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Introduction

We will construct in this paper a sequence of fields, in each of which the ring of integers can be
interpreted.1

As consequences we obtain:
A finitely axiomatizable theory, which has [either2 ] an algebraically closed field, R(the field of

real numbers) or one of the p-adic fields Qp, as a model, is undecidable. In particular we have: (case
R)

The theory of Euclidean fields is undecidable.
The theory of Pythagorean fields is undecidable.
(A formally-real field is Euclidean, if each of its elements is either a square or the negative of a

square, and Pythagorean, if each sum of squares is a square.)
The question of the decidability of Euclidean fields was posed by Tarski in 1950. ([T]). The case

R of our theorem stated above was conjectured in [T].
Tarski’s problem was until now treated on by K. Hauschild ([H1]), ([H2]). His proof for the unde-

cidability of Pythagorean fields is however mistaken and irreparable (see [C], [F]). Our construction
adapts a fundamental idea of Hauschild’s: “q-th roots”,

I thank A. Prestel and U. Henschel for their support.

1 Discussion of the results

Let Fp be the field with p elements. Let Lp be the algebraic closure of the rational function field
Fp[t].

We show in sections 2-5 the

Theorem 1 Let q be a prime number, A a countable structure, L one of the fields Lp with p 6= q,
C, R, or Qp. There there exists a field K ⊂ L such that

(1) A can be interpreted [defined] in K
(2) If the intermediate field H ⊂ L is finite over K, then the degree [H : K] is equal to 1 or

divisible by q.
If L has characteristic 0 and A = (Z,+, ·), then Z is a definable subset of K.

Corollary 1 Every finite subtheory of the theory of L is undecidable.
1Beeson (translator): I think he means “defined”, but he says “interpreted”. All footnotes in this paper have been

inserted by the translator–there are no footnotes in the original. My apologies for the defects of the translation. I am
not a native speaker of German.

2phrases in brackets, like this one, were inserted by Beeson and are not present in the original.
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Proof [of the corollary]. Let T be a finite subtheory of Th(L). Let P be the set of all primes different
from the characteristic of L. For each q ∈ P , we choose [by the theorem] a field Kq for which (2)
holds and in which (Z,+, ·) is interpretable. We choose a non-principal ultrafilter U on P . Define

K =

∏
q∈P Kq

U
.

Then K is relatively algebraically closed in KP /U .3

From this it follows that K ≡ L.4 (The theory and model theory of algebraically closed, real-
closed, and p-adically closed fields that we have used here can be found in [CK], [M], [K], [AK].)

K is therefore a model of T . Consequently also one of the fields Kq is a model of T , since T is
finite. T thus has a model, in which the ring of whole numbers is interpretable. Then the conclusion
follows from [TMR].

In order to derive further consequences from our theorem, we define a sequence of elementary
theories. The verification that these theories really are “elementary” is left to the reader. (One
observes that the “p-valuation” in models of TH

p,q is elementarily definable.)
TA

p,q = the theory of fields of characteristic p, in which the degree of each irreducible polynomial
is 1 or divisible by q. (p is prime or 0.)

TR
Z = the theory of formally real fields, in which the degree of each irreducible polynomial is 1

or even.
TR

q = the theory of formally real fields such that
(a) the degree of each irreducible polynomial, that has a zero in a formally real extension, is 1

or divisible by q.
(b) the field is closed in its real closure (q 6= 2).
TH

p,q = the theory of formal p-adic fields such that
(a) the degree of each irreducible polynomial, that has a zero in a formally p-adic extension, is

1 or divisible by q.
(b) the field is closed in its p-adic closure (q 6= 2).
One can easily verify that each of these theories (whereby for TA

p,q we still assume p 6= q) has one
of the fields K given in the theorem [sic] as a model.5

Corollary 2 The theories TA
p,q(p 6= q), TR

q , TH
p,q are undecidable.

Without proof we append a sequence of remarks:
Each finite theory that has one of the mentioned fields L as a model, is for sufficiently large q a

subtheory of one of theories TA
p,q, TR

q , TH
q [sic]6 The theory of euclidean fields is contained in TR

q for
q 6= 2.

A field K of characteristic p is a model of TA
p,q if and only if each polynomial in K[X] whose

degree is not divisible by q has a zero in K, if and only if the degree of each finite extension of K is
a power of q.

3The original has a typo Kp/U , but what is meant here is the ultrapower KP /U =

∏
u∈U

K

U
. Here is the proof:

Given a polynomial f ∈ K[x], which has a root α ∈
∏
p∈U L, we have to show that αp ∈ Kp except for finitely many

p. If α 6∈ Kp then [Kp[αp] : Kp is divisible by p. This can happen only for those finitely many p that divide the
degree of f .

4He means by ≡, elementary equivalence.
5It is not clear what is meant by “one of the fields K given in the theorem as a model.” The theories under

discussion are not finitely axiomatizable, so he is not attempting to derive this from the previous corollary, but from
the theorem itself.

6THq has not been defined, only THp,q .
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A formally real field is a model of TR
2 if and only each each polynomial of odd degree has a zero,

if and only if each formally real extension is a power of 2. 7

Suppose (R,<) is closed in a real closed field (L,<). Then R is a model of TR
q if and only if the

degree of each irreducible polynomial with alternating signs is equal to 1 or is divisible by q.
Suppose that the valued field (H,w) is closed in the p-adically closed field (L, v) with w ⊂ v.

Then H is a model of TH
p,q if and only if the degree of each irreducible polynomial fulfilling the

hypotheses of Hensel’s lemma is either 1 or divisible by q.
Open Questions:
TA

q,q is a subtheory of the (decidable) theory of separable closed fields of characteristic q (see [E]).
Is either TA

q,q or TA
q,q + ∀x∃y yq = x decidable?

For q1 6= q2, TA
p,q1

+TA
p,q2

is the theory of algebraically closed fields of characteristic p. For q 6= 2,
TR

2 +TR
q is the theory of real closed fields. For different qi, n ≥ 1, are the theories TH

p,q0
+ . . .+TH

p,qn

and (qi 6= 2) TR
q0

+ . . . TR
qn

decidable?
K is essentially quadratically closed, when each algebraic extension of K is quadratically closed.

The theory of essentially quadratically closed fields of characteristic p is, as a subtheory of TA
p,q for

q 6= 2, undecidable. Is the theory of essentially euclidean fields decidable?

2 Construction of M

From now on, we fix q, A, and L as in the hypotheses of the theorem. Let F be the relative algebraic
closure of the prime field of L.

Lemma 0 There is a subset M of F , such that A is interpretable in (F,M) and
(3) 0 ∈M ; the index of M considered as an additive subgroup of F is infinite.

Proof. First we remark that F is an infinite extension of its prime field. In the case that A = (Z,+, ·)
and L has characteristic 0, take M = Z [and the proof is finished]. Otherwise we can assume that
A = (A,R), with R symmetric and irreflexive, because each structure can be interpreted in a graph.
Let A be enumerated without repetition as a0, a1, . . .. Consider F as a vector space over its prime
field. Let B = b0, b1, . . . be a basis of an infinite-dimensional subspace of infinite codimension. Define
S by S(bi, bj) if and only if R(ai, aj . Then (A,R) ∼= (B,S). Let c1 and c2 be linearly independent
over B. We now define

M = {0} ∪B ∪ {c1 + bi | i ∈ N}
∪{c2 + bi | i ∈ N} ∪ {bi + bj |S(bi, bj)}

Then we can define B and S (with parameters c1, c2):

B = {b ∈M | c1 + b ∈M, c2 + b ∈M}
S = {(b, c) | b ∈ B, c ∈ B, b+ c ∈M, b 6= c}

7He must mean “has degree a power of 2”.
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3 Construction of K

Let t ∈ L be transcendent over F . Let F ∗ = F − {0}.
We want to construct K ⊂ L as an algebraic extension of F (t) in such a way that besides (2) we

have8

F = {a ∈ K | ∀b ∈ Lq(1 + b ∈ Kq ∧ aq + b−1 ∈ Kq → b ∈ Kq)}

and

M = {r ∈ F | ∀r1, r2 ∈ F (r1 6= r2&r1 + r2 = r → (tq − r1 ∈ F ∗ ·Kq ∨ tq − r2 ∈ F ∗ ·Kq))}

We will construct K as the union of a sequence

F (t) = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ L

of finite extensions of F (t). In order to control the q-th powers, we choose at the same time a
sequence

φ = S0 ⊂ S1 ⊂ S2 . . .

of finite subsets Si ⊂ Ei ∩ Lq with the goal that

(K ∩ Lq)\Kq = (∪i∈NSi)

In order not to make the desired relation between M and (K ∩ Lq)\Kq impossible already through
the wrong choice of (Ei, Si), we require for all i that

(4) There is a family (vs)s∈Si
of valuations vs : Ei → Gvs

9 with vs trivial on F , such that
(4.1) (in Gvs

) vs(s) is not divisible by q, for s ∈ Si.
(4.2) for all r1, r2 ∈ F , r1 + r2 ∈M , r1 6= r2:
∀s ∈ Siq divides vs(tq − r1) or ∀s ∈ Siq divides vs(tq − r2)
We begin with an enumeration a0, a1, . . . of all a ∈ L that are algebraic over F (t). Each element

of this sequence should be repeated infinitely often.
Suppose (Ei, Si) are already constructed. We distinguish four cases10

(Case 1). i = 4n. Then there are two subcases.
(a) q divides [Ei(an) : Ei]. Then define (Ei+1, Si+1) = (Ei, Si).
(b) q does not divide [Ei(an) : Ei]. Then define (Ei+1, Si+1) = (Ei(an), Si).
In the verification of (4) we will use the following lemma.

Lemma 1 Let H2 be a finite extension of the field H1, with q not dividing [H2 : H1]. Let v :
H1 → Gv1 be a discrete valuation. Then there is an extension v2 of v1 to H2 with q not dividing
(Gv2 : Gv1).

8The final right parenthesis in the formula is misplaced in the original, but is correctly placed here. The notation
Lq means the set of q-th powers of elements of L.

9Although Gvs is not defined, it must stand for the value group of the valuation vs.
10Numbering of the cases added by Beeson. The four cases occupy three full pages in the original paper and several

lemmas are proved in between the cases of this definition. We retain this latter confusing feature in the interest of
accurate translation, but at least we mark the four cases of the definition clearly. The idea is that four successive
values of i will be used to deal with each an, namely i = 4n,4n+ 1, 4n+ 2, and 4n+ 3. The first value of i (Case 1)
will (possibly) add an to Ei to get Ei+1. The next value of i (Case 2) will either add q√an to Ei or it will add an
to Si, indicating our intention never to add q√an to any Ei in the future. In Cases 3 and 4, we either add the q-th
roots of certain quantities to Ei (in Case 3) or we add the quantities themselves to Si (in Case 4).
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Proof. We can assume that H2 is separable or purely inseparable over H1. In the separable case we
have11

[H2 : H1] =
∑

i

(Gvi
2

: Gv1)fi

where vi
2 runs over all extensions of v1 to H2 and fi is the degree of the valued quotient field

extension. Therefore q cannot divide all the (Gi
v2

: Gv1).
If H2 is purely inseparable over H1, then there is exactly one extension v2. (Gi

v2
: Gv1) is a power

of p, where p 6= q. [That proves the lemma.]
If now the vs : Ei → Gvs

, s ∈ Si, satisfy (4.1) and (4.2), then we choose extensions v̄s : Ei+1 →
Gv̄s

with q not dividing (Gv̄s
: Gvs

). The v̄s for s ∈ Si again satisfy (4.1) and (4.2).
(Case 2) i = 4n+ 1. There are three cases.
(a) an 6∈ Ei or an 6∈ Lq. Then we define (Ei+1, Si+1) = (Ei, Si). [End of Case 1a. The next

sentence must be meant to apply to both Cases 1b and 1c, although it occurs before the indicated
beginning of either case.]

If an ∈ Ei ∩ Lq. we choose vs : Ei → Gvs
, s ∈ Si by (4).

(b) There is some s ∈ Si for which q does not divide vs(an). In this case define

(Ei+1, Si+1) = (Ei, Si ∪ {an}).

Then (4) holds, if we take vs for van
.

(c) q divides all vs(an), s ∈ Si. We define

(Ei+1, Si+1) = (Ei(q√an), Si),

whereby q√an ∈ Ei in case an ∈ Eq
i . That (4) holds follows from

Lemma 2 Let q be different from the characteristic of the quotient field (translation?) of the valued
field (H, v). Let a ∈ H\Hq and v(a) divisible by q. Then there exists an extension w of v to H(q

√
a)

with Gw = Gv.

Proof. First note that q = [H(q
√
a) : H]. There is c ∈ H with v(cq) = v(a). If the class of cqa−1 in

the quotient class field is not a q-th power, then Gw = Gv for all extensions w of v (Gradungleichung).
Otherwise the q-th root of cqa−1 lies in the henselian hull of (H, v). We get w through the embedding
of H(q

√
a) in the henselian hull.

(Case 3) i = 4n+ 2 There are two cases
(a) an 6∈ Ei or an ∈ F . Then we define (Ei+1, Si+1) = (Ei, Si).
(b) an ∈ Ei\F .
Then there is a valuation v on Ei, trivial on F , for which v(ai) is negative. Let (4) be satisfied

by (vs)s∈Si
. First we extend Ei to a field E, for which (4.2) holds for v, vs, (s ∈ Si):

If (4.2) already holds in Ei for v, vs, (s ∈ Si), we just take E = Ei. Otherwise there must be an
r ∈ F such that q does not divide v(tq − r) and for all s ∈ Si, q | vs(tq − r). One observes: there is
at most one r ∈ F , for which q does not divide v(tq − r). We still need

Lemma 3 L = Lq · F .
11He uses vi2 as a variable indexed by i. It’s a bit strange to use a superscript for an index. One could more

conventionally have written wi.
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Proof. Let a ∈ L. We seek b ∈ F ∗ with ab−1 ∈ Lq.12 If L is algebraically closed or real-closed, we
will find b in {1,−1}. In case L = Qp, we note that c is a q-th power in Qp if w(c− dq) ≥ w(c) + 3
(Hensel’s lemma, w is the p-adic valuation on Qp.) We thus choose b ∈ F so that w(a−b) ≥ w(a)+3.
Then we have w(ab−1 − 1) ≥ w(ab−1) + 3.

The lemma delivers a d ∈ F ∗ with d(tq − r) ∈ Lq. We define

E = Ei(q
√
d(tq − r)).

Let v̄ be any extension of v to E of v, the extensions v̄s of the vs being chosen by Lemma 2. Then
(Ei, Si) satisfy (4) and (4.2) holds for v̄, v̄s, (s ∈ Si).

Finally we specify a b ∈ E such that

b, 1 + b, aq
n + b−1 ∈ Lq

c divides v̄(1 + b), v̄(aq
n + b−1), v̄s(1 + b), v̄s(aq

n + b−1), (s ∈ Si)

v̄(b) is the smallest positive element of Gv̄

and define
(Ei+1, Si+1) = (E(q

√
1 + b, q

√
aq

n + b−1, Si ∪ {b}).

If we extend v̄, v̄s using Lemma 213 then we see that (4) holds. ((4.2) is satisfied by the choice of
E.)

It still remains to find b.
The valuations v̄, v̄s are independent. The Approximation Theorem delivers us then a b such

that
q divides v̄s(b), v̄s(b) < 0,−v̄s(aq

n), (s ∈ Si, v̄ 6= v̄s)

v̄(b) = the smallest positive element of Gv̄

Now one easily calculates that all values v̄(1 + b), v̄(aq
n + b−1), v̄s(1 + b), v̄s(aq

n + b−1) are divisible by
q. If L = Lp, C, or q 6= 2 and L = R, it is also clear that b, 1 + b, aq

n + b−1 ∈ Lq. In the other cases
we must specify b still more precisely:

L = R, q = 2: We choose b so that in addition b > 0.
L = Qp: Let w be the p-adic valuation on L, and d ∈ Qq with w(d) ≥ 3 and w(aq

nd) ≥ 3. By
the Approximation Theorem, we choose b so that in addition w(d− b) ≥ w(d) + 3. Then we have

w(b− d) ≥ w(b) + 3⇒ b ∈ Lq

w((1 + b)− 1) = w(d) ≥ 3⇒ 1 + b ∈ Lq

w((aq
n + b−1)− b−1) ≥ w(b−1) + 3 = w(aq

n + b−1) + 3⇒ aq
n + b−1 ∈ Lq

Case(4) i = 4n+ 3. We distinguish two cases:
(a) an ∈M or an 6∈ F . Here we define (Ei+1, Si+1) = (Ei, Si).
(b) an ∈ F\M .
Let (4) be satisfied by (vs)s∈Si . We observe that

B = {r ∈ F | ∃s ∈ Si q does not divide vs(tq − r)}
12The text has Lϕ, which must be a misprint.
13Beeson: v̄ and v̄s are defined on E, an extension of Ei, and now we need to extend them to Ei+1, which is

obtained from E by throwing in two more q-th roots.
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is finite.
For r ∈ F ∗, tq − r has multiple factors (in F [t]). There also exists a valuation v̄r on F (t), trivial

on F , for which v̄r(tq− r) is the smallest positive element of Gv̄r . We choose for each r an extension
wr of v̄r to Ei. Then we have Gv̄r

= Gwr
for almost all r. The set

C = {r ∈ F ∗ | q divides wr(tq − r)}

is thus finite. We remark that wr(tq − r′) = 0, if r 6= r′. We now choose r1 ∈ F so that r1 6= 0, an,
2r1 6= an and r1 do not lie in any of the sets

C, an − C,M −G, an − (M −B).

Let r2 = an − r1. Lemma 3 delivers us si ∈ F ∗ with si(tq − ri) ∈ Lq. We define

(Ei+1, Si+1) = (Ei, Si ∪ {s1(tq − r1), s2(tq − r2)}).

We still have to prove (4). Because q does not divide wr1(tq−r1) and wr2(tq−r2), (4.2) holds for the
valuations wr1 , wr2 , and vs(s ∈ Si). In order to show (4.2), let r̄1 6= r̄2 ∈ F , with r̄1 + r̄2 ∈M given.
Then for example, for all s ∈ Si, vs(tq − r̄1) is divisible by q. If also wr1(tq − r̄1) and wr2(tq − r̄1)
are divisible by q, we are done. Suppose also for example that q does not divide wr1(tq − r̄1). Then
we have r1 = r̄1, r1 6= r̄2, and r̄2 ∈ M − r1. Consequently wri

(tq − r̄2) = 0, and all the vs(tq − r̄2)
for s ∈ Si are divisible by q.

With this, the construction of K is complete.

4 The properties of K

We show in this section (2) and

(K ∩ Lq)\Kq =
(
∪i∈N Si

)
(5)

K\F ∗ ·Kq = F ∗ ·
(
∪i∈N Si

)
F = {a ∈ K | ∀b ∈ Lq (1 + b ∈ Kq ∧ aq + b−1 ∈ Kq)⇒ b ∈ Kq} (6)
F = {a ∈ K | ∀b ∈ K (1 + b ∈ Kq ∧ aq + b−1 ∈ Kq)⇒ b ∈ F ∗ ·Kq}
M = {r ∈ F | ∀r1, r2 ∈ F (r1 6= r2 ∧ r1 + r2 = r)⇒
(t1 − r1 ∈ F ∗ ·Kq ∨ t1 − r2 ∈ F ∗ ·Kq)} (7)

Proof of (2). Let K ⊂ H ⊂ L and H finite over K. We want to show that q divides the degree
[H : K]. We can suppose H = K(a). For arbitrarily large n we have a = an. Choose n so large,
that

[E4n(a) : E4n] = [K(a) : K].

In the construction when i = 4n the subcase (a) applies. Thus q divides E4n(a) : E4n.
Proof of (5) and the equation after (5):
“⊃” Let a ∈ F ∗ ·Kq. For all sufficiently large i we have a ∈ F ∗ ·Eq

i and v(a) is divisible by q for
all v that are trivial on F . Because of (4.1), a does not lie in F ∗ · Si.

“⊂” Let a ∈ K\F ∗ ·Kq. According to Lemma 3, we can choose f ∈ F ∗ with ā = af ∈ Lq. We
now have ā ∈ (K ∩ Lq)\Kq.
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Let an = ā and n so large, that ā ∈ E4n+1. In the construction, under the case i = 4n + 1 the
subcase (b) applies. Then ā ∈ Si+1. From this it follows that a ∈ F ∗ · Si+1.

Proof of (6) and the equation after (6):
“⊃” Let a ∈ F . For some b ∈ K suppose 1 + b ∈ Kq and aq + b−1 ∈ Kq. Let i be so large that

1 + b ∈ Eq
i and aq + b−1 ∈ Eq

i . Let v be a valuation on Ei that is trivial on F . If v(b) > 0, then
v(b) = −v(aq + b−1) is divisible by q. If v(b) < 0, then v(b) = v(1 + b) is divisible by q. Because
then v(b) is always divisible by q, it follows from (4) that b 6∈ F ∗ · Si. Then by the equation after
(5), we ahve b ∈ F ∗ ·Kq. If b ∈ Lq, it follows from (5) that b ∈ Kq.

“⊂” Let a ∈ K\F . Let n be so large that a ∈ E4n+2, and let a = an. In the construction, under
i = 4n + 2 the subcase (b) applies. In Si+1 there is therefore a b with 1 + b and aq + b−1 ∈ Eq

i+1.
We then have

b ∈ Lq, 1 + b ∈ Kq, aq + b−1 ∈ Kq, b 6∈ F ∗ ·Kq.

Proof of (7).
“⊃” Let r1 + r2 ∈M , r1 6= r2. If tq − ri are both14 not in F ∗ ·Kq, then because of the equation

after (5), we have tq − r1, t
q − r2 ∈ F ∗ · Si for sufficiently large i. However, that contradicts (4).

“⊂” Let r = an ∈ F\M . In the construction under the case i = 4n+ 3, the subcase (b) applies.
There there exist r1 6= r2 ∈ F , r1 + r2 = r and si ∈ F ∗, for which s1(tq − r1), s2(tq − r2) ∈ Si+1.
Then because of the equation after (5) tq − r1, t

q − r2 6∈ F ∗ ·Kq.

5 Proof of the theorems

We still have to show, that A is interpretable in K. Because of (7), it suffices to show that F is
definable in K. We distinguish three cases:

Case 1: L = Lp, C, or q 6= 2 and L = R. Then K ⊂ Lp and by (6) we have

F = {a ∈ K | ∀b ∈ K(1 + b ∈ Kq ∧ aq + b−1 ∈ Kq)⇒ b ∈ Kq}

Case 2: L = R, q = 2. Then F ∗ ·Kq Kq ∪−Kq}, and we have because of the equation after (6),

F = {a ∈ K | ∀b ∈ K(1 + b ∈ Kq ∧ aq + b−1 ∈ Kq)⇒ b ∈ Kq ∪ −Kq}

Case 3: L = Qp. We receive from (6) a definition of F , if we can define K ∩ Kq in K. But
because Q is closed in Qp, because of Hensel’s lemma we have c ∈ Lq if and only if there exists
d ∈ K (or: Q) with w(c − dq) ≥ w(c) + 3.15 It suffics then to give an elementary definition of the
p-adic valuation w in K: If r is relatively prime to p, then for all c ∈ L we have w(c) ≥ 0 if and only
if 1 + pcr ∈ Lr. If r is a prime number different from q and p, we have by (2) that for all c ∈ K,
w(c) ≥ 0 if and only if q + pcr ∈ Kr.
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