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ON THE MANNER OF RESOLVING THE EQUATION t2 − pu2 BY

MEANS OF CIRCULAR FUNCTIONS

LEJEUNE DIRICHLET , TRANSLATED BY M. BEESON

In a memoir which I gave at the Academy of Sciences in Berlin, and of which
one can find an extract in the Compte Rendu of last July, I set myself the task to
prove rigorously that each infinite arithmetic progression, of which the first term
and the interval are integers with no common divisor, necessarily contains an in-
finity of prime numbers. The methods which I have used to arrive at a complete
demonstration of that proposition can be employed with success on different ques-
tions relative to numbers, and they have given me a chance to remark on a singular
connection between two theories that up to now had no point of contact.

One knows that the equation t2 − pu2 = 1, in which p denotes a positive non-
square integer, is always solvable in integers, and that that fundamental theorem in
the theory of equations of the second degree has been deduced by LaGrange by
consideration of the periodic continued fraction expansion of

√
p. It is remarkable

that the solution of the preceding equation can also be carried out by means of the
theory of binomial equations, which goes back to M. Gauss. It results not only
that the equation is always solvable, but one may also deduce general formulas that
express the unknowns t and u in terms of circular functions.

Although that manner of treating the equation is applicable to all cases, I shall
limit myself here to the case when p is a prime number, which suffices to illustrate
the spirit of the method. It is without doubt useless to add that the method of
solution that we are going to indicate is very much less appropriate to numerical
calculation than that which derives from the use of continued fractions.2 The new
method of solving the equation t2−pu2 = 1 should be envisaged only as a theoretical
connection between two branches of number theory.3

1This article originally appeared in Crelle, Journal für die Reine und angewandte Mathe-
matik, Band 17, 8.286–290 (1837). It was reprinted in Band 1 of G. Lejeune Dirichlet’s Werke,
Herausgegeben auf Veranlassung der Preussischen Akademie der Wissenschaften, von L. Kro-
necker, in Zwei Banden, pp. 343-350.

2Translator’s note: In Dirichlet’s day, one could not compute trig functions to many dec-
imal places of accuracy, and it would have been very laborious to multiply several values
of the sine function even to six decimals. Today we can do that, although some difficul-
ties still arise when we need thousands of decimal places. Even so, Dirichlet’s remark re-
mains true, because in his method, we have to multiply p numbers, so the method takes
O(p) steps, while the continued-fraction algorithm takes as many steps as the period of the
continued fraction, which is conjectured to be O(

√
p), both in maximum and average. See

https://web.math.princeton.edu/mathlab/jr02fall/Periodicity/mariusjp.pdf
3Translator’s note: Today we would not look on the solution of Pell’s equation and the study

of the L-function (which is what that product of sines is) as two different branches of number
theory; they both are tools for studying quadratic fields. Dirichlet’s work in this paper is not often
(if ever) cited, but it is in the unattributed core of number theory textbooks, e.g., Theorem 2,

p. 344 of Borevic-Shafaravic. In this paper Dirichlet finds some solution of Pell’s equation, but he
never asserts that it is the fundamental solution, and in fact it is the fundamental solution raised
to the power h, where h is the class number, as the cited theorem makes clear, at least after the
minor correction in the next translator’s note.
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Let p be an odd prime number and consider the equation

xp − 1

x− 1
= X = 0(1)

The roots of this equation are given by the expression e2mπi/p, wherem is an integer
in the sequence

1, 2, . . . , (p− 1).

Among these numbers there are (p − 1)/2 quadratic residues mod p, and equally
many non-residues, which we designate by

a1, . . . , a(p−1)/2 and b1, . . . , b(p−1)/2,

respectively (in any order). With this notation, by the theory of M. Gauss
4 we

have the two equations

Y + Z
√
±p = 2(x− ea12πi/p)(x− ea22πi/p) . . . (x− ea(p−1)/22πi/p)(2)

Y − Z
√
±p = 2(x− eb12πi/p)(x− eb22πi/p) . . . (x − eb(p−1)/22πi/p)

using the signs above or below according as p is congruent to 1 or 3 mod 4, and Y
and Z are polynomials in x with integer coefficients. Multiplying the two preceding
equations, we have

4X = Y 2 ∓ pZ2(3)

Because the numbers
a1, . . . , a(p−1)/2,

after re-ordering, are the remainders of the numbers

12, 22, . . . , (12 (p− 1))2

on division by p, the first of the equations (2) can evidently be replaced by

Y + Z
√
±p = 2(x− e1

22πi/p)(x − e2
22πi/p) . . . (x− e((p−1)/2)22πi/p)(4)

Now we distinguish the two possible forms of p, and suppose for the first case that
p is congruent to 1 mod 4. Taking x = 1 in equations (3) and (4), and designating
by g and h the integer values of Y and Z corresponding to that substitution, there
will come

g2 − ph2 = 4p,(5)

g + h
√
p = 2(1− e1

22πi/p)(1− e2
22πi/p) . . . (1− e((p−1)/2)22πi/p)

Because one may write

1− es
22πi/p = −2i sin(s2 π

p )e
s2πi/p,

the last equation takes the form:

g + h
√
p = 2

1
2 (p+1)i

1
2 (p+1) sin(12 π

p ) sin(2
2 π
p ) . . .

sin((12 (p− 1))2 π
p )e

12+22+...+(
1
2 (p−1))2πi/p

On the other hand:

12 + 22 + . . .+ (12 (p− 1))2 = p
p2 − 1

24

4Disquisitiones Arithmeticae. Art. 357.
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where p2
−1
24 is evidently an even or odd integer, according as p is congruent to 1 or

5 mod 8. The exponential factor is therefore following the two cases +1 or −1, and
can consequently be expressed as (−1)

1
4 (p−1). Substituting that expression into the

previous equation, and recalling that 1
2 (p− 1) is odd, we have

g + h
√
p = 2

1
2 (p+1) sin(12 π

p ) sin(2
2 π
p ) . . . sin((

1
2 (p− 1))2 π

p )

It results from equation (5) that the integer g is divisible by p; putting pk in place
of g, we have

h2 − pk2 = −4(6)

h+ k
√
p =

2
1
2 (p+1)

√
p

sin(12 π
p ) sin(2

2 π
p ) . . . sin((

1
2 (p− 1))2 π

p ) = α

One sees thus that there are integers h and k such that

h2 − pk2 = −4

and that such integers may be expressed by the circular functions, because one
easily concludes from the preceding equations that

h =
α

2
−

2

α

k =
1
√
p

(

α

2
+

2

α

)

To pass to the equation

t2 − pu2 = 1,

it is necessary to distinguish the cases where p has the form 8µ+ 1 or 8µ + 5. In
the former case, h and k must both be even, and we will have

(

h

2

)2

−
(

k

2

)2

= −1,

from which one concludes
(

h

2
+

k

2

√
p

)2

= t+ u
√
p,

the rational parts and the coefficients of
√
p being separately equal.

When p has the form 8µ+ 5, h and k will both be odd.5

We put

(h+ k
√
p)

3
= h′ + k′

√
p

5Translator’s note: This is not true. For example, when p = 37, we have h = −12 and k = 2.
To fix this, instead of dividing in cases according as p is congruent to 1 or 5 mod 8, we should
divide in cases according as h and k are both even or not. In modern terms, we are checking
whether the fundamental unit of Q(

√
p) belongs to Z[

√
p] or not. Having p congruent to 5 mod 8

is necessary but not sufficient for it not to belong. In that case, we must cube u = h −

√

k. Of
course, if we cube it when h and k are both even, we still get the solution u3 of Pell’s equation,
but it will not be the one Dirichlet presumably intended, i.e. the fundamental solution of Pell
raised to the power of the class number.
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Consequently

h′ = h3 + 3phk2

k′ = 3h2k + pk3

We have [multiplying
(

h+ k
√
p
)3

= h′ + k′
√
p by its conjugate and using (6)]

(h′)2 − p(k′)2 = −43.

It is easy to see that the numbers h′ and k′ are both divisible by 8. Using (6) we
have

h′ = 4h(pk2 − 1)

k′ = 4k(h2 + 1)

The preceding equation then gives
(

h′

8

)2

− p

(

k′

8

)2

= −1

from which one can deduce the solution of the equation t2− pu2 = 1, on putting as
above

(

h′

8
+

k′

8

√
p

)2

= t+ u
√
p

Now we take up the second case, in which p has the form 4µ + 3. In that case,

the coefficients of the terms at equal distances from the extremes 2x
1
2 (p−1) and −2

have the same numerical values with opposite signs, which one can put in the form

Y = 2(xm − 1) + a(xm−2 − 1) + b(xm−4 − 1) + . . . ,

where for abbreviation m = 1
2 (p− 1). Then, on attributing to the indeterminant x

the particular value i, one has

xm − 1 = −1 + i, x(xm−2 − 1) = −1 + i

x2(xm−4 − 1) = 1 + i, x3(xm−6 − 1) = 1 + i

or

xm − 1 = −1− i, x(xm−2 − 1) = 1− i

x2(xm−4 − 1) = 1− i, x3(xm−6 − 1) = −(1− i)

according as m has the form 4µ+3 or 4µ+1, that is to say, according as p has the
form 8µ+ 7 or 8µ+ 3. One sees that the polynomial Y will become, according to
the two cases,

g(1 + i) or g(1− i),

g designating an integer. As to the other polynomial Z whose coefficients equally
distant from the beginning and the end are equal, one finds in a similar manner
that it reduces, for x = i, to the form h(1 + i) or h(1− i), according as p = 8µ+ 7
or p = 8µ+ 5, h designating similarly an integer.

The result of that, and of the fact that evidently X = i when x = i, is that the
equation

4X = Y 2 + pZ2

will become
g2(1 ± i)2 + ph2(1∓ i)2 = 4i,

the signs above or below being taken according as p has the form 8µ+7 or 8µ+3.
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The preceding equation is equivalent to this one:

g2 − ph2 = ±2,(7)

which is therefore always solvable, and from which one passes easily to the equation
t− pu2 = 1 on putting

(g + h
√
p)2 = 2t+ 2u

√
p,

where t and u will be integers, g and h being evidently odd. To express afterwards
g and h by circular functions, one puts x = i in equation (4) and combines the
result of that substitution with equation (7).

One sees that the solution just indicated is actually a simple corollary of a
theorem due to M. Gauss, according to which the polynomial 4X may always be
put in the form Y 2 ∓ pZ2, p being a prime number. To extend the same solution
to the general case in which p is a composite number, one has to make a very great
extension of the cited theorem. That generalization does not present any difficulty,
and may be deduced from the principles on which rests the analysis of M. Gauss.
That is why I will content myself with indicating the result for a number composed
of two prime factors.

Let p and q be two different prime numbers. One finds that the entire function

4
(xpq − 1)(x− 1)

(xp − 1)(xq − 1)
(8)

can still be put in the form

Y 2 ∓ pqZ2

Y and Z always designate polynomials with integer coefficients; the sign above or
below is used according as pq has the form 4µ+ 1 or 4µ+ 3. That decomposition
results, as in the case of a single prime number, from the distribution in two groups
of the roots of the equation obtained by setting expression (8) to zero.

Here is an example of this decomposition. Setting p = 3, q = 11, one will have

4
(x33 − 1)(x− 1)

(x3 − 1)(x11 − 1)
= Y 2 − 33Z2,

Y = 2x10 − x9 + 8x8 + 5x7 + 2x6 + 14x5 + 2x4 + 5x3 + 8x2 − x+ 2,

Z = x9 + x7 + 2x6 + 2x4 + x3 + x

1. Appendix by translator

Here I compare Dirichlet’s solution to the formulas in Borevich-Shafarevich. The-
orem 2, p.344, and equation (4.4) there say that

ǫh =

∏

b sin
πb
D

∏

a sin
πa
D

where a and b run through all natural numbers in (0, D/2) which are relatively prime
to D and satisfy χ(a) = +1, χ(b) = −1. Specializing to D = p, a runs through
the quadratic residues and b runs through the non-residues, so the denominator is
√
p/2

1
2 (p+1) times Dirichlet’s number α.
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