eg−f(d+e) = −eg−ef < 0. Since G(0) and G(1)
are both negative, and G′′ is positive, G has no zero between 0 and 1. This is a contradiction,
since G(s) = 0 for s = 2 sin(α/2), which is between 0 and 1 since α < π/3. That completes the
proof by contradiction that w 6= 0. Hence, the eigenspace is one-dimensional, and (u, v, w) is a
multiple of the eigenvector (a, b, c).

Returning to equation (14), now that we know (u, v, w) is a multiple of (a, b, c), we have we
have a/c = u/w. That is,

a

c
=

(df − em)g + eλ sin 2α

(pm− dg)b− (mb+ p sin 2α)λ+ λ2 sin 2α

We have sin 2α = at = a(2− s2). Putting that in, and dividing numerator and denominator on
the right by c, and then using b/c = 1 − s2 and a/c = s, we have

s =
(df − em)(1− s2) + esλ(2 − s2)

(pm− dg)(1− s2) − (m(1 − s2) + ps(1− s2))λ+ λ2s(1 − s2)

=
(df − em)(1 − s2) + esλ(2− s2)

(1 − s2)(pm− dg − (m+ ps)λ+ λ2s

Multiplying by the denominator we have

s(1 − s2)(pm− dg − (m+ ps)λ+ λ2s) = (df − em)(1 − s2) + esλ(2 − s2)
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Putting in λ = p− es+(e+ d)/s and bringing this to polynomial form (using Mathematica, for
example, or by hand if you wish) we have

0 = d2s6 − dps5 + (dm− de− 3d2)s4 + (2dp− dg)s3

+(3d2 + de− df − 2dm)s2 + (dg − dp+ ep)s+ (d2 − e2 − df − dm)

Now taking this polynomial mod ψ, using the PolynomialRemainder command of Mathematica
(you won’t want to do that polynomial division by hand) we find a simple quadratic equation:

0 = d2 − e2 − df − dm− (dg − dp+ ep)s+ (dm+ de− d2)s2 (17)

By Lemma 10, e 6= 0. Suppose, for proof by contradiction, that d = 0. Then (17) becomes
eps + e2 = 0. Since e 6= 0 then ps + e = 0. Since e, p, and s are all ≥ 0 and e > 0, this is a
contradiction. Hence d 6= 0.

Since s = −i(z + z−1) = 2 sin(α/2), we have

sin
α

2
<

1

2
since α < π/3

s < 1 since s = 2 sin(α/2)

Then, an N-tiling of ABC as in the lemma gives rise to a solution s = 2 sin(α/2) of the following
two equations (which are (12) and (17)):

0 = ψ(s) = ds4 − ps3 + (m− 3d− e)s2 + (2p− g)s+ (2d+ 2e− f −m)

0 = χ(s) := (dm+ de− d2)s2 − (dg − dp+ ep)s+ d2 − e2 − df − dm

We will finish the proof by showing that these two equations have no simultaneous solution s
between 0 and 1.

We compute a somewhat simpler quartic than ψ satisfied by s, as follows:

F (s) := dψ − χ = d2s4 − dps3 − 2d(d+ e)s2 + p(d+ e)s+ (d+ e)2

F has a positive constant coefficient (as well as positive leading coefficient) since d > 0. Assume,
for proof by contradiction, that p = 0. Then

F (s) = d2s4 − 2d(d+ e)s2 + (d+ e))2

= (ds− (d+ e))2

Hence the only zero of F is s = (d+e)/d ≥ 1. But (if there is an N-tiling), F has a zero between
0 and 1, contradiction. Hence p 6= 0.

Now we compute the value of F (1).

F (1) = d2 − dp− 2d(d+ e) + p(d+ e) + (d+ e)2

= d2 − dp− 2d2 − 2de+ pd+ pe+ d2 + 2de+ e2

= pe+ e2

F (1) > 0 since p > 0 and e > 0

We have F (0) = (d+ e)2. This is positive since d > 0. Now F is a quartic that is positive at 0
and positive at 1, and its derivative at 0 is F ′(0) = p(d+ e), which is positive since p 6= 0 and
d 6= 0. The derivative F ′(s) is a cubic; one of its zeroes is negative, since for large negative s
we have F ′(s) < 0. It therefore has at most two zeroes between 0 and 1. The only way that
F (s) can have a zero strictly between 0 and 1 is if F first increases (as s increases from 0), then
reaches a maximum and decreases, crossing the s-axis (or possibly just touching the s-axis, if F
has a double zero), then reaches a minimum, then increases (crossing the s-axis again, unless it
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has a double zero) and reaches its positive value at s = 1. Then F ′ has two zeroes between 0
and 1, and in particular F ′(1) must be positive. We compute

F ′(s) = 4d2s3 − 3dps2 − 4d(d+ e)s+ p(d+ e)

The product of its three roots is thus −p(d + e)/4d2, which is negative. Because F ′(0) is
positive, and F ′(s) is negative for large negative s, one of the three roots is negative. But (if
there is an N-tiling), the other two are between 0 and 1, so the product of the three roots is
negative.

The sum of the three roots of F ′ is 4d(d + e)/4d2 = (d + e)/d. Since one of these roots is
negative and the other two are between 0 and 1, the sum is less than 2. Hence (d + e)/d < 2.
Hence e < d. We proved above that F ′(1) ≥ 0. Therefore

0 ≤ F ′(1)

= 4d2 − 3dp− 4d(d+ e) + p(d+ e)

= −2dp− 4de+ pe

= p(e− 2d) − 4de

But since e < d, and e > 0 and d > 0, the right side is negative, contradiction. That completes
the proof of the lemma.

7.2 The case when ABC has angles 2α, β, and β + α and sin(α/2)
is irrational

Recall that sin(β + α) = sin γ = c in this case, as follows from 3α+ 2β = π. The 2α angle is at
vertex A, the β angle at vertex B, and the β + α angle at vertex C. We do not assume α < β.
The d matrix equation is

0

@

p d e
g m f
h ℓ r

1

A

0

@

a
b
c

1

A =

0

@

X
Y
Z

1

A .

We suppose the tile is scaled so that each side is equal to the sine of the opposite angle. Then

a = sinα

b = sin β

c = sin(α+ β) = sin γ since α+ β = π − γ

Let λ = X/ sin(2α). By the law of sines for triangle ABC we then have

X = λ sin 2α

Y = λ sin β

Z = λ sin(β + α)

Define t = (sin 2α)/ sinα = 2 cosα. Then λat = λ(sinα)t = λ sin 2α = X. Hence the d matrix
equation can be written

0

@

p d e
g m f
h ℓ r

1

A

0

@

a
b
c

1

A = λ

0

@

at
b
c

1

A (18)

Dividing the top row by t we write it as an eigenvalue equation:
0

@

p
t

d
t

e
t

g m f
h ℓ r

1

A

0

@

a
b
c

1

A = λ

0

@

a
b
c

1

A
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Our next goal is to prove that the eigenspace of the eigenvalue λ is one-dimensional. To do that,
we use the method of computing a candidate eigenvector by the cofactor method, and showing
that its three components are each nonzero.

The matrix whose cofactors we need is
0

@

p
t
− λ d

t
e
t

g m− λ f
h ℓ r − λ

1

A

We expand in cofactors of the elements on the first row. We find a candidate eigenvector
(u, v, w) where

0

@

u
v
w

1

A =

0

@

(m− λ)(r − λ) − fℓ
hf − g(r − λ)
gℓ− h(m− λ)

1

A

Lemma 12 Suppose that ABC is N-tiled by tile T with 3α + 2β = π and sin(α/2) irrational,
and triangle ABC has angles 2α, β, and β + α. Suppose also that not both g and h are zero.
Then the eigenspace of λ is one-dimensional and (u, v, w) defined above is a multiple of (a, b, c).

Proof. Our first aim is to prove v 6= 0. Since f 6= 0, if g = 0 then also h = 0, which contradicts
the hypothesis that not both g and h are zero, and similarly, if h = 0 then g = 0. Hence g 6= 0
and h 6= 0. Then hf > 0. But we have grc ≤ λc from the third row of the d matrix equation;
hence gr ≤ λ. Then

v = hf − g(r − λ)

= hf + g(λ− r)

> 0 since not both g = 0 and h = 0

Next we will prove w 6= 0. From the second row of the d matrix equation, we have ga+mb ≤
λb. Since g > 0, we have m < λ, not just m ≤ λ. Then

w = gℓ− h(m− λ)

= gℓ+ h(λ−m)

> 0 since not both g = 0 and h = 0

Finally we will prove u 6= 0. We have from the second and third rows of the d matrix
equation

mb+ fc ≤ λb with equality only if g = 0

ℓb+ rc ≤ λc with equality only if h = 0

Rearranging the terms of these equations we have

fc ≤ (λ−m)b

ℓb ≤ (λ− r)c

Multiplying these two equations and dividing by bc we have

ℓf ≤ (λ−m)(λ− r)

The left hand side is u. We have proved u ≥ 0 with equality only if g = 0 and h = 0. But at
present we have assumed that not both g and h are zero; so we have u > 0.

We have proved all three components of the candidate eigenvector are nonzero. It follows
that the eigenspace is one-dimensional; hence (u, v, w) is a multiple of (a, b, c). That completes
the proof of the lemma.
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Lemma 13 Suppose 3α + 2β = π, and s = 2 sinα/2. Then we have (whether or not s is
rational)

sin γ = cos
α

2
a

c
= s

b

c
= 1 − s2

Proof. Since γ = π − (α+ β), we have

sin γ = sin(π − (α+ β))

= sin(α+ β)

= cos(π/2 − (α+ β))

= cos
α

2
since π/2 − β = 3α/2

Then c = sin γ = cosα/2, and a = sinα = 2 sin(α/2) cos(α/2). Hence

a

c
= 2 sinα/2.

Since 3α+ 2β = π, we have

sin β = sin(π/2 − 3α/2)

= cos(3α/2)

= 4 cos3
α

2
− 3 cos

α

2

Hence

b/c = 4 cos2(α/2) − 3

= 4(1 − sin2 α/2) − 3

= 1 − 4 sin2 α/2

Then we have

a

c
= s

b

c
= 1 − s2

That completes the proof of the lemma.

Lemma 14 Assume ABC has angles 2α, β, and β + α, and sin(α/2) is irrational. Then a, b,
and c are linearly independent over Q.

Proof. Suppose, for proof by contradiction, that a, b, and c are linearly dependent over Q. Then
there are (positive or negative) integers n, j, and k such that na + jb + kc = 0. Dividing by c
and using a/c = s and b/c = 1 − s2 we find

0 = ns+ j(1 − s2) + k.

If j = 0 then s = −k/n = 2 sin(α/2) so sin(α/2) is rational, contradicting the hypothesis that
it is irrational. Hence j 6= 0. Solving for 1 − s2 we have

1 − s2 = −ns
j

− k

j
(19)
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There is an angle β +α at vertex C; the adjacent sides are X and Y and the area equation can
be written as

Nab = XY = (pa+ db+ ec)(ga+mb+ fc)

Dividing by c2 we have

N
a

c

b

c
= (p

a

c
+ d

b

c
+ e)(g

a

c
+m

b

c
+ f)

Putting everything in terms of s we have

Ns(1 − s2) = ps+ d(1 − s2) + e)(gs+m(1 − s2) + f

Ns
“

− ns

j
− k

j

”

= ps+ d
“

− ns

j
− k

j

”

+ e)(gs+m
“

− ns

j
− k

j

”

f)

This is quadratic in s. We can then use (19) to replace s2 by a term linear in s. Hence s satisfies
a linear equation over Q. Hence s is rational. But s = 2 sin(α/2), so sin(α/2) is rational. It
is not necessary to write the equation out explicitly. That completes the proof of the linear
independence of a, b, and c.

Lemma 15 Suppose ABC has angles 2α, β, and β + α and sin(α/2) is irrational. Then
s = 2 sin(α/2) satisfies a cubic equation over Q; hence its degree over Q is 3.

Proof. Taking the ratio of the first row of (18) to the third, we have

pa+ db+ ec

ha+ ℓb+ rc
=

at

c

Multiplying by the denominator and then dividing both sides by c2 we have

p
a

c
+ d

b

c
+ e =

at

c

“

h
a

c
+ ℓ

b

c
+ r
”

We now express this equation in terms of s. We have already derived a/c = s and b/c = 1− s2;
we also have t = 2 − s2, since t is by definition 2 cosα, so we have t = 2(1 − 2 sin2(α/2)) =
2 − 4 sin2(α/2) = 2 − s2. Putting these values into the previous equation, we have

ps+ d(1 − s2) + e = s(2 − s2)(hs+ ℓ(1 − s2) + r)

This is a polynomial equation of degree 5. Bringing it to polynomial form we have

0 = F (s) := ℓs5 − hs4 − (3ℓ+ r)s3 + (d+ 2h)s2 + (2ℓ+ 2r − p)s− (e+ d)

If F were identically zero, then we would have ℓ = 0 from the leading coefficient, and then r = 0
from the coefficient of s3, contradicting Lemma 9. Therefore F is not identically zero.

Taking the ratio of the second row to the third, we have

ga+mb+ fc

ha+ ℓb+ rc
=

b

c

(ga+mb+ fc) = (ha+ ℓb+ rc)
b

c

(g
a

c
+m

b

c
+ f) = h

a

c
+ ℓ

b

c
+ r)

b

c

(gs+m(1 − s2) + f) = (hs+ ℓ(1 − s2) + r)(1 − s2)

Subtracting the left side from the right and bringing the equation to polynomial form, we have

0 = H(s) := ℓs4 − hs3 + (m− 2ℓ− r)s2 + (h− g)s+ ℓ+ r −m− f

If H were identically zero, we would have ℓ = 0 from the leading coefficient, and h = 0 from the
coefficient of s3, then r = m from the coefficient of s2, then g = 0 from the coefficient of s, then
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f = 0 from the constant coefficient; but by Lemma 9, we do not have g = f = 0. Hence H is not
identically zero. We compute K = −(F mod H) (using the PolynomialRemainder command in
Mathematica, for example), and we find

0 = K(s) = (ℓ+m)s3 − (d+ g + h)s2 − (f +m+ ℓ+ r − p)s+ (d+ e) (20)

If K were identically zero, then we would have ℓ = m = 0 from the coefficient of s3, and
d = g = h = 0 from the coefficient of s2, and then e = 0 from the constant term, but e = 0
contradicts Lemma 8. Hence K is not identically zero. Assume, for proof by contradiction, that
the leading term of K is zero. Then m = ℓ = 0 and H(s) = −hs3 − rs2 +(h− g)s− (m+ f) = 0
That completes the proof of the lemma.

Lemma 16 Under the hypotheses in the section title, 1, sin(α/2), and cos(α) are linearly in-
dependent.

Proof. We have cosα = 1 − 2 sin2(α/2) = 1 − (1/2)s2, and sin(α/2) = s/2, so the claim is
equivalent to the claim that 1, s, and s2 are linearly independent over Q; that is, that s does
not have degree 2 over Q. By Lemma 15, s satisfies a cubic equation; hence its degree over Q is
either 1 or 3, not 2.

Lemma 17 Let 3α + 2β = π and assume triangle ABC is N-tiled by a tile with angles α and
β. Suppose ABC has angles 2α, β, and β+α, and suppose s = 2 sin(α/2) is not rational. Then
the d matrix entries g and h are not both zero.

Proof. Suppose, for proof by contradiction, that g = h = 0. The d matrix equation is, by (18),

0

@

p d e
0 m f
0 ℓ r

1

A

0

@

a
b
c

1

A = λ

0

@

at
b
c

1

A

Writing this in eigenvalue form we have

0

@

p
t
− λ d

t
e
t

0 m− λ f
0 ℓ r − λ

1

A

0

@

a
b
c

1

A = 0

Hence the determinant of the matrix on the left is zero. Expanding it by cofactors we have

“p

t
− λ

”“

(m− λ)(r − λ) − fℓ)
”

= 0

There are two cases: either p = λt or not. In case p = λt then the last row of the d matrix
equation is

ℓb+ rc = λc

Dividing by c and using b/c = 1 − s2 and λ = p/t we have

ℓ(1 − s2) + r =
p

t

=
p

2 − s2

ℓ(1 − s2)(2 − s2) = p

Thus s2 satisfies a quadratic equation over Q. Hence the degree of Q(s) over Q is either 2 or 4,
since s is not rational by hypothesis. But this contradicts Lemma 15, which says s satisfies a
cubic equation and hence has degree 3 or 1. That completes the case p = λt.
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Now assume p 6= λt. Then the second factor in the characteristic equation is zero:

(m− λ)(r − λ) − fℓ) = 0

This is a quadratic equation for λ; hence Q(λ) has degree 2 or 1 over Q. But from the third row
of the d matrix equation we have

λ = ℓ(1 − s2) + r

which implies that the degree of Q(s) over Q(λ) is 1 or 2. Hence the degree of Q(s) over Q is 1,
2, or 4. Degree 1 contradicts the hypothesis that s is irrational; degrees 2 or 4 contradict (20).
That completes the proof of the lemma.

Lemma 18 Let 3α + 2β = π and assume triangle ABC has angles 2α and β and is N-tiled
by a tile with angles α and β. Suppose sin(α/2) is irrational. Then ℓ 6= 0, p 6= 0, h 6= 0,
gℓ− hm 6= 0, and we have the following equations between the elements of the d matrix, where
∆ is the determinant of the d matrix:

p

g + h
=

mr − ℓf

gℓ− hm

p

g + h
=

−p(m+ r) + eh+ dg −N

gℓ− hm+ hf − gr

p

g + h
=

∆ +N(m+ r)

−Nh

and in the second equation, if the denominator on the right is zero, so is the numerator.

Proof. Since t = N/λ2, t belongs to Q(λ). The third row of the d matrix equation, ha+ℓb+rc =
λc, shows that λ belongs to Q(a, b, c) = Q(t). Since t belongs to Q(λ) and λ belongs to Q(t), we
have Q(λ) = Q(t) = Q(a, b, c). This field has degree at least 3 over Q, by Lemma 14. We will
soon see that the degree is exactly 3.

We are in a position to find three different cubic equations for λ. The first equation come
from the characteristic equation for λ:

0

@

p
t
− λ d

t
e
t

g m− λ f
h ℓ r − λ

1

A = 0

Multiplying the top row by t, the determinant is still zero:

0

@

p− λt d e
g m− λ f
h ℓ r − λ

1

A = 0

Since λ2 = N/t, we have λt = N/λ. Multiplying by λ we have

λ

0

@

p− N
λ

d e
g m− λ f
h ℓ r − λ

1

A = 0

Expanding and collecting like powers of λ we find the following equation, in which ∆ is the
determinant of the d matrix:

pλ3 + (−p(m+ r) + eh+ dg −N)λ2 + (∆ +N(m+ r))λ−N(mr − ℓf) = 0 (21)

This is a cubic polynomial equation for λ. Hence Q(λ) has degree 3 over Q, and this is the min-
imal polynomial of λ. Since we have already proved that the eigenspace of λ is one-dimensional,
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it is not the case the all the coefficients are zero. Since the degree of Q(λ) is 3, the highest and
lowest coefficients are not zero: p 6= 0 and mr 6= 0.

Next we compute b/c in terms of λ:

b

c
= (z2 − 1 + z2)

= t− 1 since t = z2 + z−2

Since λ2 = N/t, we have t = N/λ2, which gives us

b

c
=
N

λ2
− 1 (22)

Since the eigenvector (u, v, w) is a multiple of (a, b, c), we have

b

c
=

v

w
N

λ2
− 1 =

hf − g(r − λ)

gℓ− h(m− λ)

Cross multiplying we have

(N − λ2)(gℓ− hm+ hλ) = (hf − gr)λ2 + gλ3

Subtracting the left side from the right and expanding and collecting, we have

0 = (g + h)λ3 + (gℓ− hm+ hf − gr)λ2 −Nhλ−N(gℓ− hm) (23)

By Lemma 17, not both g and h are zero. Hence (since both are nonnegative) g+h > 0, and this
is a non-trivial equation. Since Q(λ) = Q(a, b, c) (from the third row of the d matrix equation),
and this field has degree 3, the constant term N(gℓ − hm) 6= 0 (or else the equation could be
divided by λ to yield a quadratic equation for λ). Hence gℓ− hm 6= 0. Similarly, the constant
term of (21), namely N(mr − ℓf), is also not zero, so mr − ℓf 6= 0.

Now (23) and (21) are two cubic equations for λ. Therefore (23) is a multiple of (21). The
ratio of the coefficients of λ3 is p/(g + h). Therefore the other nonzero coefficients are also in
that ratio. From the constant coefficients (neither of which is zero) we have

p

g + h
=

mr − ℓf

gℓ− hm
(24)

It follows that
ℓ 6= 0 (25)

since otherwise the numerator and denominator on the right of (24) have opposite signs, but
the left side is positive. From the ratio of the quadratic terms we have (unless the numerator
and denominator are both zero)

p

g + h
=

−p(m+ r) + eh+ dg −N

gℓ− hm+ hf − gr
(26)

From the linear terms we have (unless both numerator and denominator are zero)

p

g + h
=

∆ +N(m+ r)

−Nh (27)

These are the three equations mentioned in the lemma. It remains to prove h 6= 0. Assume, for
proof by contradiction, that h = 0. Then g 6= 0, since the constant term g + h of (23) is not
zero. Then from (24) we have pℓ = mr, or m = pℓ/r. When h = 0 we have

∆ =

˛

˛

˛

˛

˛

˛

p d e
g m f
0 ℓ r

˛

˛

˛

˛

˛

˛

= pmr + egℓ− gdr − pfℓ
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Since both numerator and denominator on the right of (27) are zero we have

0 = ∆ +N(m+ r)

= pmr + egℓ− gdr − pfℓ+N(m+ r)

Substituting m = pℓ/r and multiplying by r we have

0 = p2ℓr + egℓr − gdr2 − pfℓr +N(pℓ+ r2)

Bringing the last term to the left side and changing signs we have

N(pℓ+ r2) = pfℓr + gdr2 − egℓr − p2ℓr

≤ pfℓr + gdr2

Note that gd ≤ λ2, since ga ≤ λb and db ≤ λa, from the d matrix. We also have r ≤ λ and
fc ≤ λb < λc, so fr < λ2. Then

N(pℓ+ r2) < pℓλ2 + r2λ2

= (pℓ+ r2)λ2

Since pℓ+ r2 6= 0 we have

N < λ2

which is a contradiction, since λ2 = N/t and t = 2 cosα > 1 since α > π/5. That contradiction
completes the proof that h 6= 0. Hence equation (27) is valid, i.e. its denominator is not zero.
That completes the proof of the lemma.2

Lemma 19 Suppose 3α+ 2β = π, and triangle ABC has angles 2α and β and is not isosceles.
Suppose sin(α/2) is irrational. Let N be arbitrary. Then there is no N-tiling of triangle ABC
by a tile with angles α and β.

Proof. Suppose, for proof by contradiction, that there is a triangle ABC and an N-tiling as in
the lemma. Then the equations of the previous lemma hold. From (27) we have

N(m+ r) ≤ −∆ −Nh
p

g + h

N(m+ r) +Nh
p

g + h
≤ −∆

N
“

m+ r +
hp

g + h

”

≤ −∆

≤ dgr + pfℓ+ hme− pmr − dfh− egℓ

≤ mhe+ rdg + p(ℓf −mr) − dfh− egℓ

From the third row of the d matrix we have ha < Z = λc. Equality cannot hold since ℓ 6= 0 (and
we have ha+ ℓb < Z). From the first row we have ec ≤ λat. Multiplying these two inequalities
(which is legal since all these quantities are positive) and dividing by ac we have he ≤ λ2t < N .
Similarly, we have dg ≤ λ2t = N . Putting these results into the inequality above, we have

N(m+ r) +N
hp

g + h
< N(m+ r) + p(ℓf −mr) − dfh− egℓ

2After finding these equations in March 2010, it was still some time before I could show that they had no solutions;
in the meantime, I wrote a short C program that checked there are no solutions for N ≤ 400. That put an end to my
attempts to find a tiling of this kind by placing paper triangles on a card table.
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Note that the inequality has become strict. Subtracting N(m+ r) from both sides we have

N
hp

g + h
< p(ℓf −mr) − dfh− egℓ

We have p 6= 0 and mr− ℓf < 0, since otherwise the right side would be negative, which would
be a contradiction. It follows from (24) that

gℓ− hm < 0 (28)

From the second row of the d matrix equation we have fc ≤ λb. From the third row we have
ℓb ≤ λc. Hence ℓf ≤ λ2. Hence

N
hp

g + h
< pλ2 − pmr − dfh− egℓ

Now add Npg(g + h) to both sides of this inequality:

N
“ hp

g + h
+

gp

g + h

”

< pλ2 +N
pg

g + h
− pmr − dfh− egℓ

Np < pλ2 +N
pg

g + h
− pmr − dfh− egℓ

Subtracting pλ2 from both sides we have

p(N − λ2) < N
pg

g + h
− pmr − dfh− egℓ

Dividing by p (which we proved above is not zero), we have

N − λ2 < N
g

g + h
−mr − dfh

p
− egℓ

p
(29)

The left side is positive, and only the first term on the right can be positive, and it is small
when h is large. This observation motivates us to investigate the ratio h/g. From (28) we have
gℓ < mh. Then ℓ/m < h/g. From (24) and (28) we see that the numerator of (24) is negative,
i.e. mr − ℓf < 0. Then r < (ℓ/m)f < (h/g)f . Hence r/f < h/g. Now we have ℓ/m and r/f
each less than h/g. From the bottom row of the d matrix equation we then have

Z = ha+ ℓb+ rc

= ga
h

g
+m

ℓ

m
b+ f

r

f
c

<
“h

g

”

(ga+mb+ fc)

=
“h

g

”

Y

Z

Y
<

h

g

By the law of sines we have Z/Y = sin(γ)/ sin(β) = c/b. Hence

c

b
<

h

g

Applying (22) to write c/b = λ2/(N − λ2), we have

h

g
>

λ2

N − λ2
(30)
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From (29) we have

N − λ2 < N
g

g + h

= N
1

1 + h/g

Now we replace h/g in the denominator on the right by the smaller quantity from (30). Then
the right hand side increases.

N − λ2 < N
1

1 + λ2

N−λ2

= N
N − λ2

N − λ2 + λ2

= N
N − λ2

N

= N − λ2

We have derived N − λ2 < N − λ2, which is a contradiction. That completes the proof of the
lemma.

7.3 The case when ABC has angles 2α, β, and β + α, and α is a

rational multiple of π

Note that our work above has assumed that α is not a rational multiple of π only to limit the
possible shapes of ABC. The following lemma shows that there are only two possible rational
multiples of π that we might need to consider.

Lemma 20 Let α be a rational multiple of π, and suppose 3α + 2β = π. Let triangle ABC
have one angle β, one angle 2α, and one angle β+α. Suppose that there is an N-tiling of ABC
by the tile with angles α and β. Then α = 2π/7 and β = π/14, or α = 2π/9 and β = π/6. In
either case, sin(α/2) is irrational.

Proof. Suppose α = 2mπ/n. Then the degree d of Q(eiα) over Q is finite and by Lemma 1, we
have d = ϕ(n). If both sin(α) and cos(α) are rational we have d = 2, so ϕ(n) = 2, so n = 3 or
4. Remember we are not assuming α < β; so the smaller one of α and β is less than π/5, and
α < π/3 and β < π/2. Hence α cannot be 2π/3 or 2π/4. Hence not both sinα and cosα are
rational.

Assume first that sin(α/2) is not rational. By (20), the degree of Q(s) over Q is at most 3.
By Lemma 14, under the assumption that sin(α/2) is irrational, that degree is at least 3, and
hence it is exactly 3. Since s = 2 sin(α/2), Q(s) is the real subfield of Q(eiα/2), so the degree
of that field is 6. Since α = 2mπ/n, we have α/2 = 2mπ/(2n). Hence by Lemma 1, the degree
of Q(eiα/2) over Q is ϕ(2n). The possibilities are exactly these: 2n = 7, 9, 14, or 18. Since n is
an integer, we cannot have 2n = 7 or 9; therefore 2n = 14 or 18, i.e. n = 7 or n = 9. Hence
α = 2mπ/7 or 2mπ/9. Since α < π/3, we must have m = 1 and α = 2π/7 or α = 2π/9. In
case α = 2π/7, we have β = (π − 3α)/2 = π/14, and in case α = 2π/9 we have β = π/6. That
completes the proof in case sin(α/2) is irrational.

Suppose then that sin(α/2) is rational. If cos(α/2) is also rational, then the degree of Q(eiα/2)
over Q is 2, so by Lemma 1, we have 2 = ϕ(2n), so 2n = 3 or 4; so n = 2, so α = 2π/2 = π,
which is impossible. Hence cos(α/2) has degree 2 over Q, so Q(eiα/2) has degree 4 over Q.
Hence we have 4 = ϕ(2n), so by Lemma 1, 2n = 5, 8, 10, or 12. Hence n = 4, 5, or 6. Hence
α = π/2, 2π/5, or π/3. Since α < π/3, none of these is possible. That completes the proof of
the lemma.
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8 The general case when T is not similar to ABC

We have exhibited a few tilings in which the tile T is not similar to ABC. In this section we
shall prove that if there are such tilings, then the number of tiles and the shape of the tile
and triangle correspond to the exhibited families. In previous sections we have dealt with the
cases when T is isosceles (and isosceles includes equilateral), and when T is similar to ABC.
Therefore we now assume that T is not isosceles and not similar to ABC, and ABC is N-tiled
by T . These assumptions will be in force for this entire section.

Let P , Q, and R be the total number of α, β, and γ angles (respectively) occurring at the
vertices of triangle ABC. These numbers control the “vertex splitting”, i.e., the way the vertices
of ABC are divided into the angles of T . We have

Pα+Qβ +Rγ = π.

Together with α + β + γ = π, that makes two equations for α, β, and γ. We seek another
equation that would enable us to solve for the three angles. At each vertex V of the tiling,
which is not a vertex of ABC, there meet several copies of the tile with vertices at V . If V is
a non-strict or a boundary vertex, then the angle sum of the vertex angles is π, and if it is a
strict interior vertex, the angle sum is 2π. We set k = 1 for a non-strict or boundary vertex,
and k = 2 for a strict interior vertex. Then we have

pα+ qβ + rγ = kπ

where p, q, and r are the numbers of copies of T with their α, β, or γ angles at V .
The numbers P , Q, and R depend only on ABC and the tiling, but p, q, and r depend on

the particular vertex V . Our plan is to analyze the possibilities for P , Q, and R, and given
those possibilities, to analyze the possibilities for p, q, and r, in such a way as to eliminate all
but a manageable (small finite) number of special cases for the tile T .

Lemma 21 P +Q+R ≥ 5.

Proof. Suppose P + Q + R < 5. Then there must be two vertices of ABC that are not split,
since each vertex contributes at least one to the sum P + Q+ R, and split vertices contribute
at least 2. Each vertex that does not split is equal to one of the angles of T . Since T is not
isosceles, that means that T has two angles equal to angles of ABC. Hence T is similar to ABC,
contrary to hypothesis. That completes the proof of the lemma.

Lemma 22 R < 2, i.e. R = 0 or R = 1.

Proof. If γ = π/3, then T is equilateral, contrary to hypothesis. Since γ ≥ π/3 for any triangle,
we have γ > π/3. Hence R ≤ 3. But if R = 3, then each angle of ABC is at least γ. Since the
sum of the angles of ABC is π, this is possible only if γ = π/3, which we have shown is false.
Hence R < 3; but R is an integer, so R ≤ 2. Hence, it suffices to show R 6= 2. Assume, for proof
by contradiction, that R = 2. Then Pα + Qβ + 2γ = π. Subtracting α + β + γ = π, we find
(P −1)α+(Q−1)β+γ = 0. We must have Q = 0 or P = 0, since if not the left side is positive.
If P = 0 then α = (Q− 1)β + γ ≥ β, contradiction. Hence Q = 0. Then our equation simplifies
to β = (P − 1)α+ γ ≥ γ, contradicting β < γ. That completes the proof of the lemma.

Lemma 23 If R = 1 then Q = 0 and β = (P − 1)α.

Proof. Assume R = 1. Then Pα + Qβ + γ = π. Subtracting α + β + γ = π, we find
(P − 1)α+ (Q− 1)β = 0. Since there is vertex splitting and T is not similar to ABC, we have
P +Q ≥ 4 by Lemma 21. Hence we must have Q = 0 or P = 0. If P = 0 then α = (Q−1)β ≥ β,
contradiction. Hence Q = 0 and P ≥ 4, and β = (P − 1)α. That completes the proof of the
lemma.

39



Theorem 1 Suppose that triangle ABC is N-tiled by triangle T , and T is not similar to ABC.
Suppose also that if γ = 2π/3 then T is isosceles. Then one of the following holds:

(i) N has the form 3m2 or 6m2 for some integer m and ABC is equilateral; and the tile is
(in case N = 3m2) the tile used in the equilateral 3-tiling, that is, γ = 2π/3, α = β = π/6, or
(in case N = 6m2) it is half of that tile.

(ii) N is twice a square, or six times a square, or twice a sum of two squares; γ = π/2;
and ABC is isosceles, having angles α, α, and 2β, or angles β, β, and 2α, so that T is a right
triangle similar to half of ABC.

(iii) 3α+ 2β = π, triangle ABC has angles 2α, β, and β + α, s = sin(α/2) is rational, and
N ≥ 28. Here we do not assume α < β.

Remark. Case (iii) is taken up in [2], where a new family of tilings is presented, and a necessary
and sufficient condition on N is given for such tilings to exist.

Corollary 2 If N is not divisible by 2 or by 3 (or even if it is, and the quotient is not a square),
there are no N-tilings in which T is not similar to ABC.

Proof. Consider the case γ = π/2 and α = π/4, i.e. T is an isosceles right triangle. If two or
more angles α occur at a vertex of ABC, then that vertex angle is at least π/2. Hence at most
one vertex angle of ABC can be split. Hence two angles of ABC are equal to π/2 or π/4. We
cannot have two angles equal to π/2; if two angles are equal to π/4 then ABC is similar to T ,
contradiction. Hence one angle of ABC is π/2 and one is π/4; but then triangle ABC is similar
to T , contradiction. Hence the case γ = π/2 and α = π/4 is ruled out.

Now consider the case γ = π/2 and α < β; that is, the tile is a non-isosceles right triangle.
By Theorem 5 of [1], triangle ABC must be isosceles and T is similar to half of ABC. By
Theorem 5 of [1], N is twice a square, six times a square, or twice a sum of two squares, so
conclusion (ii) of the theorem holds.

Therefore we may assume, for the rest of the proof, that γ 6= π/2. In Lemma 4 we have
ruled out the case γ = 2π/5. Hence we can assume that γ is not equal to 2π/3 , π/2, or 2π/5.
Moreover, γ is not equal to π/3, since in that case T is equilateral, and in that case no vertex
splitting can occur, so T must be similar to ABC.

We now continue with the proof of the theorem. The inequality R < P +Q means that, at
the vertices of ABC (taken together), there are more α and β angles than γ angles. Then there
exists a vertex V at which there are more γ angles that α and β angles. Let n, m, and ℓ be the
number of α angles, β angles, and γ angles at V , respectively. Then ℓ > n+m. Let the angle
sum at V be kπ (so k = 1 or k = 2). It is not the case that both n and m are zero, since then
kπ = ℓγ; since γ ≥ π/3 the only possibilities are γ = 2π/3, γ = π/2, γ = 2π/5, and γ = π/3,
all of which have been ruled out already.

If ℓ = 1 then (since ℓ > n+m) we have n = m = 0, contradiction. If ℓ = 2 then m+ n = 0
or m + n = 1; if m+ n = 0 then m = n = 0, which we have ruled out above. If ℓ = 2 and and
m+ n = 1 then 2γ + α = kπ or 2γ + β = kπ. If k = 1 we can subtract α+ β + γ = π to obtain
γ = β or γ = α; but since ABC is not isosceles this is a contradiction. Hence k = 2 and we
have 2γ + α = 2π or 2γ + β = 2π. Writing 2π = 2α + 2β + 2γ and subtracting the left-hand
side we have 0 = α+ 2β or 0 = β + 2α, so α = β = 0, which is a contradiction. That rules out
the case ℓ = 2.

Since γ > π/3, we have ℓ ≤ 5. That leaves the possibilities 3, 4, and 5 for ℓ. We will rule
out each of these in turn; each one requires a detailed argument.

We first assume ℓ = 3. Since γ > π/3, we have k = 2, i.e. the angle sum at V is 2π; and we
cannot have n = m = 0, since then γ would be π/3. Since m + n < ℓ, we have m + n ≤ 2. If
n = 1 and m = 1 then

2π = 3γ + α+ β
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= 2γ + (γ + α+ β)

= 2γ + π

Hence γ = π/2, contradiction. Hence n = 1 and m = 1 is impossible.
If n = 2 and m = 0, then

2π = 3γ + 2α

= γ + 2γ + 2α

2(γ + α+ β) = γ + 2γ + 2α

2β = γ

Assume R = 1. Then by Lemma 23, β = (P − 1)α. Then since γ = 2β, we have

π = α+ β + γ

= α+ 3β

= α+ 3(P − 1)α

= α(3P − 2)

We can then solve for all three angles:

α =
π

3P − 2

β =
P − 1

3P − 2
π

γ =
2(P − 1)

3P − 2
π

In that case the inequality γ ≤ π/2 is equivalent to 2(P −1)/(3P −2) ≤ 1/2, which is equivalent
to P ≤ 2. Since P ≥ 4 we have γ > π/2 in this case.

If R = 0 then we have

π = Pα+Qβ

2π = 3γ + 2α since ℓ = 3, n = 2, and m = 0

γ = 2β by subtracting 2γ + 2α

π = α+ 3β since 3γ + 2α = 2π and γ = 2β

Since P + Q + R ≥ 5, and R = 0, we do not have P = 1 and Q = 3. If 3P − Q = 0 and
(P,Q) 6= (1, 3), then the equations are contradictory. Hence 3P −Q 6= 0, and the equations are
uniquely solvable:

α =
3 −Q

3P −Q
π

β =
P − 1

3P −Q
π

γ =
2P − 2

3P −Q
π

Since α < β, if 3P − Q < 0 we have Q − 3 < 1 − P ; hence P + Q < 4, contradiction. Hence
3P −Q > 0. We have P − 1 > 0, hence 3P > Q; hence 3 −Q > 0, hence Q < 3.
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If n = 1 and m = 0 then

2π = α+ 3γ since ℓ = 3, n = 1, and m = 0

2(α+ β + γ) = α+ 3γ

γ = α+ 2β

α+ β + (α+ 2β) = π since α+ β + γ = π

2α+ 3β = π

If R = 1, then by Lemma 23, β = (P − 1)α, so (2 + 3(P − 1))α = π, and we have

α =
π

3P − 1

β =
P − 1

3P − 1
π

γ =
2P − 1

3P − 1
π

If R = 0 then we have

2α+ 3β = π as shown above

Pα+Qβ = π since R = 0 (31)

If P = 2 and Q = 3 then case (iii) of the theorem holds. Therefore we may assume (P,Q) 6=
(2, 3). It follows that 2Q − 3P 6= 0, since if 2Q − 3P = 0 and (P,Q) 6= (2, 3), subtracting the
two equations (31) yields a contradiction. Hence the determinant of the system (31) is nonzero,
and we have

α =
3 −Q

3P − 2Q
π

β =
P − 2

3P − 2Q
π

γ =
2P −Q− 1

3P − 2Q
π

Since α < β, if 3P − 2Q < 0 then we have Q − 3 < 2 − P , or P + Q < 5, contradicting
P +Q+R ≥ 5. Hence 3P − 2Q > 0. Then since α > 0 we have Q ≤ 2, and since β > 0 we have
P ≥ 3, and since α < β we have 3 −Q < P − 2, or P +Q > 5.

If n = 0 and m = 1 then

2π = β + 3γ

2(α+ β + γ) = β + 3γ

γ = 2α+ β

α+ β + (2α+ β) = π since α+ β + γ = π

3α+ 2β = π

If R = 1, then by Lemma 23, β = (P − 1)α, so (3 + 2(P − 1))α = π, and we have

α =
π

2P + 1

β =
P − 1

2P + 1
π

γ =
P + 1

2P + 1
π
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Since α < β we have 2P + 1 < P − 1, which is impossible. Hence this case does not occur. If
R = 0 then we have

3α+ 2β = π

Pα+Qβ = π

If P = 3 and Q = 2 then case (iii) of the theorem holds. Therefore we may assume (P,Q) 6=
(3, 2). Therefore 3Q− 2P 6= 0 and

α =
2 −Q

2P − 3Q
π

β =
P − 3

2P − 3Q
π

γ =
P − 2Q+ 1

2P − 3Q
π

Since α < β, if 2P − 3Q < 0, we have Q − 2 < 3 − P , or P + Q < 5, contradiction. Hence
2P − 3Q ≥ 0. Then since α > 0 we have Q = 0 or Q = 1.

If m = 2 and n = 0 we have

2π = 3γ + 2β

= 3(π − α− β) + 2β

3α+ β = π

If R = 1 then β = (P − 1)α so 3α+ (P − 1)α = π, and we have

α =
π

P + 2

β =
P − 1

P + 2
π

γ =
2

P + 2
π

Since β < γ we have P − 1 < 2, or P < 3; since Q = 0 this makes P +Q+R < 4, contradiction;
so this case cannot occur.

If R = 0 then we have

3α+ β = π

Pα+Qβ = π

We do not have P = 3 and Q = 1 since P +Q ≥ 5. Hence

α =
1 −Q

P − 3Q
π

β =
P − 3

P − 3Q
π

Since α < β, if P − 3Q < 0 we have Q − 1 < 3 − P , or P + Q < 4, contradiction. Hence
P − 3Q > 0. Since α > 0 we have Q = 0. Hence

α =
π

P

β =
P − 3

P
π

γ =
2

P
π
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Since α < β, we have P > 4. Since β < π/2, we have P < 6. Hence P = 5. That makes α = π/5
and β = γ = 2π/5, a case which has already been ruled out. The following table summarizes
the results obtained above for ℓ = 3:

n m R P Q α/π β/π γ/π info

2 0 1 0 1
3P−2

P−1
3P−2

2P−2
3P−2

γ = 2β

2 0 0 Q ≤ 2 3−Q
3P−Q

P−1
3P−Q

2P−2
3P−Q

γ = 2β

1 0 1 0 1
3P−1

P−1
3P−1

2P−1
3P−1

γ = 2β + α

1 0 0 P ≥ 3 Q ≤ 2 3−Q
3P−2Q

P−2
3P−2Q

2P−Q−1
3P−2Q

γ = 2β + α

0 1 0 P ≥ 6 −Q 0 or 1 2−Q
2P−3Q

P−3
2P−3Q

P−2Q+1
2P−3Q

γ = 2α+ β

We have no further need of vertex V and the associated numbers n and m, so we reprint the
table without the first two columns. The point is, that the vertex-splitting numbers P , Q, and
R determine α, β, and γ uniquely.

R P Q α/π β/π γ/π info

1 0 1
3P−2

P−1
3P−2

2P−2
3P−2

γ = 2β

0 Q ≤ 2 3−Q
3P−Q

P−1
3P−Q

2P−2
3P−Q

γ = 2β

1 0 1
3P−1

P−1
3P−1

2P−1
3P−1

γ = 2β + α

0 P ≥ 3 Q ≤ 2 3−Q
3P−2Q

P−2
3P−2Q

2P−Q−1
3P−2Q

γ = 2β + α

0 P ≥ 6 −Q 0 or 1 2−Q
2P−3Q

P−3
2P−3Q

P−2Q+1
2P−3Q

γ = 2α+ β

Now that we see how P , Q, and R determine the angles, we will show that each of these
determinations leads to a contradiction. Let the vertices of the tiling, other than A, B, and
C, be V1, V2, . . .; let the angle sum at Vi be kiπ, so that ki = 1 for a non-strict or boundary
vertex, and 2 for a strict interior vertex. At each vertex Vi, let ni, mi, and ℓi be the number
of α, β, and γ angles at that vertex. Since there are N tiles altogether, each having one α, one
β, and one γ angle, we have P +

P

ni = Q+
P

mi = R+
P

ni = Nπ. Consider the quantity
qi = 2ℓi +mi. We will show below that, for the first three rows of the table, at each vertex Vi

we have 3ni ≥ qi. Once that is proved, we finish the proof as follows: Adding over all vertices,
we have

X

3ni ≥
X

(2ℓi +mi)

The sum on the left is three times the total number of α angles at the vertices Vi. This must be
equal to 3(N −P ). The sum on the right is the total number of β angles plus twice the number
of γ angles. This is equal to N −Q+ 2(N −R) = 3N −Q− 2R. Hence

3(N − P ) ≥ 3N −Q− 2R

3N −Q− 2R ≤ 3(N − P )

−Q− 2R ≤ −3P

3P ≤ Q+ 2R

But the table above shows that in every line of the table, we have Q+ 2R ≤ 2. Hence 3P ≤ 2.
Since P is a positive integer, this is a contradiction.

It remains to supply the proof that 3ni ≥ qi, for the cases given in the first three rows of
the table.

We first claim that in case ki = 1 (i.e. the angle sum at vertex Vi is π), we can assume
ℓi ≤ 1, i.e. if ℓi > 1, the conclusion 3ni ≥ qi holds. We certainly have ℓi ≤ 2, since 3γ > π.
Now assume that ℓi = 2. Then mi = 0, since 2γ + β > π. Hence qi = 4. Then 3ni ≥ qi unless
ni = 0 or ni = 1. If ni = 0, then the equation niα+miβ+ℓiγ = π becomes 2γ = π, so γ = π/2;
but we have proved that (we can assume that) γ is not a right angle, so ni 6= 0. Hence we may
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assume ni = 1. Then, we have 2γ + α = π. But this, together with α + β + γ = π, implies
β = γ, which contradicts the assumption that T is not isosceles. This contradiction shows that
ni 6= 1, and hence disposes of the case ki = 1 and ℓi = 2. That completes that proof of the
claim that we can assume ℓi ≤ 1 when ki = 1.

For the first two rows of the table, we have γ = 2β. In that case π = α+ β + γ = α + 3β,
so 4β > π. Then 2γ + β = 5β > π as well.

If ki = 1 and ℓi = 0 then qi = mi ≤ 3, since 4β > π. If ki = 1 and ℓi = 1 then qi = 2 +mi,
and since γ = 2β and 4β > π, we have γ + 2β > π, so mi ≤ 1. Hence qi ≤ 3. Since we showed
above that we can assume ℓi ≤ 1 when ki = 1, we have proved that (for the first two rows of
the table) qi ≤ 3 when ki = 1 (or else the conclusion of the lemma holds).

Now we assume, for proof by contradiction, that ki = 2 and the first row of the table applies.
Then

qiβ + niα = (2ℓi +mi)β + niα

= ℓiγ +miβ + niα since 2β = γ

qiβ + niα = 2π (32)

We wish to bound qi. First we take up the first case (first row of the table). Then in addition
to γ = 2β we have β = (P − 1)α. We have

6β + 2α = 2π since 6β = 2β + 2γ

qiβ + niα = 2π by (32)

Subtracting these two equations we have (6 − qi)β = (ni − 2)α. If qi > 6 then ni < 2. Then
ni = 0 or ni = 1, and β = ((2− ni)/(qi − 6))α. But β = (P − 1)α, so (2− ni)/(qi − 6) = P − 1,
an integer at least 4. This is impossible since the numerator 2 − ni is at most 2. This shows
that in the first row of the table, we cannot have ki = 2.

Now we give a bound for qi in case ki = 2 and the second row of the table applies, so γ = 2β
and β = ((P −1)/(3−Q))α. Assume qi > 6. Then as in the previous paragraph, we have ni = 0
or ni = 1 and β = ((2 − ni)/(qi − 6))α. But now also β = ((P − 1)/(3 −Q))α. Hence

2 − ni

qi − 6
=

P − 1

3 −Q

(2 − ni)(3 −Q)

qi − 6
= P − 1

On the left side, the factor 2− ni is either 1 or 2, and the factor 3−Q is either 1, 2, or 3, since
Q ≤ 2. Since R = 0 in the second row of the table, we have P +Q ≥ 5. If Q = 2 then we have
(2 − ni)/(qi − 6) = P − 1 and P − 1 ≥ 2; but then (2 − ni)/(qi − 6) is an integer at least 2,
with numerator at most 2. This is possible only if qi = 7 and ni = 0 and (P,Q) = (3, 2). But
then case (iii) of the theorem holds. Therefore the case qi > 6 has led to a contradiction or to
conclusion (iii) of the theorem. Therefore we may assume qi ≤ 6 in case ki = 2 and the second
row of the table applies.

Now we will prove qi ≤ 3ni for the first two rows of the table.

Case (i) ki = 1. We have

qi = 2ℓi +mi definition of qi

Multiplying by β and adding niα we have

qiβ + niα = 2ℓiβ +miβ + niα

= ℓiγ +miβ + niα since γ = 2β

= π

45



Now if ni = 0 then qiβ = π. As shown above, we can assume qi ≤ 3. Then, since qiβ = π, we
have β ≥ π/3. Hence γ = 2β ≥ 2π/3 and β + γ ≥ π, contradiction. Hence ni 6= 0. Therefore
ni ≥ 1. Since qi ≤ 3, we have qi ≤ 3ni as desired.

Case (ii) ki = 2. We showed above that this is impossible for the first row of the table, so
the second row applies. We have 3β + α = π and qiβ + niα = 2β + niα = π. Therefore

2β + niα = 3β + α

From the second row of the table, we have β = ((P − 1)/(3 −Q))α. Hence we obtain

2β + niα = 2β +

 

1 +
P − 1

3 −Q

!

α

ni =

 

1 +
P − 1

3 −Q

!

Since Q ≤ 2 the denominator is positive and at most 2; since P +Q ≥ 5, we have P ≥ 3 so the
numerator is at least 2. It follows that ni ≥ 2. Since we proved above that qi ≤ 6 in case ki = 2
and the second row of the table applies, we have 3ni ≥ qi as desired. That completes the proof
for the first two rows of the table.

Next we take up the third row of the table. In this case we have γ = 2β + α instead of
γ = 2β. Again we consider qi = 2ℓi +mi and try to prove 3n ≥ q. We start by observing that
π = α+ β + γ = 2α+ 3β. Hence 2γ = 4β + 2α > π, so γ > π/2. Therefore, if ki = 1, we have
ℓi ≤ 1, and if ki = 2, we have ℓi ≤ 3.

We argue by (more) cases.
Case (iii). ki = 1 and ℓi = 1. Then we have mi ≤ 1, since γ + 2β = 2β + α + 2β

= 4β + α > 3β + 2α = π. Then

π = γ +miβ + niα

3β + 2α = γ +miβ + niα

3β + 2α = (2 +mi)β + (ni + 1)α since γ = 2β + α

(1 −mi)β = (ni − 1)α

(1 −mi)(P − 1)α = (ni − 1)α

ni − 1 = (1 −mi)(P − 1)

If mi = 1, so the right side is zero, then ni = 1 also, and we have ni = mi = ℓi = 1. In that
case 3ni ≥ qi and we are finished. Hence (since mi ≤ 1) we may assume mi = 0. Then we have
ni = P . Then q = 2ℓ + mi = 2, and 3ni = 3P > qi since P ≥ 2, since Q ≤ 2 and R ≤ 1 and
P +Q+R ≥ 5. That disposes of Case (iii).

Case (iv) ki = 1 and ℓi = 0 and mi > 4. This case can be ruled out, because 5β > 3β+2α =
π.

Case (v) ki = 1 and ℓi = 0 and mi = 4. Then π = 4β + niα > 3β + (ni + 1)α. Since
3β + 2α = π, this implies ni = 0 and β = π/4. Then γ = 2β + α = π/2 + α. Hence

π = α+ β + γ

= α+ π/4 + π/2 + α

α = π/8

γ = 5π/8

For this special case of T , we cannot establish the desired bound. But we can rule out this case
by cosidering the possibilities for P and Q, as follows. We have assumed that row 3 of the table
applies. Then R = 1, so P + Q ≥ 4, and α = π/(3P − 1), and since α = π/8, we have P = 3,
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and since P +Q ≥ 4, we have Q ≥ 1. But in row 3 of the table, we have Q = 0, contradiction.
That disposes of this case.

Case (vi) ki = 1 and ℓi = 0 and mi ≤ 3. Then π = miβ + niα; and since π = 3β + 2α, we
have ni ≥ 2, and so 3ni ≥ 6, and qi = 2ℓi +mi = mi ≤ 3, so 3ni > qi as required.

This disposes of all cases where ki = 1 and the third row of the table applies. Now suppose
ki = 2 and the third row of the table applies, so we have γ = 2β + α and π = 2α + 3β. Then
we have

2π = ℓiγ +miβ + niα

= ℓi(2β + α) +miβ + niα

= qiβ + (ℓi + ni)α

Subtracting from this 2π = 4α+ 6β (which is twice π = 2α+ 3β), we obtain

0 = (qi − 6)β + (ℓi + ni − 4)α (33)

Case (vii) The third row of the table applies, and ki = 2, and qi > 6. Then we have
β = (P − 1)α, so we find

0 = (qi − 6)(P − 1)α+ (ℓi + ni − 4)α by (33)

4 − ℓi − ni = (P − 1)(qi − 6)

In the third row of the table, we have Q = 0, and since P + Q + R ≥ 5 and R = 1, we have
P ≥ 4, so P − 1 ≥ 3.

Since qi > 6, the factor qi − 6 is positive. The left side, on the other hand, is an integer at
most 4. Hence, qi − 6 must be 1, so qi = 7, and both sides are equal either to 3 or to 4. Hence,
looking at the left side 4 − ℓi − ni is 3 or 4, so ℓi + ni is 0 or 1. In case it is zero, we have
ℓi = ni = 0 and P = 5. Since qi = 2ℓi +mi = 7, we have mi = 7, so

β = 2π/7

α =
β

P − 1

= β/4

= π/14

γ = 2β + α

= 9π/14

This case is impossible, by Lemma 6.
Now suppose ℓi = 1 and ni = 0. Then qi = 7 implies mi = 1, so the equation ℓiγ +miβ +

niα = 2π becomes γ+β = 2π; but since γ+ β < π, that is a contradiction. Suppose ℓi = 0 and
ni = 1. Then qi = 7 implies mi = 7, so the equation ℓiγ+miβ+niα = 2π becomes 7β+α = 2π.
In this case we have P = 4, so β = (P − 1)α = 3α. Hence

2π = 7β + α

= 21α+ α

= 22α

α =
π

11

β =
3π

11

γ =
7π

11
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Since R = 1, the largest angle of ABC must be at least γ, but according to Lemma 5, that is
not possible.

Case (viii) The third row of the table applies, and ki = 2, and qi = 6. Then by (33) we have

0 = (ℓi + ni − 4)α

ℓi + ni = 4

Since qi = 2ℓi +mi, we have ℓi = (qi −mi)/2. Hence

qi −mi + 2ni = 8

qi ≤ 2ni +mi

≤ 3ni

which disposes of this case.
Case (ix) The third row of the table applies, and ki = 2, and qi < 6. By (33) we have

4 − ℓi − ni = (P − 1)(qi − 6)

The right side is negative, since P ≥ 5 and qi < 6. Hence the left side 4 − ℓi − ni must also be
negative. Since ℓi ≤ 3, we must have ni ≥ 2. But then 3ni ≥ 6 > qi, and we have disposed of
this case.

That completes all cases involving the third row of the table.
Now we take up the fourth row of the table. Here we also have γ = 2β+α, but the formulas

for β and α in terms of P and Q are different, and we have R = 0. It is simplest just to
enumerate the possibilities for ℓi, mi, and ni. We have 3γ + α = 2π (since ℓ = 3, m = 0,
and n = 1, from the first table); that gives the first row in the following table. The others are
obtained by using the equation γ = 2β+α and the equation β = (P −2)/(Q−3)α to “trade in”
some larger angles for smaller ones. The entries containing fractions apply only if the fraction
shown is an integer. This table assumes ki = 2, so the angle sum is 2π.

ℓi mi ni 2ℓi +mi 2mi + ℓi
3 0 1 6 3

2 2 2 6 6

2 0 1 + 2(P−2)
3−Q

4 2

2 1 1 + P−2
3−Q

1 4

1 4 3 4 9

1 4-r 3 + r P−2
3−Q

6 − r 9 − 2r

0 6 4 6 12

0 6-r 3 + r P−2
3−Q

6 − r 12 − 2r

We note that the estimate qi = 2ℓi +mi ≤ 3ni, which we used for the first three rows of the
table, fails here, e.g. in the first row. But we can replace it by ri = 2mi + ℓi ≤ 3ni, shown in
the last column of the table.

Remembering that the rows with fractions occur only if the fraction is an integer, and that
P − 2 and Q− 3 are positive integers since Q ≤ 2 and P +Q ≥ 5, inspection of the table shows
that ri ≤ 3ni in each row. This table applies only when ki = 2, so we also need to consider the
case ki = 1. Since 3γ + α = 2π, we have γ > π/2, so when ki = 1, we have ℓi = 0 or 1. If
ℓi = 1, then since α 6= β, we have mi = ni = 1 (in which case ri = 3 ≤ 3ni), or mi = 0 and β
is an integer multiple of α. In that case, ni is at least 3, since β > α, and ri = 1, so ri ≤ 3ni.
Now suppose ki = 1 and ℓi = 0. Since π = (2β + α) + β + α = 3β + 2α, we have mi = 3 and
ni = 2 as one possibility, in which case ri = 6 ≤ 3ni; and other possibilities may arise if 3β is a
multiple of α, but if that happens, then ri < 6 and ni > 2, so we still have ri ≤ 3ni.
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Hence, for the fourth row of Table 2, we always have ri ≤ 3ni. Now we sum over all vertices
of the tiling that are not vertices of ABC. We have

X

ri =
X

(2mi + ℓi)

= 2
X

mi +
X

ℓi

= 2(N −Q) +N since R = 0

= 3N − 2Q

On the other hand we have

3
X

ni = 3(N − P )

Since
P

ri ≤ 3
P

ni, we have 3N − 2Q ≤ 3N − 3P . Hence 3P ≤ 2Q. But Q ≤ 2 and P ≥ 3,
so 3P ≥ 9 > 4 ≥ 2Q, contradiction. That completes the proof that the fourth row of Table 2 is
impossible.

Now we turn to the fifth (and last) row of Table 2. Here we have γ = 2α+ β. The following
table shows the possible vertices. The rows containing fractions represent possible vertices only
in case the fraction shown is actually an integer. Since Q ≤ 1 in the fifth row of table 2, the
denominator of the fractions shown is either 1 or 2.

ki ℓi mi ni

2 3 1 0

2 3 0 P−3
2−Q

2 2 2 2

2 2 1 2 + P−3
2−Q

2 2 0 2 + 2 P−3
2−Q

2 1 3 6

2 1 3-r 6 + r P−3
2−Q

2 0 4 8

2 0 4-r 8 + r P−3
2−Q

1 1 1 1

1 0 0 P−3
2−Q

1 0 1 2

1 0 1 P−3
2−Q

1 0 0 2 P−3
2−Q

For this row of Table 2, the estimates used in the previous rows do not work, because of the
possibility shown in the first row of this table, namely ℓi = 3 while ni = 0. Therefore we give a
different argument. Note that the first four rows of the table correspond to vertices with at least
two γ angles. Since there are altogether N γ angles, there are at most N/2 such vertices. Hence
(and since R = 0) there are at least N/2 vertices other than those of ABC, each contributing
at most one γ angle. Now consider the difference mi − ni at the two kinds of vertex. At the
vertices with two or three γ angles, mi − ni ≤ 1; indeed only the first row has mi −ni > 0, and
in that row it is 1. In all the other rows of the table, we have ni−mi ≥ 1. Hence, adding ni−mi

over all the vertices, we obtain at least one from each of at least N/2 vertices, and at least −1
from the remaining (smaller number of) vertices, so the sum of ni −mi over all the vertices (not
counting the vertices of ABC) is non-negative. But when we add in the contributions of the
vertices of ABC, we add P −Q, which is a positive number (since Q ≤ 1 and P +Q ≥ 5). That
is a contradiction, since altogether there are N each of α angles and β angles, so the sum over
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all vertices, including those of ABC, of ni −mi must be zero. That completes the proof that
the fifth row of Table 2 is impossible, and it also completes the proof that ℓ = 3 is impossible.

We still have the cases ℓ = 4 and ℓ = 5 to deal with. We now assume ℓ = 4. That is, there
is at least one vertex V where four γ angles meet, and there are at most 3 other angles, i.e.
n+m ≤ 3. Since γ > π/3, we have k = 2, i.e. the angle sum at V is 2π, not π. If n+m = 0,
then γ = π/2, contradiction. If n = 0 then we have

2π = 4γ +mβ

2(α+ β + γ) = 4γ +mβ

2α+ (2 −m)β = 2γ

Since α < γ, we must have 2 −m > 0, or m < 2. Since n = m = 0 is impossible, that leaves
m = 1 as the only possibility when n = 0, and in that case 2γ = 2α+ β.

We will prove that in this case (ℓ = 4 and n = 0) we have R = 0. By Lemma 22, we have
R ≤ 1. Assume, for proof by contradiction, that R = 1. Then by Lemma 23 we have Q = 0 and
β = (P − 1)α, so 2γ = 2α+ β = (P + 1)α. We then have

β < γ

(P − 1)α <
P + 1

2
α

P − 1 <
P + 1

2
P < 3

contradicting P +Q ≥ 5, since Q = 0. That completes the proof that R = 0.
Having proved that R = 0, we then have

π = α+ β + γ

= α+ β +
1

2
(2α+ β) since 2γ = 2α+ β

= 2α+
3

2
β

= Pα+Qβ

This gives us two equations in α and β. The determinant of the system is (a multiple of)
4Q− 3P . Assume, for proof by contradiction, that this determinant is zero. Then

π = Pα+Qβ

4π = 4Pα+ 4Qβ

= 4Pα+ 3Pβ since 4Q = 3P

= (4α+ 3β)P

= 2πP since 4α+ 3β = 2π

Thus 4π = 2πP . Hence P = 2. Now we have

2π = 4α+ 3β

π = Pα+Qβ

= 2α+Qβ since P = 2

Multiplying the last equation by 2 and subtracting the first equation, we find 2Q = 3, which
is impossible since Q is an integer. This contradiction shows that the determinant is not zero.
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Hence the equations are solvable:

α =
2Q− 3

4Q− 3P
π

β =
4 − 2P

4Q− 3P
π

γ = α+
1

2
β

=
2Q− P − 1

4Q− 3P
π

If 4Q > 3P then, since α < β, we have

2Q− 3 < 4 − 2P

2(P +Q) < 7

contradicting P +Q ≥ 5. Hence 3P < 4Q. Writing the equations for α, β, and γ with positive
denominator, we have

α =
3 − 2Q

3P − 4Q
π

β =
2P − 4

3P − 4Q
π

γ =
P + 1 − 2Q

3P − 4Q
π

Then the numerators must also be positive, so 2Q < 3, which implies Q = 0 or Q = 1. Assume,
for proof by contradiction, that Q = 0. Then α = π/P and β = 2π/3 − 4π/(3P ). Since β < γ
we have

β < γ

2

3
π − 4

3P
π <

P + 1

3P
π

2

3
<

P + 5

3P
6P < 3(P + 5)

3P < 15

P < 5

contradicting P +Q ≥ 5. Hence Q 6= 0. Hence Q = 1. Then

α =
1

3P − 4
π

β =
2P − 4

3P − 4
π

γ =
P − 1

3P − 4
π

Since β < γ, we have 2P − 4 < P − 1, which implies P < 5, contradicting P + Q ≥ 5. Hence
every subcase of ℓ = 4, n = 0 has led to a contradiction. Hence ℓ = 4 and n = 0 cannot occur.

Next we take up the case ℓ = 4 and n = 1. Then we have

2π = 4γ +mβ + α

2(α+ β + γ) = 4γ +mβ + α

α+ (2 −m)β = 2γ
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and since α < 2γ, we must have 2 −m > 0, which implies m < 2. The case m = 1 can also
be ruled out, for then we would have α + β = 2γ, and adding γ to both sides, we would have
π = 3γ, contradicting γ > π/3. Hence m = 0 when n = 1, and we have 2γ = α+ 2β. Adding γ
to both sides we have

3γ = α+ 2β + γ

= π + β

γ =
π

3
+
β

3

γ <
π

2
since 4γ + α = 2π

Therefore

β +
π

3
<

π

2

Subtracting π/3 from both sides we have

β <
π

6
α = π − γ − β

> π − π

2
− π

6
=
π

3
since γ < π/2 and β < π/6

Therefore α > π/3, contradiction. Hence the case ℓ = 4 and n = 1 is not possible.
If ℓ = 4 and n = 2 then since n+m ≤ 3, we have m = 0 or m = 1 and

2π = 4γ +mβ + 2α

2(α+ β + γ) = 4γ +mβ + 2α

(2 −m)β = 2γ

β =
2

2 −m
γ

Since m is 0 or 1, the fraction on the right is either 2 or 1, contradicting β < γ. Hence the case
n = 2 cannot occur.

If ℓ = 4 and n = 3 then since n+m ≤ 3 we have m = 0, and

2π = 4γ + 3α

2(α+ β + γ) = 4γ + 3α

2β = 2γ + 3α

contradicting β < γ. So the case n = 3 cannot occur either. Since m + n < ℓ, this is the last
possibility with ℓ = 4; hence ℓ = 4 has been ruled out.

The last possibility for ℓ is ℓ = 5. Assume ℓ = 5. That is, there is at least one vertex V
where five γ angles meet, and there are at most 4 other angles, i.e. n+m ≤ 4. Since γ > π/3,
we have k = 2, i.e. the angle sum at V is 2π, not π. If n+ m = 0, then γ = 2π/5, which has
already been ruled out by Lemma 4. Assume, for proof by contradiction, that n = 0. Then we
have

2π = 5γ +mβ

2(α+ β + γ) = 5γ +mβ

2α+ (2 −m)β = 3γ

(2 −m)β = 3γ − 2α

= 2(γ − α) + γ

> γ since γ > α
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Since β < γ, this implies 2 −m > 1, which implies m = 0. Since we have assumed n = 0, and
we have proved n+m 6= 0, that is a contradiction. This contradiction completes the proof that
n 6= 0.

Now assume ℓ = 5 and n = 1. Then we have

2π = 5γ +mβ + α

2(α+ β + γ) = 5γ +mβ + α

α+ (2 −m)β = 3γ

(2 −m)β = 3γ − α

(2 −m)β > 2γ since α < γ

Since β < γ, this implies 2 −m > 2, which is not possible, since m ≥ 0. Hence the case ℓ = 5
and n = 1 is impossible.

Now assume ℓ = 5 and n ≥ 2. Then we have

2π = 5γ +mβ + nα

2(α+ β + γ) = 5γ +mβ + nα

(2 −m)β = 3γ + (n− 2)α

(2 −m)β ≥ 3γ since n ≥ 2

Since β < γ, this implies 2−m > 3, which is not possible, since m ≥ 0. Hence the case ℓ = 5 is
impossible. That was the last possibility for ℓ, so the proof of the lemma is complete.

9 Conclusions

The aim of this series of papers is to classify the triples (ABC, T,N) such that triangle ABC
can be N-tiled by T . We have completed this classification, except for the case when the tile T
has a 120◦ angle and is isosceles. For example, aside from that shape of tile, given an integer
N , if there is any N-tiling, then N is either a square, or a sum of two squares, or is 2,3, or 6
times a square, or twice a sum of two squares. For example, there are no N-tilings for N = 7,
11, or 19. The following theorem gives more information about the possibilities for the shapes
of the tile and the tiled triangle.

Theorem 2 (Main Theorem) Suppose triangle ABC is tiled by triangle T . Suppose ABC is
not similar to T and T is not a right triangle. Then one of the following conclusions holds:

(i) ABC is equilateral, T is isosceles with base angles π/6, and N is three times a square, or

(ii) 3α+ 2β = π, where α and β are the two smallest angles of the tile, in either order, and α
is not a rational multiple of π, and sin(α/2) is rational (which implies that the sides of the tile
have rational ratios), and two of the angles of ABC are 2α and β.

(iii) γ = 2π/3 (120 degrees) and α 6= β (the tile is not isosceles).

Theorems covering the case when ABC is similar to T and the case when T is a right
triangle are in [1]. Theorems covering the case in conclusion (ii) are in [2], where a necessary
and sufficient condition on N is given for an N-tiling to exist in that case. We conjecture there
are no tilings falling under case (iii); some partial results in that direction are in [3].
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