Some Undecidable Field Theories

Martin Ziegler

Introduction

We will construct in this paper a sequence of fields, in each of which the ring of integers can be interpreted. ${ }^{1}$

As consequences we obtain:
A finitely axiomatizable theory, which has $\left[\right.$ either ${ }^{2}$] an algebraically closed field, \mathbf{R} (the field of real numbers) or one of the p-adic fields $\mathbf{Q}_{\mathbf{p}}$, as a model, is undecidable. In particular we have: (case R)

The theory of Euclidean fields is undecidable.
The theory of Pythagorean fields is undecidable.
(A formally-real field is Euclidean, if each of its elements is either a square or the negative of a square, and Pythagorean, if each sum of squares is a square.)

The question of the decidability of Euclidean fields was posed by Tarski in 1950. ([T]). The case \mathbf{R} of our theorem stated above was conjectured in $[T]$.

Tarski's problem was until now treated on by K. Hauschild ([H1]), ([H2]). His proof for the undecidability of Pythagorean fields is however mistaken and irreparable (see [C], [F]). Our construction adapts a fundamental idea of Hauschild's: " q-th roots",

I thank A. Prestel and U. Henschel for their support.

1 Discussion of the results

Let F_{p} be the field with p elements. Let L_{p} be the algebraic closure of the rational function field $F_{p}[t]$.

We show in sections 2-5 the
Theorem 1 Let q be a prime number, A a countable structure, L one of the fields L_{p} with $p \neq q$, \mathbf{C}, \mathbf{R}, or $\mathbf{Q}_{\mathbf{p}}$. There there exists a field $K \subset L$ such that
(1) A can be interpreted [defined] in K
(2) If the intermediate field $H \subset L$ is finite over K, then the degree $[H: K]$ is equal to 1 or divisible by q.

If L has characteristic 0 and $A=(\mathbf{Z},+, \cdot)$, then \mathbf{Z} is a definable subset of K.
Corollary 1 Every finite subtheory of the theory of L is undecidable.

[^0]Proof [of the corollary]. Let T be a finite subtheory of $T h(L)$. Let P be the set of all primes different from the characteristic of L. For each $q \in P$, we choose [by the theorem] a field K_{q} for which (2) holds and in which $(\mathbf{Z},+, \cdot)$ is interpretable. We choose a non-principal ultrafilter U on P. Define

$$
K=\frac{\prod_{q \in P} K_{q}}{U}
$$

Then K is relatively algebraically closed in $K^{P} / U .^{3}$
From this it follows that $K \equiv L .{ }^{4}$ (The theory and model theory of algebraically closed, realclosed, and p-adically closed fields that we have used here can be found in $[\mathrm{CK}],[\mathrm{M}],[\mathrm{K}],[\mathrm{AK}]$.)
K is therefore a model of T. Consequently also one of the fields K_{q} is a model of T, since T is finite. T thus has a model, in which the ring of whole numbers is interpretable. Then the conclusion follows from [TMR].

In order to derive further consequences from our theorem, we define a sequence of elementary theories. The verification that these theories really are "elementary" is left to the reader. (One observes that the " p-valuation" in models of $T_{p, q}^{H}$ is elementarily definable.)
$T_{p, q}^{A}=$ the theory of fields of characteristic p, in which the degree of each irreducible polynomial is 1 or divisible by q. (p is prime or 0 .)
$T_{Z}^{R}=$ the theory of formally real fields, in which the degree of each irreducible polynomial is 1 or even.
$T_{q}^{R}=$ the theory of formally real fields such that
(a) the degree of each irreducible polynomial, that has a zero in a formally real extension, is 1 or divisible by q.
(b) the field is closed in its real closure $(q \neq 2)$.
$T_{p, q}^{H}=$ the theory of formal p-adic fields such that
(a) the degree of each irreducible polynomial, that has a zero in a formally p-adic extension, is 1 or divisible by q.
(b) the field is closed in its p-adic closure $(q \neq 2)$.

One can easily verify that each of these theories (whereby for $T_{p, q}^{A}$ we still assume $p \neq q$) has one of the fields K given in the theorem [sic] as a model. ${ }^{5}$

Corollary 2 The theories $T_{p, q}^{A}(p \neq q), T_{q}^{R}, T_{p, q}^{H}$ are undecidable.
Without proof we append a sequence of remarks:
Each finite theory that has one of the mentioned fields L as a model, is for sufficiently large q a subtheory of one of theories $T_{p, q}^{A}, T_{q}^{R}, T_{q}^{H}[\operatorname{sic}]^{6}$ The theory of euclidean fields is contained in T_{q}^{R} for $q \neq 2$.

A field K of characteristic p is a model of $T_{p, q}^{A}$ if and only if each polynomial in $K[X]$ whose degree is not divisible by q has a zero in K, if and only if the degree of each finite extension of K is a power of q.

[^1]A formally real field is a model of T_{2}^{R} if and only each each polynomial of odd degree has a zero, if and only if each formally real extension is a power of $2 .{ }^{7}$

Suppose $(R,<)$ is closed in a real closed field $(L,<)$. Then R is a model of T_{q}^{R} if and only if the degree of each irreducible polynomial with alternating signs is equal to 1 or is divisible by q.

Suppose that the valued field (H, w) is closed in the p-adically closed field (L, v) with $w \subset v$. Then H is a model of $T_{p, q}^{H}$ if and only if the degree of each irreducible polynomial fulfilling the hypotheses of Hensel's lemma is either 1 or divisible by q.

Open Questions:
$T_{q, q}^{A}$ is a subtheory of the (decidable) theory of separable closed fields of characteristic q (see [E]). Is either $T_{q, q}^{A}$ or $T_{q, q}^{A}+\forall x \exists y y^{q}=x$ decidable?

For $q_{1} \neq q_{2}, T_{p, q_{1}}^{A}+T_{p, q_{2}}^{A}$ is the theory of algebraically closed fields of characteristic p. For $q \neq 2$, $T_{2}^{R}+T_{q}^{R}$ is the theory of real closed fields. For different $q_{i}, n \geq 1$, are the theories $T_{p, q_{0}}^{H}+\ldots+T_{p, q_{n}}^{H}$ and $\left(q_{i} \neq 2\right) T_{q_{0}}^{R}+\ldots T_{q_{n}}^{R}$ decidable?
K is essentially quadratically closed, when each algebraic extension of K is quadratically closed. The theory of essentially quadratically closed fields of characteristic p is, as a subtheory of $T_{p, q}^{A}$ for $q \neq 2$, undecidable. Is the theory of essentially euclidean fields decidable?

2 Construction of M

From now on, we fix q, A, and L as in the hypotheses of the theorem. Let F be the relative algebraic closure of the prime field of L.

Lemma 0 There is a subset M of F, such that A is interpretable in (F, M) and
(3) $0 \in M$; the index of M considered as an additive subgroup of F is infinite.

Proof. First we remark that F is an infinite extension of its prime field. In the case that $A=(\mathbf{Z},+, \cdot)$ and L has characteristic 0 , take $M=\mathbf{Z}$ [and the proof is finished]. Otherwise we can assume that $A=(A, R)$, with R symmetric and irreflexive, because each structure can be interpreted in a graph. Let A be enumerated without repetition as a_{0}, a_{1}, \ldots. Consider F as a vector space over its prime field. Let $B=b_{0}, b_{1}, \ldots$ be a basis of an infinite-dimensional subspace of infinite codimension. Define S by $S\left(b_{i}, b_{j}\right)$ if and only if $R\left(a_{i}, a_{j}\right.$. Then $(A, R) \cong(B, S)$. Let c_{1} and c_{2} be linearly independent over B. We now define

$$
\begin{aligned}
M= & \{0\} \cup B \cup\left\{c_{1}+b_{i} \mid i \in \mathbf{N}\right\} \\
& \cup\left\{c_{2}+b_{i} \mid i \in \mathbf{N}\right\} \cup\left\{b_{i}+b_{j} \mid S\left(b_{i}, b_{j}\right)\right\}
\end{aligned}
$$

Then we can define B and S (with parameters c_{1}, c_{2}):

$$
\begin{aligned}
B & =\left\{b \in M \mid c_{1}+b \in M, c_{2}+b \in M\right\} \\
S & =\{(b, c) \mid b \in B, c \in B, b+c \in M, b \neq c\}
\end{aligned}
$$

[^2]
3 Construction of K

Let $t \in L$ be transcendent over F. Let $F^{*}=F-\{0\}$.
We want to construct $K \subset L$ as an algebraic extension of $F(t)$ in such a way that besides (2) we have ${ }^{8}$

$$
F=\left\{a \in K \mid \forall b \in L^{q}\left(1+b \in K^{q} \wedge a^{q}+b^{-1} \in K^{q} \rightarrow b \in K^{q}\right)\right\}
$$

and

$$
M=\left\{r \in F \mid \forall r_{1}, r_{2} \in F\left(r_{1} \neq r_{2} \& r_{1}+r_{2}=r \rightarrow\left(t^{q}-r_{1} \in F^{*} \cdot K^{q} \vee t^{q}-r_{2} \in F^{*} \cdot K^{q}\right)\right)\right\}
$$

We will construct K as the union of a sequence

$$
F(t)=E_{0} \subset E_{1} \subset E_{2} \subset \ldots \subset L
$$

of finite extensions of $F(t)$. In order to control the q-th powers, we choose at the same time a sequence

$$
\phi=S_{0} \subset S_{1} \subset S_{2} \ldots
$$

of finite subsets $S_{i} \subset E_{i} \cap L^{q}$ with the goal that

$$
\left(K \cap L^{q}\right) \backslash K^{q}=\left(\cup_{i \in \mathbf{N}} S_{i}\right)
$$

In order not to make the desired relation between M and $\left(K \cap L^{q}\right) \backslash K^{q}$ impossible already through the wrong choice of (E_{i}, S_{i}), we require for all i that
(4) There is a family $\left(v_{s}\right)_{s \in S_{i}}$ of valuations $v_{s}: E_{i} \rightarrow G_{v_{s}}{ }^{9}$ with v_{s} trivial on F, such that
(4.1) (in $G_{v_{s}}$) $v_{s}(s)$ is not divisible by q, for $s \in S_{i}$.
(4.2) for all $r_{1}, r_{2} \in F, r_{1}+r_{2} \in M, r_{1} \neq r_{2}$:
$\forall s \in S_{i} q$ divides $v_{s}\left(t^{q}-r_{1}\right)$ or $\forall s \in S_{i} q$ divides $v_{s}\left(t^{q}-r_{2}\right)$
We begin with an enumeration a_{0}, a_{1}, \ldots of all $a \in L$ that are algebraic over $F(t)$. Each element of this sequence should be repeated infinitely often.

Suppose (E_{i}, S_{i}) are already constructed. We distinguish four cases ${ }^{10}$
(Case 1). $i=4 n$. Then there are two subcases.
(a) q divides $\left[E_{i}\left(a_{n}\right): E_{i}\right]$. Then define $\left(E_{i+1}, S_{i+1}\right)=\left(E_{i}, S_{i}\right)$.
(b) q does not divide $\left[E_{i}\left(a_{n}\right): E_{i}\right]$. Then define $\left(E_{i+1}, S_{i+1}\right)=\left(E_{i}\left(a_{n}\right), S_{i}\right)$.

In the verification of (4) we will use the following lemma.
Lemma 1 Let H_{2} be a finite extension of the field H_{1}, with q not dividing $\left[H_{2}: H_{1}\right]$. Let v : $H_{1} \rightarrow G_{v_{1}}$ be a discrete valuation. Then there is an extension v_{2} of v_{1} to H_{2} with q not dividing $\left(G_{v_{2}}: G_{v_{1}}\right)$.

[^3]Proof. We can assume that H_{2} is separable or purely inseparable over H_{1}. In the separable case we have ${ }^{11}$

$$
\left[H_{2}: H_{1}\right]=\sum_{i}\left(G_{v_{2}^{i}}: G_{v_{1}}\right) f_{i}
$$

where v_{2}^{i} runs over all extensions of v_{1} to H_{2} and f_{i} is the degree of the valued quotient field extension. Therefore q cannot divide all the ($G_{v_{2}}^{i}: G_{v_{1}}$).

If H_{2} is purely inseparable over H_{1}, then there is exactly one extension v_{2}. $\left(G_{v_{2}}^{i}: G_{v_{1}}\right)$ is a power of p, where $p \neq q$. [That proves the lemma.]

If now the $v_{s}: E_{i} \rightarrow G_{v_{s}}, s \in S_{i}$, satisfy (4.1) and (4.2), then we choose extensions $\bar{v}_{s}: E_{i+1} \rightarrow$ $G_{\bar{v}_{s}}$ with q not dividing $\left(G_{\bar{v}_{s}}: G_{v_{s}}\right)$. The \bar{v}_{s} for $s \in S_{i}$ again satisfy (4.1) and (4.2).
(Case 2) $i=4 n+1$. There are three cases.
(a) $a_{n} \notin E_{i}$ or $a_{n} \notin L^{q}$. Then we define $\left(E_{i+1}, S_{i+1}\right)=\left(E_{i}, S_{i}\right)$. [End of Case 1a. The next sentence must be meant to apply to both Cases 1 b and 1 c , although it occurs before the indicated beginning of either case.]

If $a_{n} \in E_{i} \cap L^{q}$. we choose $v_{s}: E_{i} \rightarrow G_{v_{s}}, s \in S_{i}$ by (4).
(b) There is some $s \in S_{i}$ for which q does not divide $v_{s}\left(a_{n}\right)$. In this case define

$$
\left(E_{i+1}, S_{i+1}\right)=\left(E_{i}, S_{i} \cup\left\{a_{n}\right\}\right) .
$$

Then (4) holds, if we take v_{s} for $v_{a_{n}}$.
(c) q divides all $v_{s}\left(a_{n}\right), s \in S_{i}$. We define

$$
\left(E_{i+1}, S_{i+1}\right)=\left(E_{i}\left(\sqrt[q]{a_{n}}\right), S_{i}\right),
$$

whereby ${ }^{q} \sqrt{a_{n}} \in E_{i}$ in case $a_{n} \in E_{i}^{q}$. That (4) holds follows from
Lemma 2 Let q be different from the characteristic of the quotient field (translation?) of the valued field (H, v). Let $a \in H \backslash H^{q}$ and $v(a)$ divisible by q. Then there exists an extension w of v to $H(\sqrt{a})$ with $G_{w}=G_{v}$.

Proof. First note that $q=[H(\sqrt{a}): H]$. There is $c \in H$ with $v\left(c^{q}\right)=v(a)$. If the class of $c^{q} a^{-1}$ in the quotient class field is not a q-th power, then $G_{w}=G_{v}$ for all extensions w of v (Gradungleichung). Otherwise the q-th root of $c^{q} a^{-1}$ lies in the henselian hull of (H, v). We get w through the embedding of $H(\sqrt{a})$ in the henselian hull.
(Case 3) $i=4 n+2$ There are two cases
(a) $a_{n} \notin E_{i}$ or $a_{n} \in F$. Then we define $\left(E_{i+1}, S_{i+1}\right)=\left(E_{i}, S_{i}\right)$.
(b) $a_{n} \in E_{i} \backslash F$.

Then there is a valuation v on E_{i}, trivial on F, for which $v\left(a_{i}\right)$ is negative. Let (4) be satisfied by $\left(v_{s}\right)_{s \in S_{i}}$. First we extend E_{i} to a field E, for which (4.2) holds for $v, v_{s},\left(s \in S_{i}\right)$:

If (4.2) already holds in E_{i} for $v, v_{s},\left(s \in S_{i}\right)$, we just take $E=E_{i}$. Otherwise there must be an $r \in F$ such that q does not divide $v\left(t^{q}-r\right)$ and for all $s \in S_{i}, q \mid v_{s}\left(t^{q}-r\right)$. One observes: there is at most one $r \in F$, for which q does not divide $v\left(t^{q}-r\right)$. We still need

Lemma $3 L=L^{q} \cdot F$.

[^4]Proof. Let $a \in L$. We seek $b \in F^{*}$ with $a b^{-1} \in L^{q} .{ }^{12}$ If L is algebraically closed or real-closed, we will find b in $\{1,-1\}$. In case $L=\mathbf{Q}_{\mathbf{p}}$, we note that c is a q-th power in $\mathbf{Q}_{\mathbf{p}}$ if $w\left(c-d^{q}\right) \geq w(c)+3$ (Hensel's lemma, w is the p-adic valuation on Q_{p}.) We thus choose $b \in F$ so that $w(a-b) \geq w(a)+3$. Then we have $w\left(a b^{-1}-1\right) \geq w\left(a b^{-1}\right)+3$.

The lemma delivers a $d \in F^{*}$ with $d\left(t^{q}-r\right) \in L^{q}$. We define

$$
E=E_{i}\left({ }^{q} \sqrt{d\left(t^{q}-r\right)}\right)
$$

Let \bar{v} be any extension of v to E of v, the extensions \bar{v}_{s} of the v_{s} being chosen by Lemma 2. Then $\left(E_{i}, S_{i}\right)$ satisfy (4) and (4.2) holds for $\bar{v}, \bar{v}_{s},\left(s \in S_{i}\right)$.

Finally we specify a $b \in E$ such that

$$
\begin{gathered}
b, 1+b, a_{n}^{q}+b^{-1} \in L^{q} \\
c \text { divides } \bar{v}(1+b), \bar{v}\left(a_{n}^{q}+b^{-1}\right), \bar{v}_{s}(1+b), \bar{v}_{s}\left(a_{n}^{q}+b^{-1}\right),\left(s \in S_{i}\right) \\
\bar{v}(b) \text { is the smallest positive element of } G_{\bar{v}}
\end{gathered}
$$

and define

$$
\left(E_{i+1}, S_{i+1}\right)=\left(E\left(^{q} \sqrt{1+b},{ }^{q} \sqrt{a_{n}^{q}+b^{-1}}, S_{i} \cup\{b\}\right)\right.
$$

If we extend \bar{v}, \bar{v}_{s} using Lemma 2^{13} then we see that (4) holds. ((4.2) is satisfied by the choice of E.)

It still remains to find b.
The valuations \bar{v}, \bar{v}_{s} are independent. The Approximation Theorem delivers us then a b such that

$$
\begin{gathered}
q \text { divides } \bar{v}_{s}(b), \bar{v}_{s}(b)<0,-\bar{v}_{s}\left(a_{n}^{q}\right),\left(s \in S_{i}, \bar{v} \neq \bar{v}_{s}\right) \\
\bar{v}(b)=\text { the smallest positive element of } G_{\bar{v}}
\end{gathered}
$$

Now one easily calculates that all values $\bar{v}(1+b), \bar{v}\left(a_{n}^{q}+b^{-1}\right), \bar{v}_{s}(1+b), \bar{v}_{s}\left(a_{n}^{q}+b^{-1}\right)$ are divisible by q. If $L=L_{p}, \mathbf{C}$, or $q \neq 2$ and $L=\mathbf{R}$, it is also clear that $b, 1+b, a_{n}^{q}+b^{-1} \in L^{q}$. In the other cases we must specify b still more precisely:
$L=\mathbf{R}, q=2$: We choose b so that in addition $b>0$.
$L=\mathbf{Q}_{\mathbf{p}}$: Let w be the p-adic valuation on L, and $d \in Q^{q}$ with $w(d) \geq 3$ and $w\left(a_{n}^{q} d\right) \geq 3$. By the Approximation Theorem, we choose b so that in addition $w(d-b) \geq w(d)+3$. Then we have

$$
\begin{gathered}
w(b-d) \geq w(b)+3 \Rightarrow b \in L^{q} \\
w((1+b)-1)=w(d) \geq 3 \Rightarrow 1+b \in L^{q} \\
w\left(\left(a_{n}^{q}+b^{-1}\right)-b^{-1}\right) \geq w\left(b^{-1}\right)+3=w\left(a_{n}^{q}+b^{-1}\right)+3 \Rightarrow a_{n}^{q}+b^{-1} \in L^{q}
\end{gathered}
$$

Case(4) $i=4 n+3$. We distinguish two cases:
(a) $a_{n} \in M$ or $a_{n} \notin F$. Here we define $\left(E_{i+1}, S_{i+1}\right)=\left(E_{i}, S_{i}\right)$.
(b) $a_{n} \in F \backslash M$.

Let (4) be satisfied by $\left(v_{s}\right)_{s \in S_{i}}$. We observe that

$$
B=\left\{r \in F \mid \exists s \in S_{i} q \text { does not divide } v_{s}\left(t^{q}-r\right)\right\}
$$

[^5]is finite.
For $r \in F^{*}, t^{q}-r$ has multiple factors (in $F[t]$). There also exists a valuation \bar{v}_{r} on $F(t)$, trivial on F, for which $\bar{v}_{r}\left(t^{q}-r\right)$ is the smallest positive element of $G_{\bar{v}_{r}}$. We choose for each r an extension w_{r} of \bar{v}_{r} to E_{i}. Then we have $G_{\bar{v}_{r}}=G_{w_{r}}$ for almost all r. The set
$$
C=\left\{r \in F^{*} \mid q \text { divides } w_{r}\left(t^{q}-r\right)\right\}
$$
is thus finite. We remark that $w_{r}\left(t^{q}-r^{\prime}\right)=0$, if $r \neq r^{\prime}$. We now choose $r_{1} \in F$ so that $r_{1} \neq 0, a_{n}$, $2 r_{1} \neq a_{n}$ and r_{1} do not lie in any of the sets
$$
C, a_{n}-C, M-G, a_{n}-(M-B) .
$$

Let $r_{2}=a_{n}-r_{1}$. Lemma 3 delivers us $s_{i} \in F^{*}$ with $s_{i}\left(t^{q}-r_{i}\right) \in L^{q}$. We define

$$
\left(E_{i+1}, S_{i+1}\right)=\left(E_{i}, S_{i} \cup\left\{s_{1}\left(t^{q}-r_{1}\right), s_{2}\left(t^{q}-r_{2}\right)\right\}\right)
$$

We still have to prove (4). Because q does not divide $w_{r_{1}}\left(t^{q}-r_{1}\right)$ and $w_{r_{2}}\left(t^{q}-r_{2}\right),(4.2)$ holds for the valuations $w_{r_{1}}, w_{r_{2}}$, and $v_{s}\left(s \in S_{i}\right)$. In order to show (4.2), let $\bar{r}_{1} \neq \bar{r}_{2} \in F$, with $\bar{r}_{1}+\bar{r}_{2} \in M$ given. Then for example, for all $s \in S_{i}, v_{s}\left(t^{q}-\bar{r}_{1}\right)$ is divisible by q. If also $w_{r_{1}}\left(t^{q}-\bar{r}_{1}\right)$ and $w_{r_{2}}\left(t^{q}-\bar{r}_{1}\right)$ are divisible by q, we are done. Suppose also for example that q does not divide $w_{r_{1}}\left(t^{q}-\bar{r}_{1}\right)$. Then we have $r_{1}=\bar{r}_{1}, r_{1} \neq \bar{r}_{2}$, and $\bar{r}_{2} \in M-r_{1}$. Consequently $w_{r_{i}}\left(t^{q}-\bar{r}_{2}\right)=0$, and all the $v_{s}\left(t^{q}-\bar{r}_{2}\right)$ for $s \in S i$ are divisible by q.

With this, the construction of K is complete.

4 The properties of K

We show in this section (2) and

$$
\begin{align*}
& \left(K \cap L^{q}\right) \backslash K^{q}=\left(\cup_{i \in N} S_{i}\right) \tag{5}\\
& K \backslash F^{*} \cdot K^{q}=F^{*} \cdot\left(\cup_{i \in N} S_{i}\right) \\
& F=\left\{a \in K \mid \forall b \in L^{q} \quad\left(1+b \in K^{q} \wedge a^{q}+b^{-1} \in K^{q}\right) \Rightarrow b \in K^{q}\right\} \tag{6}\\
& F=\left\{a \in K \mid \forall b \in K \quad\left(1+b \in K^{q} \wedge a^{q}+b^{-1} \in K^{q}\right) \Rightarrow b \in F^{*} \cdot K^{q}\right\} \\
& M=\left\{r \in F \mid \forall r_{1}, r_{2} \in F \quad\left(r_{1} \neq r_{2} \wedge r_{1}+r_{2}=r\right) \Rightarrow\right. \\
& \left.\left(t^{1}-r_{1} \in F^{*} \cdot K^{q} \vee t^{1}-r_{2} \in F^{*} \cdot K^{q}\right)\right\} \tag{7}
\end{align*}
$$

Proof of (2). Let $K \subset H \subset L$ and H finite over K. We want to show that q divides the degree [$H: K]$. We can suppose $H=K(a)$. For arbitrarily large n we have $a=a_{n}$. Choose n so large, that

$$
\left[E_{4 n}(a): E_{4 n}\right]=[K(a): K]
$$

In the construction when $i=4 n$ the subcase (a) applies. Thus q divides $E_{4 n}(a): E_{4 n}$.
Proof of (5) and the equation after (5):
" \supset " Let $a \in F^{*} \cdot K^{q}$. For all sufficiently large i we have $a \in F^{*} \cdot E_{i}^{q}$ and $v(a)$ is divisible by q for all v that are trivial on F. Because of (4.1), a does not lie in $F^{*} \cdot S_{i}$.
" \subset " Let $a \in K \backslash F^{*} \cdot K^{q}$. According to Lemma 3, we can choose $f \in F^{*}$ with $\bar{a}=a f \in L^{q}$. We now have $\bar{a} \in\left(K \cap L^{q}\right) \backslash K^{q}$.

Let $a_{n}=\bar{a}$ and n so large, that $\bar{a} \in E_{4 n+1}$. In the construction, under the case $i=4 n+1$ the subcase (b) applies. Then $\bar{a} \in S_{i+1}$. From this it follows that $a \in F^{*} \cdot S_{i+1}$.

Proof of (6) and the equation after (6):
" \supset " Let $a \in F$. For some $b \in K$ suppose $1+b \in K^{q}$ and $a^{q}+b^{-1} \in K^{q}$. Let i be so large that $1+b \in E_{i}^{q}$ and $a^{q}+b^{-1} \in E_{i}^{q}$. Let v be a valuation on E_{i} that is trivial on F. If $v(b)>0$, then $v(b)=-v\left(a^{q}+b^{-1}\right)$ is divisible by q. If $v(b)<0$, then $v(b)=v(1+b)$ is divisible by q. Because then $v(b)$ is always divisible by q, it follows from (4) that $b \notin F^{*} \cdot S_{i}$. Then by the equation after (5), we ahve $b \in F^{*} \cdot K^{q}$. If $b \in L^{q}$, it follows from (5) that $b \in K^{q}$.
" \subset " Let $a \in K \backslash F$. Let n be so large that $a \in E_{4 n+2}$, and let $a=a_{n}$. In the construction, under $i=4 n+2$ the subcase (b) applies. In S_{i+1} there is therefore a b with $1+b$ and $a^{q}+b^{-1} \in E_{i+1}^{q}$. We then have

$$
b \in L^{q}, 1+b \in K^{q}, a^{q}+b^{-1} \in K^{q}, b \notin F^{*} \cdot K^{q} .
$$

Proof of (7).
" \supset " Let $r_{1}+r_{2} \in M, r_{1} \neq r_{2}$. If $t^{q}-r_{i}$ are both ${ }^{14}$ not in $F^{*} \cdot K^{q}$, then because of the equation after (5), we have $t^{q}-r_{1}, t^{q}-r_{2} \in F^{*} \cdot S_{i}$ for sufficiently large i. However, that contradicts (4).
" \subset " Let $r=a_{n} \in F \backslash M$. In the construction under the case $i=4 n+3$, the subcase (b) applies. There there exist $r_{1} \neq r_{2} \in F, r_{1}+r_{2}=r$ and $s_{i} \in F^{*}$, for which $s_{1}\left(t^{q}-r_{1}\right), s_{2}\left(t^{q}-r_{2}\right) \in S_{i+1}$. Then because of the equation after (5) $t^{q}-r_{1}, t^{q}-r_{2} \notin F^{*} \cdot K^{q}$.

5 Proof of the theorems

We still have to show, that A is interpretable in K. Because of (7), it suffices to show that F is definable in K. We distinguish three cases:

Case 1: $L=L_{p}, \mathbf{C}$, or $q \neq 2$ and $L=\mathbf{R}$. Then $K \subset L^{p}$ and by (6) we have

$$
F=\left\{a \in K \mid \forall b \in K\left(1+b \in K^{q} \wedge a_{q}+b^{-1} \in K^{q}\right) \Rightarrow b \in K^{q}\right\}
$$

Case 2: $L=\mathbf{R}, q=2$. Then $\left.F^{*} \cdot K^{q} K^{q} \cup-K^{q}\right\}$, and we have because of the equation after (6),

$$
F=\left\{a \in K \mid \forall b \in K\left(1+b \in K^{q} \wedge a^{q}+b^{-1} \in K^{q}\right) \Rightarrow b \in K^{q} \cup-K^{q}\right\}
$$

Case 3: $L=Q_{p}$. We receive from (6) a definition of F, if we can define $K \cap K^{q}$ in K. But because Q is closed in $\mathbf{Q}_{\mathbf{p}}$, because of Hensel's lemma we have $c \in L^{q}$ if and only if there exists $d \in K$ (or: \mathbf{Q}) with $w\left(c-d^{q}\right) \geq w(c)+3 .^{15}$ It suffics then to give an elementary definition of the p-adic valuation w in K : If r is relatively prime to p, then for all $c \in L$ we have $w(c) \geq 0$ if and only if $1+p c^{r} \in L^{r}$. If r is a prime number different from q and p, we have by (2) that for all $c \in K$, $w(c) \geq 0$ if and only if $q+p c^{r} \in K^{r}$.

6 References

[AK] Ax, Kochen. Diophantine problems over local fields, I, II, III., Amer. J. of Math. 87, 88 (1965, 1966).
[C] Cherlin, G. Mathematical Reviews 50 (1975) (Review of H1].
[CK] Chang-Keisler Model Theory. Amsterdam (1973).

[^6][E] Ershov, Ju. L. Fields with a solvable theory. Doklady Akademii Nauk SSSR 174 (1967), 19-20. English translation, Soviet math. 8 (1967), 575-576.
[F] Ficht, H. Zur Theorie der pythagoräischen Körper, Diplomarbeit, Konstanz (1979).
[H1] Hauschild, K. Rekursive Unentscheidbarkeit der Theorie der pythagoräischen Körper, Fundamenta Math. 82 (1974), 191-197.
[H2] Hauschild, K., Addendum, betreffend dei rekursive Unentscheidbarkeit der Theorie der pythagoräischen Körper, preprint, Berlin (1977).
$[\mathrm{K}]$ Kochen, S. Integer valued rational functions over the p-adic numbers. A p-adic analogue of the theory of real fields. Proc. Symp. pure Math. XII) (Number theory) (1969(, 57-73.
[TMR] Tarski, Mostowski, Robinson, Undecidable Theories, Amsterdam (1953).
[M] Macintyre, A. Definable subsets of p-adic fields, Journal of Symbolic Logic 41 (1976).

[^0]: ${ }^{1}$ Beeson (translator): I think he means "defined", but he says "interpreted". All footnotes in this paper have been inserted by the translator-there are no footnotes in the original. My apologies for the defects of the translation. I am not a native speaker of German.
 ${ }^{2}$ phrases in brackets, like this one, were inserted by Beeson and are not present in the original.

[^1]: ${ }^{3}$ The original has a typo K^{p} / U, but what is meant here is the ultrapower $K^{P} / U=\frac{\prod_{u \in U} K}{U}$. Here is the proof: Given a polynomial $f \in K[x]$, which has a root $\alpha \in \prod_{p \in U} L$, we have to show that $\alpha_{p} \in K_{p}$ except for finitely many p. If $\alpha \notin K_{p}$ then $\left[K_{p}\left[\alpha_{p}\right]: K_{p}\right.$ is divisible by p. This can happen only for those finitely many p that divide the degree of f.
 ${ }^{4}$ He means by \equiv, elementary equivalence.
 ${ }^{5}$ It is not clear what is meant by "one of the fields K given in the theorem as a model." The theories under discussion are not finitely axiomatizable, so he is not attempting to derive this from the previous corollary, but from the theorem itself.
 ${ }^{6} T_{q}^{H}$ has not been defined, only $T_{p, q}^{H}$.

[^2]: ${ }^{7}$ He must mean "has degree a power of 2 ".

[^3]: ${ }^{8}$ The final right parenthesis in the formula is misplaced in the original, but is correctly placed here. The notation L^{q} means the set of q-th powers of elements of L.
 ${ }^{9}$ Although $G_{v_{s}}$ is not defined, it must stand for the value group of the valuation v_{s}.
 ${ }^{10}$ Numbering of the cases added by Beeson. The four cases occupy three full pages in the original paper and several lemmas are proved in between the cases of this definition. We retain this latter confusing feature in the interest of accurate translation, but at least we mark the four cases of the definition clearly. The idea is that four successive values of i will be used to deal with each a_{n}, namely $i=4 n, 4 n+1,4 n+2$, and $4 n+3$. The first value of i (Case 1) will (possibly) add a_{n} to E_{i} to get E_{i+1}. The next value of i (Case 2) will either add $q \sqrt{a_{n}}$ to E_{i} or it will add a_{n} to S_{i}, indicating our intention never to add ${ }^{q} \sqrt{a_{n}}$ to any E_{i} in the future. In Cases 3 and 4 , we either add the q-th roots of certain quantities to E_{i} (in Case 3) or we add the quantities themselves to S_{i} (in Case 4).

[^4]: ${ }^{11} \mathrm{He}$ uses v_{2}^{i} as a variable indexed by i. It's a bit strange to use a superscript for an index. One could more conventionally have written w_{i}.

[^5]: ${ }^{12}$ The text has L^{φ}, which must be a misprint.
 ${ }^{13}$ Beeson: \bar{v} and \bar{v}_{s} are defined on E, an extension of E_{i}, and now we need to extend them to E_{i+1}, which is obtained from E by throwing in two more q-th roots.

[^6]: ${ }^{14}$ Beeson: He has $t^{q}-r_{1}$ but in view of "both" he must mean r_{i}, not r_{1}.
 ${ }^{15}$ Again, d^{ϕ} is certainly a misprint for d^{q}.

