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Abstract

We investigate the problem of cutting a triangle into N congruent
triangles. While this can be done for certain values of N , we prove that
it cannot be done for N = 7. This result is a special case of much more
general results obtained in [1], but the proof in this paper may still be
of some interest, because only methods of Euclidean geometry are used
(including simple trigonometry that can in principle be done by geometric
arguments).

1 Introduction

We consider the problem of cutting a triangle into N congruent triangles.
Figures 1 through 1 show that, at least for certain triangles, this can be
done with N = 3, 4, 5, 6, 9, and 16. Such a configuration is called an
N -tiling.

Figure 1: Two 3-tilings

The method illustrated for N = 4 ,9, and 16 clearly generalizes to any
perfect square N . While the exhibited 3-tiling, 6-tiling, and 5-tiling clearly
depend on the exact angles of the triangle, any triangle can be decomposed
into n2 congruent triangles by drawing n − 1 lines, parallel to each edge
and dividing the other two edges into n equal parts. Moreover, the large
(tiled) triangle is similar to the small triangle (the “tile”). It follows that
if we have a tiling of a triangle ABC into N congruent triangles, and m
is any integer, we can tile ABC into Nm2 triangles by subdividing the
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Figure 2: A 4-tiling, a 9-tiling, and a 16-tiling

Figure 3: Three 4-tilings

first tiling, replacing each of the N triangles by m2 smaller ones. Hence
the set of N for which an N -tiling of some triangle exists is closed under
multiplication by squares.

Let N be of the form n2 + m2. Let triangle T be a right triangle
with perpendicular sides n and m, say with n ≥ m. Let ABD be a right
triangle with base AD of length m2, the right angle at D and altitude
mn, so side BD has length mn. Then ABD can be decomposed into m
triangles congruent to T , arranged with their short sides (of length m)
parallel to the base AD. Now, extend AD to point C, located n2 past D.
Triangle ADC can be tiled with n2 copies of T , arranged with their long
sides parallel to the base. The result is a tiling of triangle ABC by n2+m2

copies of T . This is a rigid tiling. The 5-tiling exhibited in Fig. 3 is the
simplest example, where n = 2 and m = 1. The case N = 13 = 32 + 22 is
illustrated in Fig. 4.

If the original triangle ABC is chosen to be isosceles, then each of
the n2 triangles can be divided in half by an altitude; hence any isosceles
triangle can be decomposed into 2n2 congruent triangles. If the original
triangle is equilateral, then it can be first decomposed into n2 equilateral
triangles, and then these triangles can be decomposed into 3 or 6 triangles
each, showing that any equilateral triangle can be decomposed into 3n2 or
6n2 congruent triangles. Note that these are different tilings than those
obtained by the method of the first paragraph of this section. For example
we can 12-tile an equilateral triangle in two different ways, starting with a
3-tiling and then subdividing each triangle into 4 triangles (“subdividing
by 4”), or starting with a 4-tiling and then subdividing by 3.

The elementary constructions just described suffice to produce N -
tilings when N has one of the forms n2, n2 + m2, 2n2, 3n2, or 6n2. The
smallest N not of one of these forms is N = 7. The main theorem of
this paper is that there is no 7-tiling. In [1], we have completely solved
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Figure 4: A 5-tiling

Figure 5: A 6-tiling, an 8-tiling, and a 12-tiling

the problem of determining the values of N for which there exists some
N -tiling. The proof given here for the special case N = 7 may still be of
some interest, since it uses only elementary methods of of Euclidean ge-
ometry (including some elementary trigonometry, which could be done by
geometric methods). To tackle the next interesting case, N = 11 by these
methods would require hundreds, if not thousands, of pages. Luckily, we
found a more abstract approach in [1].

The examples of N -tilings given above are well-known. They have
been discussed, in particular, in connection with “rep-tiles” [5]. A “rep-
tile” is a set of points X in the plane (not necessarily just a triangle)
that can be dissected into N congruent sets, each of which is similar to
S. An N -tiling in which the tiled triangle ABC is similar to the triangle
T used as the tile is a special case of this situation. That is the case,
for example, for the n2 family and the n2 + m2 family, but not for the
3-tiling, 6-tiling, or the 12-tiling exhibited above. Thus the concepts of
an N -tiling and rep-tiles overlap, but neither subsumes the other. As
far as I have so far been able to discover, there is (until now) not a
single publication mentioning the concept of an N -tiling in general. The
paper [4] also contains a diagram showing the n2 family of tilings, but the
problem considered there is different: one is allowed to cut N copies of
the tile first, before assembling the pieces into a large figure, but the large
figure must be similar to the original tile. The two books [2] and [3] have
tantalizing titles, but deal with other problems.

2 Definitions and Notation

We give a mathematically precise definition of “tiling” and fix some ter-
minology and notation. Given a triangle T and a larger triangle ABC, a
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Figure 6: A 13-tiling

“tiling” of triangle ABC by triangle T is a list of triangles T1, . . . , Tn con-
gruent to T , whose interiors are disjoint, and the closure of whose union
is triangle ABC. A “strict vertex” of the tiling is a vertex of one of the
Ti that does not lie on the interior of an edge of another Tj . A “strict
tiling” is one in which no Ti has a vertex lying on the interior of an edge
of another Tj , i.e. every vertex is strict. For example, the tilings shown
above for N = 5 and N = 13 are not strict, but all the other tilings shown
above are strict. The letter “N” will always be used for the number of
triangles used in the tiling. An N -tiling of ABC is a tiling that uses N
copies of some triangle T .

Let a, b, and c be the sides of triangle ABC, and angles α, β, and γ be
the angles opposite sides a, b, and c, i.e. the interior angles at vertices A,
B, and C. An interior vertex in a tiling of ABC is a vertex of one of Ti

that does not lie on the boundary of ABC. A boundary vertex is a vertex
of one of the Ti that lies on the boundary of ABC.

In the case of a non-strict tiling, there will be a non-strict vertex
V ; so V lies on an edge of Tj , with Tj on one side of the edge and Ti

(having vertex V ) on the other side. Consider the maximal line segment
S extending this edge which is contained in the union of the edges of the
tiling. Since there are triangles on each side of S, there are triangles on
each side of S at every point of S (since S cannot extend beyond the
boundary of ABC). Hence the length of S is a sum of lengths of sides of
triangles Ti in two different ways (though the summands may possibly be
the same numbers in a different order). Let us assume for the moment
that the summands are not the same numbers. Then it follows that some
linear relation of the form

pa + qb + rc = 0

holds, with p, q, and r integers not all zero (one of which must of course
be negative), and the sum of the absolute values of p, q, and r is less than
or equal to N , since there are no more than N triangles.

By the law of sines we have

a

sinα
=

b

sin β
=

c

sin γ

Up to similarity then we may assume

a = sin α
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b = sin β

c = sin γ

Since γ = π − (α + β) we have sin(γ) = sin(α + β), so

p sin α + q sin β + r sin(α + β) = 0.

If S is a maximal segment containing a non-strict vertex, then there
will be integers n and m such that n triangles have a side contained in S
and lie on one side of S, and m triangles have a side in S and lie on the
other side of S. In that case we say S is of type m : n. For example, Fig. 3
shows a 5-tiling with a maximal segment of type 1 : 2. This definition does
not require that the lengths of the subdivisions of the maximal segment
all be the same (as they are in Fig. 3).

3 2-tilings, 3-tilings and 4-tilings

In this section, we warm up by characterizing 2-tilings, 3-tilings and 4-
tilings. Not only will these results be used later, but the ideas introduced
in the proofs will also be used later.

Lemma 1 If, in a tiling, P is a boundary vertex (or a non-strict interior
vertex) and only one interior edge emanates from P , then both angles at
P are right angles and γ = π/2.

Proof. If either the two angles at P are different, then their sum is less
than π, since the sum of all three angles is π. Therefore the two angles
are the same. But 2α < α + β < π and 2β < β + γ < π. Therefore both
angles are γ. But then 2γ = π, so γ = π/2.

Theorem 1 If triangle ABC is 2-tiled by T , then ABC is isosceles and
the tiling divides it into two right triangles by means of an altitude.

Proof. The two triangles T1 and T2 have a total of 2π angles, of which
π are accounted for by the vertices of ABC. An interior vertex (strict or
not) would require there to be three triangles. Hence there is exactly one
more vertex, and it is a boundary vertex. Call that vertex P . Since there
are only two triangles, only one interior edge emanates from P , and its
other end must be at the opposite corner of triangle ABC. Relabeling
if necessary, we can assume this corner is B and P lies on AB. By the
lemma, γ = π/2 and the angles at P are right angles. Then AB = BC = c
since these sides are opposite the right angles of T1 and T2 respectively.
Hence triangle ABP is congruent to triangle CBP and the tiling is as
described in the theorem. That completes the proof.

We could have reached the conclusion that just one interior edge em-
anates from P in another way, which seems overly complicated in this
example, but will be useful below. The triangles T1 and T2 have together
six boundary segments. Four of these occur on the boundary of ABC,
and the other remaining boundary segments must suffice to count each
interior edge from both sides. In this case there are just two remaining
(because 6 − 4 = 2) and hence there is exactly one interior edge, whose
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two sides account for these two boundary segments. In general in an N -
tiling there are Nπ radians to account for, of which π are in the corners of
triangle ABC, and the rest are distributed between boundary and interior
vertices. If there are k boundary vertices then there are k + 3 boundary
segments on the boundary of ABC, leaving 3N −k−3 to be accounted for
by counting each side of each interior edge. In a strict tiling, the number
of interior edges will thus be half of 3N −k−3, but in a non-strict tiling, a
more detailed accounting must be made. In the next proof, we will apply
this technique to the case N = 3.

Theorem 2 If triangle ABC is 3-tiled by T , then either (i) ABC is
equilateral and the tiling consists in connecting the center of ABC to its
vertices, or (ii) ABC is a 30-60-90 triangle, and there is no interior
vertex of the tiling; the shared side of two of the Ti is perpendicular to the
hypotenuse of ABC at its midpoint P , and meets side b at Q, say, and the
other interior edge connects Q to the vertex B (where the angle of ABC
is π/3). See Fig. 1.

Proof. Suppose ABC is 3-tiled by T1, T2, and T3. First we suppose the
tiling is strict. The total of the angles in the tiling is 3π, since there are
three copies of T . The total angle accounted for by the vertices of ABC
is π. Each strict interior vertex accounts for 2π and each boundary vertex
for π. Thus there are only two possibilities: one interior vertex and no
boundary vertices, or two boundary vertices and no interior vertex.

First assume that there is one interior vertex and no boundary vertices.
Since there are no boundary vertices, three of the nine boundary segments
of the Ti are on the boundary of ABC, and the other six are double-
counted as the two sides of three interior edges. Since at least three edges
must emanate from an interior vertex, all three edges do emanate from
the one interior vertex P . Since there are no boundary vertices, they must
terminate in the three vertices A, B, and C. That is, at least the tiling
has the topology of the tiling in (i). The three angles at P must all be γ,
since any other sum of three angles chosen from α, β, and γ is at most
β + 2γ, which is less than 2π because

β + 2γ = β + α + (γ − α) + γ

= π + γ − α

< 2π

Hence 3γ = 2π, so γ = 2π/3. Hence the c sides of all three Ti are the
faces of triangle ABC, which is thus equilateral. Now let AP = a; then in
triangle APC, we have PC = b; hence in triangle CPB, we have PB = a;
hence in triangle PBA we have AP = b. Hence AP is equal to both a and
b, so a = b and the Ti are isosceles. Hence the tiling is the one described
in (i) of the theorem.

Next assume that there are two boundary vertices P and Q (and hence
no interior vertex). Then there are five boundary segments, i.e. sides of
copies of T lying on the boundary of ABC. Since there are only three
triangles, two of the triangles must account for two sides each, i.e. two
of the angles of ABC are not “split”, i.e. are not shared by more than
one Ti. Hence each Ti is similar to triangle ABC. Of the 9 sides of the
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three Ti, five occur on the boundary of ABC, and the other 4 occur in
the interior. Since each interior side is counted twice, as a boundary of
the triangles on either side, there must be exactly two interior edges. One
of these interior edges must connect P and Q, because if not, then both
interior edges would have to connect P or Q to the opposite vertex. But
if one edge connects (say) Q to the opposite vertex, then the edge from P
is blocked from reaching the opposite vertex, and vice-versa, if one edge
connects P to the opposite vertex, the other edge cannot connect Q to
the opposite vertex. Hence it cannot be that both interior edges connect
P or Q to the opposite vertex. The only other possibility is that one of
these edges connects P to Q. The other interior edge must connect one of
P or Q to the opposite vertex of ABC, which must be split. That means
that one of P or Q (by relabeling we can assume it is P ) has only one
interior edge emanating from it. That implies that γ is a right angle, by
Lemma 1. Changing the labels A, B, and C if necessary, we can assume
that P lies on AB, Q lies on BC, and QA and QP are the interior edges.
Angles QPB and QPA are right angles, and triangle AQP is congruent
to triangle QPB. Sides AQ and QB are opposite the right angle and
hence are equal. Hence AP = PB and P is the midpoint of AB. The
angle at B is not split. Since triangle ABC is similar to each triangle Ti,
but its area is 3 times larger, the similarity factor is

√
3. Let T1 and T2

be the two triangles sharing side PQ, with T1 = QPA and T2 = QPB.
Then T3 shares side AQ, which is side c in triangle T1, so the third vertex
C of ABC, which is also the vertex of T3 opposite AQ, must be the
right-angled vertex of ABC. Now triangle CAB is similar to triangle
PQB, since they have the same angle at B and right angles at C and P
respectively. Hence AB and QB are corresponding sides. Their ratio is
therefore

√
3, i.e. AB =

√
3QB. But since AB = AP + PB = 2AV , we

have 2PB =
√

3QB. Hence angle B = π/6 and angle PQB = π/3, and
the tiling is as described in (ii) of the theorem. That completes the proof
in case of a strict tiling.

Now suppose the tiling is non-strict. Since only three triangles are
involved, the only possible type of non-strict vertex is the type we shall
call 2 : 1 below, where one side of (say) T1 is matched by two sides, one of
T2 and one of T3. There cannot be two such vertices as the three triangles
will have only this one side of T1 in common, and if the sides of T2 and
T3 that touch do not have the same length, a triangle ABC will not be
formed. Hence, of the 3π in total angles, π is accounted for at the interior
vertex P , and π is accounted for by the vertices of ABC, leaving π to
be accounted for by a single boundary vertex Q. With one boundary
vertex there are 4 boundary segments on the boundary of ABC, leaving
3 · 3 − 4 = 5 in the interior (counting each side of each interior segment).
Three of those are the three sides that lie on the maximal segment of the
non-strict vertex P . The other two are the two sides of one more interior
segment with an endpoint at P . Since there is only one boundary vertex,
the three endpoints of the interior segments must end at Q and at two
corners of the triangle. The maximal segment must end at Q and one
corner, which we may label A, and the other interior segment runs from
P to another corner, say B. Since only two triangles share vertex Q, we
have γ = π/2 by Lemma 1. But now triangle QPB has two right angles,
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at Q and P . That contradiction completes the proof.

Theorem 3 If triangle ABC is 4-tiled by T , then (a) there is no interior
vertex, and (b) T is a 30-60-90 triangle, and the tiling is one of those
shown in Fig. 3 (or a reflection of these), or T can be any triangle and
the tiling is one of the n2 family as illustrated in Fig. 2.

Proof. First suppose the tiling is strict. The four triangles have angles
totaling 4π. The vertices of ABC account for π of this, and the remaining
3π must be accounted for. There are just two possibilities: one interior
vertex and one boundary vertex, or no interior vertices and three boundary
vertices.

First assume there is one interior vertex P and one boundary vertex
Q. Then there are four boundary segments and (12 − 4)/2 = 4 interior
edges. Then these four edges must emanate from P and go to A, B, C,
and P . By the lemma, the angle at Q is a right angle and γ = π/2.
Hence all four angles at P must be right angles. Then triangle APQ has
two right angles, contradiction. That disposes of the case of one interior
vertex and one boundary vertex.

Next assume there are three boundary vertices and no interior vertex.
Then there are six boundary segments and (12 − 6)/2 = 3 interior edges.

First assume that one of the interior edges terminates in A, B, or C
(splitting the angle there). Then there are not enough edges to provide
two edges at each boundary vertex, so one boundary vertex has only one
edge terminating there. Hence by the lemma, γ = π/2. Label the split
vertex B and let Q be the interior vertex at the other end of the interior
edge emanating from B. Then either triangles ABQ and CBQ are both
2-tiled, or one is 3-tiled and the other is congruent to the tile T . First
assume ABQ is 3-tiled. There are two possible 3-tilings; in one case, angle
AQB is π/3, and the fourth triangle T3 can contribute only an angle of π/6
at each vertex, not enough to make π and remove a vertex. So this case
is impossible. In the other possible 3-tiling, ABQ is a 30-60-90 triangle
similar to T , and the three sides of ABC are a + c, 2b, and b. Neither
a + c nor 2b can be a side of T , so we must have QB = b, and angle
C = π/3. We then necessarily have the third tiling show in Fig. 3 (or its
reflection). Next assume that ABQ is 2-tiled. Then AQ = QB and QP
is an altitude of triangle AQB. The third interior vertex R must lie on
QC or on BC. First assume R lies on BC. Then the third interior edge
is QR, and both angles at R are right angles by the lemma. We therefore
have the first tiling shown in Fig. 3. Next assume R lies on AC. Then
the third interior edge must be BR, and angle QRB must be a right angle
by the lemma. Then triangle PQB is congruent to triangle RQB and we
have the third tiling in Fig. 3. This disposes of the case in which one of
the interior edges terminates in a vertex of ABC.

Now the three interior edges terminate only in the three boundary
vertices. It follows that triangle ABC is similar to triangle T ; since there
are four triangles, the similarity factor is 2: triangle ABC is twice the
size of T , and the same shape. If two boundary vertices lie on the same
side of ABC, three interior edges cannot exist. Therefore one boundary
vertex lies on each side of ABC. Label them so that P lies on AB, Q lies
on BC, and R lies on AC. Then the three interior edges form triangle
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PQR. Let RQ = a, PQ = b, and RQ = c. Then if CQ = a, it follows
that QB = a and AR = RC = b, and we have an n2-family tiling. If, on
the other hand, CQ 6= a, then since RQ = c we must have CQ = b and
b 6= a. But then RC = a and hence AR = a. But by definition RP = a,
and by the similarity of ABC to T , we have AB = 2c and hence AP = c.
Hence a = b, contradiction. This completes the proof in the case of a
strict tiling.

Now assume that there is a single non-strict vertex P . If this vertex
is of type 3 : 1 then every one of the four triangles shares a side with
the maximal segment S. There are no more triangles that can share the
two interior vertices on S, so only one edge emanates from each of these
vertices on the side bounding three triangles. By the lemma the angles at
these vertices are right angles. But then the middle of the three triangles
has two right angles, contradiction. Hence the non-strict vertex does not
have type 3 : 1. If it has type 2 : 2, then similarly the angles at the
interior vertices are right angles, so the union of the four copies of T has
four vertices and cannot be a triangle ABC. Therefore the type of the
non-strict vertex must be 2 : 1.

The non-strict vertex accounts for π of the 4π angles of the Ti, and
since π is accounted for by the corners of ABC, that leaves either one
strict interior vertex and no boundary vertices, or two boundary vertices
and no strict interior vertices.

First assume there is one strict interior vertex Q and no boundary
vertices. The maximal segment must run from a vertex (say B) to Q, since
it cannot run to another vertex of ABC. The other edges emanating from
Q must be AQ and BQ. There are 3 boundary segments and 9 double-
counted interior edges. The maximal segment, since it is of type (2 : 1),
contains 3 of these edges, and the other 6 correspond to three additional
interior edges. These are AQ, CQ, and the other edge emanating from P .
The endpoint of that edge must be a vertex of ABC, which by relabeling
we can assume is C. Then by the lemma, the angles at P are right angles,
and γ = π/2. But only three angles meet at Q, so one of them must be
greater than π/2. This contradiction disposes of the case of one strict
interior vertex.

Therefore the second case must hold: there are two boundary vertices
and no strict interior vertices. Then there are five boundary segments and
seven double-counted interior segments, of which three lie on the maximal
segment, so there are two additional interior segments, one of which has
one end at the non-strict vertex P . That makes five ends of interior
segments (two of the maximal segment, and three of the four ends of the
two additional interior segments) that must terminate at two boundary
vertices and/or the three corners of ABC. The maximal segment cannot
connect two vertices of ABC, so it must have one end at a boundary
vertex Q. The other end of the maximal segment is either at a vertex of
ABC or at the other boundary vertex R.

Assume first that the maximal segment connects Q to a vertex of
ABC. Relabeling, we can assume it is vertex B, and the Q lies on AC,
and triangle CQB is congruent to T while triangle AQB is 3-tiled. By
Theorem 2, it follows that AQB is a right triangle or is equilateral. First
assume AQB is equilateral. Then angle CQB is π/6 and angle AQC =
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5π/6, not a straight angle, contradiction. Hence AQB is not equilateral.
Hence the other case holds, namely that AQB is a 30-60-90 triangle, tiled
as in Fig. 1. Since QB is a single side of T in triangle QBC, the tiling
of AQB must be oriented so that QB is the smallest side of QBA. The
tiling then must be the third one shown in Fig. 3, or its reflection.

The only remaining case is that the maximal segment connects Q to the
other boundary vertex R. Relabeling, we can assume that Q lies on AC
and P lies on AB. Assume first that an interior segment emanates from P
on the same side of PQ as A. Then its other endpoint must be A. Hence
the angles it makes at P are right angles and QP = PR. The second
interior segment cannot have endpoints at both Q and R, so at one of
those points, only the maximal segment meets the boundary of ABC. By
the lemma then, angle AQR or angle BQR is a right angle, contradiction,
since that would make two right angles in one of those triangles. Hence
no interior segment emanates from P on the same side of PQ as A. Then
triangle T is congruent to AQR. Since not both angle CQR and angle
BRQ can be right angles (else QC and RB would be parallel), an interior
segment must emanate from one of them; relabeling, we can assume it is
R. The other endpoint of this segment must be C. The other interior
segment has one endpoint at P , and its other endpoint must also be at C,
since there is no interior vertex. Then by the lemma, CP is perpendicular
to QR. Also by the lemma, PQ must be perpendicular to AC. But then
triangle CQP has right angles at both P and Q, contradiction. That
completes the proof.

4 Strict 7-tilings

Theorem 4 There is no strict 7-tiling.

Proof. Consider a strict 7-tiling. Since it is composed of 7 triangles, the
angles make a total of 7π. Of that 7π, there is π in the corners of the large
triangle, and 2π for each interior vertex, and π for each boundary vertex
(i.e. vertex lying on an edge of the large triangle but not in a corner).
Therefore we have either: zero interior vertices and 6 boundary vertices,
or one interior vertex and 4 boundary vertices, or two interior vertices and
two boundary vertices. We consider these three cases one by one.

Case 1: Zero interior vertices and 6 boundary vertices. Since there are
6 boundary vertices, there are 9 sides of triangles on the boundary and
(21− 9)/2 = 6 interior edges. If at any boundary vertex, only one interior
side terminates there, then γ must be a right angle. Assume that γ is not
a right angle. Then consider a boundary vertex P on side AB, the next
vertex to A. It must connect to vertex Q on side AC, the next vertex
to A (else no side can escape from Q). The other edge from P must not
connect to side AC, or else no edge can escape from Q. So P connects
to a vertex R on side BC. The second edge from Q must connect either
to R or to a vertex S on BC between C and R. Assume the latter. But
then, a second edge from S must intersect either PR or PQ, so that case
is impossible and Q connects to R. Consider another boundary vertex U .
Relabeling, we can assume U lies on PB or RB. Assume first that U is on
RB. The other end of both edges leaving U must be at P or at another
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vertex V on PB, since there are no interior vertices. Since two edges leave
U , there is such a vertex V on PB and UV is an edge. Then either UP or
RV must be an edge, to tile quadrilateral PRUV . Assume it is RV . Then
the second edge leaving U must terminate at another boundary vertex W
on V B, and there are no more edges to leave W , so the angles at W are
right angles and γ = π/2. Similarly if UP is an edge instead of RV , the
second edge leaving V must terminate at another boundary vertex W on
UB, and there are no more edges to leave W . Hence the assumption that
U is on RB has led to a contradiction (under the assumption that γ is
not a right angle). The remaining alternative is that U is on PB. But
then the argument proceeds similarly: the other end of both edges leaving
U must be at R or at another vertex V on RB. Since two edges leave
U , there is such a vertex V on RB and UV is an edge. From that point
the argument is exactly the same as in the case U is on RB. Hence the
assumption that γ is a right angle has led to a contradiction. Hence γ is
a right angle.

Six boundary vertices means that 9 edges of triangles lie on the bound-
ary of the large triangle. Since there are only seven triangles, that means
that there exist two triangles with two edges on the boundary, i.e. there
are two triangles located at vertices of triangle ABC which do not share
that vertex with any other triangle. Hence the final triangle ABC is simi-
lar to triangle T . Since there are supposedly seven copies of T tiling ABC,
the similarity factor is

√
7. Let us suppose that the final triangle ABC

has angle α and A, angle β at B, and a right angle γ at C. Consider the
triangle T1 of the tiling that has a vertex at A. It must have angle α at
that vertex. Let P be its vertex on AC and Q its vertex on AB. Then
PQ = a. Let T2 be the triangle that shares side PQ with T1, and let
R be its third vertex. Since there are no interior vertices, R must lie on
AB, or on AC, or on BC. Case 1a, R lies on AC. Then both T1 and
T2 have their right angle at P . R is not equal to C since it is 2b from
A, while C is

√
7b from A. Consider the triangle T3 that shares side QR

with T2. Let S be its third vertex. What is angle QRS? It cannot be γ,
since side c of triangle QRS is QR. It cannot be β, since that would make
angle ARS equal to α + β, a right angle, and side RS equal to a, which
would leave S in the interior of ABC. Hence angle QRS must be α, and
hence angle ARS = 2α < π/2, so S must lie on AB. That makes the
total angle π at Q equal to 3β, so β = π/3, α = π/6, so a = sin α = 1/2
and b = cos α =

√
3/2. Any linear combination of a, b, and c is thus of

the form p + q
√

3; but AC =
√

7 is the sum of several sides of the basic
triangle, contradiction. This contradiction disposes of Case 1a. Case 1b,
R lies on AB. Then the right angles of T1 and T2 are both at Q. Let
T3 be the triangle sharing side PR with T2, and let S be its third vertex.
If S lies on AC, then angle RPS must be either β or α; if it is α then
2β + α = π, which is impossible since α + β = π/2 and β < π. If it
is β then 3β = π, which is impossible as in the previous case. Hence S
does not lie on AC. S cannot lie on AB as that would make angle PRS
more than π/2. Now T1, T2, and T3 all share vertex P , but since S does
not lie on AC, a fourth triangle T4 shares that vertex too, and has angle
at least α there. If T3 has angle β at P then the total angle at P is at
least 3β + α > 2β + 2α = π, contradiction. Hence T3 has angle α at P ,
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and PQRS is a paralleogram. Let triangle T4 be the triangle sharing side
PS = b with T3. The angle of T4 at P must be either α or a right angle,
but a right angle is too large, since the other angles at P total π/2 + β.
The right angle of T4 must therefore be at S, making S an interior vertex,
contradiction. That disposes of Case 1b, R lies on AB. But since the right
angle of T1 must lie at either P or Q, Case 1a and Case 1b are exhaustive,
so Case 1 has been shown to be impossible.

Case 2: one interior vertex, and four boundary vertices. Then there
are (21 − 7)/2 = 7 interior edges. There can be at most one triangle
Ti that has one vertex on each side of ABC. (Call such a triangle an
“interior triangle”.) Hence six or seven triangles have one or more sides
on the boundary of ABC. With four boundary vertices, there are seven
boundary segments to be accounted for. If there is an interior triangle,
then one of the remaining six must account for two boundary segments,
so one of the vertices A, B, or C is not “split”, i.e. shared by two or more
triangle Ti. If there is no interior triangle, then each of the seven triangles
must account for exactly one boundary segment, which means that all of
the vertices A, B, and C are “split”.

Case 2a: There is an interior triangle. Let T1 be that triangle, having
vertex P on AB, vertex Q on BC, and vertex R on AC. That creates
three triangles BPQ, APR, and QRC. The single interior vertex must
occur in the interior of one of these triangles (since this is a strict tiling,
it cannot occur on the boundary of T1). Relabeling the vertices if neces-
sary we can assume that it occurs in triangle APR. At least three edges
leave that interior vertex, so triangle APR is divided into at least three
triangles congruent to T . In fact it must be divided into exactly three
triangles, since at least three are needed for T1, BPQ, and QRC, so the
possibilities are three or four, but there is no 4-tiling with an interior ver-
tex, by Theorem 3 Hence APR is 3-tiled, and there is only one 3-tiling
with an interior vertex, by Theorem 2. Therefore T is the triangle with
α = β = π/6 and γ = 2π/3, and triangle APR is equilateral. Consider
the angles at R: angle ARP is π/3, and PRQ is π/6, so QR is perpendic-
ular to AC and therefore angle QRC must be composed of three angles
α. That means that triangle QRC contains three smaller triangles, which
makes seven counting the three in APR and T1, leaving none to cover
BPQ. This disposes of case 2a.

Case 2b: No interior triangle, and all vertices A, B, and C are split.
Then there is an interior edge emanating from each of A, B, and C. Any
pair of these must intersect in an interior vertex. But there is only one
interior vertex, so they all intersect in a common point P , the interior
vertex, forming three triangles ABP , ACP , and BCP . These triangles
are tiled by T , without interior vertices, since there is only one interior
vertex. Hence none of them is 3-tiled. A 4-tiling requires a boundary
vertex on each side, which would mean another interior vertex, so none
of them is 4-tiled either. They cannot all be 2-tiled, as that would use
only six triangles. That leaves only the possibility that two of them are
congruent to T and the other is 5-tiled; relabeling vertices if necessary,
we can assume it is ABP that is 5-tiled. Since there are four boundary
vertices they must all be on AB and the five triangles all share vertex P ,
with one side contained in AB. This is impossible for several reasons, for
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example, since just two triangles share each boundary vertex, all those
angles must be right angles, contradicting the fact that all those edges
meet at P . This disposes of Case 2b, and hence of Case 2.

Case 3: two interior vertices and two boundary vertices. Then there
are (21−5)/2 = 8 interior edges. Suppose first that two boundary vertices
P and Q occur on AB, with P adjacent to A and Q adjacent to B. Let
U and V be the interior vertices. If γ is not a right angle, then two edges
must leave P and two edges must leave Q. One of the edges from P , and
one from Q, can go to an interior vertex, and one to vertex C. One more
edge can go from P or from Q to an interior vertex, but after that we are
blocked–there is no place to put the rest of the 8 edges. Hence the two
boundary vertices do not occur on the same side of the large triangle. Say
P occurs on AB and Q occurs on BC. Then each of P and Q can connect
to both interior vertices, and one of them can connect to an opposite
vertex of the large triangle, but that is not enough edges. Therefore P
and Q do not connect to C. To use up 8 edges, we must have an edge
connecting U and V , and one of U and V , say V , connects to both B
and C, while U connects to A. But then, there are exactly four angles at
V , totaling 2π. That means two of them must add to at least π, which
means γ is a right angle.

If just three edges emanate from V then there are exactly three angles
at V . If three angles add to 2π, they must all be γ, since 2γ+β < 2π. But
then γ = 2π/3, contradicting our conclusion that γ is a right angle. Hence
at least four edge emanate from U and four from V , for the required total
of 8. Every one of the eight interior edges then has one end at U or one
end at V . The four edges emanating from U go to the edge vertices P and
Q and to two vertices of the large triangle, say A and B. V must lie in one
of the four regions formed by the angles at U ; three of those are triangles,
which leave only room for three edges to emanate from V . Hence V must
lie in the quadrilateral UPCQ, and must connect to all four corners of
that quadrilateral. Now we have five edges emanating from V and four
from U , and as above, all the angles at U are right angles. Now consider
the angles at P . Angle APU and angle UPV are either α or β, since
those triangles have their right angle at U . Hence angle V PB is γ, a right
angle. But then PC = c, since it is opposite the right angle at V , and on
the other hand it is less than c, since it is opposite angle V BP , which is
not a right angle. This contradiction eliminates Case 3.

That completes the proof of the theorem.

5 Non-strict 7-tilings

Lemma 2 Suppose that a 7-tiling contains a non-strict vertex of type
3 : 1. Then the tile is a right triangle, c = 3a, and the smallest angle α
satisfies the equation sinα = 1/3.

Proof. Let the maximal segment be PQ, running from P in the “north”
to Q in the “south.” Suppose three triangles T1, T2, and T3 occur on the
west side of PQ, meeting PQ at vertices U and V , and T4 lies on the east
side of PQ. Let c be the longest side of T ; then c = 3a or c = 2a + b.
It is impossible that the three congruent triangles have a common vertex
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S, so that SPU , SUV , and SV Q are congruent triangles. Hence there
are two distinct points S and R such that T1 = SPU and T3 = RV Q
are two of the triangles in the tiling. T2 may have a side SU in common
with T1 or a side RV in common with T3. In either case the common
side is perpendicular to PQ and T is a right triangle, so γ = π/2 and
α + β = π/2. We have PU = UV = a, and SV = c = 3a or 2a + b. If
SV = 3a then sinα = UV/SV = 1/3 as claimed in the lemma. The case
c = 2a + b is impossible, since no right triangle has sides a, b, and 2a + b.

If, on the other hand, T2 does not have a side in common with T1 or
T3 then there will be altogether five triangles on the left of PQ sharing
vertices U and V . Let W be the west vertex of T2. Then W cannot lie on
SP , since if it does, WU is longer than both SP and SU , but one of those
sides must be the longest side of triangle T , since the third side of SPU
is less than PQ, which is one side of the copy of T on the right of PQ.
Similarly, W does not lie on RQ. Let T5 and T6 be the other copies of T
in M sharing vertices U and V , respectively. Let M be this six-triangle
configuration. We claim that the boundary of M contains at least five
non-straight angles. At R there is either another non-strict vertex with a
non-straight angle, or at least (if R is a vertex of T2) the boundary of M
is not straight. Similarly at S. There is an angle at the east vertex of T4

(the triangle on the right of PQ). We claim there are also non-straight
angles at P and Q. For those to be straight angles, we would have to have
the sum of two angles of T equal to π. But at (one of) P or Q, the angle
of T4 is the small angle α, the angle from T1 or T3 is not α, since α is
the angle at S or R; so the sum of the two angles is less than π (in fact
it is π − β). At the other of P or Q we would need β to be a right angle
to create a straight angle. In that case T2 would have a side in common
with T1 or with T3, contradiction. Hence there are vertices of M (at least)
at P , Q, R, S, and the third vertex of T4–five in total. Suppose it were
possible to place one more copy of T next to M so as to form a triangle.
If the triangle is placed to the right of PQ against one of the sides of T4,
that may eliminate a vertex at P or Q, but will leave a vertex at the other
of P or Q, as well as creating one more new vertex and leaving three old
ones–too many vertices for a triangle. If the triangle is placed to the left
of PQ, against T1 or T3, again it may eliminate a vertex at P or Q, and
possibly at S or R, but it will create a new vertex and leave at least three
old ones. Placing it anywhere else will leave vertices at all three vertices
of T4; but since part of M exists outside the convex hull of those vertices,
those cannot be the vertices of a triangle containing M . Hence, a tiling
with a vertex of type 3 : 1 in which T2 does not have a side in common
with T1 or T3 cannot occur in a 7-tiling. That completes the proof of the
lemma.

Lemma 3 A 7-tiling cannot contain a maximal segment of type 3 : 2.

Proof. Consider a non-strict tiling containing a maximal segment of type
3 : 2. Let T1, T2, and T3 occur on the left of the (vertical) maximal
segment PQ, with vertices U and V on PQ. Already five triangles will
have vertices on the maximal segment PQ. If they do not have sides in
common then three more triangles will be required to fill in the gaps–more
than seven altogether. Say then that T1 and T2 have a side in common.
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Let U be the vertex that T1 and T2 share on PQ. By Lemma 1, γ = π/2
and T1 and T2 both have a right angle γ at R. Suppose, for proof by
contradiction, that the sides of T1 and T2 on PQ are equal to a, and that
T1 and T2 share a common side (but not necessarily a common vertex
west of PQ). But then they do share a common vertex S west of PQ,
since they have their angles at U equal (both right angles) and their west
angles both equal to α, hence the angles SPU and SV U are both β, and
the sides opposite are both b, so the common vertex S is b away from U .
Then triangle SPU is congruent to SV U . Let T4 and T5 be the triangles
on the east side of PQ, sharing vertex R on PQ, and let T6 be another
triangle west of PQ sharing vertex V (there must be one since T2 does not
have a right angle there.) Let E be the east vertex of T4. If T4 and T5,
the two triangles on the east of PQ, do not share a side (and hence have
right angles at R), then a seventh triangle must occur between them, and
we have too many vertices: P , Q, W , and S at least. Hence T4 and T5 do
share a side, and their angles at P and Q are acute, and their angles at
R are right angles. Hence EP and EQ are equal to c and PQ is 2b, since
it cannot be 2a as it is the sum of three sides of T1, T2, and T3.

Then this six-triangle configuration M has vertices at P , E, Q, S (the
shared west vertex of T1 and T2), and the west vertex W of T3. Triangle
T6 must then fill the angle at V , or else the seventh triangle would need
to touch V , leaving more than three exterior vertices, namely P , Q, E,
and at least one vertex west of PQ.

Suppose, for proof by contradiction, that W lies on line SQ. Then
angles V WQ and V WS are right angles, so V Q, the side opposite angle
V WQ in triangle T3, equals c, and triangle SV W is congruent to QV W .
M then forms a quadrilateral, and along PQ we see 2a + c = 2b. Angle
WSV = α, by the congruence of triangles WSV and WQV . The angles
of triangle SPQ are β at P , α at Q, and hence γ = π/2 at S. This angle
at S is also equal to 3α, since each of triangles T1, T2, and T6 has angle
α there. Hence α = π/6, so a = 1

2
, b =

√
3/2, and c = 1. But then the

equation 2a + c = 2b does not hold, contradiction. Hence W is does not
lie on line SQ.

Hence there are two vertices of M west of PQ (either S and W or
vertices of T6). M thus has at least five vertices. To reduce this to three
vertices by placing one more triangle east of PQ is impossible. Similarly
it is impossible to reduce the number of vertices to three by placing a new
triangle along PS or WQ. But then, no matter where else we place T7,
P , E, and Q will remain vertices, and there must be a fourth vertex west
of PQ, so the result cannot be a triangle. This contradiction shows that
we cannot have V U = PU = a as we assumed above.

Now we drop the contradictory assumption V U = PU = a and begin
anew. Again we have right angles in T1 and T2 at U , but this time one
of them has side b along PQ (not c, since that must be opposite the right
angle at U). The other one has side a along PQ, since 2b ≥ a + b > c.
Hence they do not share a common west vertex. Let S be the west vertex
of T1 and X the west vertex of T2. Again T6 will have to be placed
between T2 and T3 with a vertex at V . That will give us a six-triangle
configuration M with vertices P , E, Q, S, X , and W (the west vertex
of T3). We only have to show that placing one more triangle T7 cannot
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possibly produce a triangular configuration. (That is not prima facie
impossible just because there are six vertices–it could happen if M had
two collinear sides separated by two sides forming a “notch” into which T7

would just fit–so some further argument is required.) If the two triangles
T4 and T5 east of PQ do not share a side, then T7 would have to be
placed east of PQ between the two, leaving a vertex at P (since T1 has
an acute angle at P ), as well as vertices at X and S, which are distinct,
and of course at least one vertex east of PQ, totaling more than three.
Hence T4 and T5 do share a side; hence their right angles are both on
PQ at vertex R. Hence their angles at P and Q are acute, and triangle
PER is congruent to triangle QER. Hence the two sides PR and RQ
are equal, and either equal to a or to b. The length of PQ is thus either
2a or 2b (measured from the right side), and also either 2a + b or 2b + a
(measured from the left side). Three of the four possible equations here
are immediately impossible, leaving only the possibility 2b = 2a+b; hence
b = 2a. Now if the angle of T1 at P is α, then the southwest vertex S of
T1 lies on the north side of T2, and S is thus not on the convex hull of
M , and triangle T7 cannot fill the obtuse angle π − β exterior to M at S.
Hence the angle of T1 at P is not α; so it must be β. Then the northwest
vertex X of T2 lies on the south side of T1, and thus not on the convex
hull of M , but there is an obtuse exterior angle π − β at X that cannot
be filled by T7. We conclude that it is not possible to place T7 to create
a triangle. That completes the proof of the lemma.

Lemma 4 A 7-tiling cannot contain a maximal segment of type 4 : 1.

Proof. Let PQ be a (north-south) maximal segment with four triangles
on the left and one on the right. Of the four triangles on the left, we
cannot have three sharing a vertex not on PQ, so the minimum “tile”
(consisting of all the triangles touching PQ) contains at least six triangles,
and contains seven without making a triangle, unless the four triangles
on the left occur in two pairs, each pair having a common side. Let
the northernmost of these pairs be T2 and T3, and let T4 and T5 be the
southern pair. Let V be the vertex on PQ shared by T3 and T4. Let T1

be the triangle on the right of PQ. Let E be the eastern vertex of T1. let
R be the vertex between P and V (shared by T2 and T3) and S the vertex
between V and Q (shared by T4 and T5). Let M be the figure formed
by these five triangles. Note that we have not proved that triangles T2

and T3 have a common “west” vertex, i.e. their shared sides may be of
different length, and the same goes for T4 and T5.

By Lemma 1, γ = π/2 and T2 and T3 have right angles at R, and T4

and T5 have right angles at S. Then P and Q are vertices of M , as are
E and the western vertices of T3 and T5. Thus we cannot afford to insert
two triangles between T3 and T4 (that is, anywhere inside the angle at V
between T3 and T4), as that will make seven altogether and the result will
not be a triangle, as it must contain a westernmost vertex in addition to
P , Q, and E. Hence there is just one triangle T6 between T3 and T4. The
longest side c of T3 (the hypotenuse) is shared with T6, and since no other
triangle can be inserted between T3 and T4, the side of T6 shared with T3

must also have length c. Similarly, T6 must share side c with T4; but then
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T6 has two two sides equal to the hypotenuse, which is a contradiction.
This contradiction completes the proof of the lemma.

Lemma 5 No 7-tiling contains a non-strict vertex of type other than 3 : 1
or 2 : 1 or 2 : 2.

Proof. Let V be a non-strict vertex in a 7-tiling. Then for some integers
m and n, there is a maximal segment S containing V of type m : n. We
have m + n ≤ 7 since there are only 7 triangles in the tiling. Visualize S
as oriented in the north-south direction, with n triangles west of S and
m triangles east of S. Let M be the configuration of triangles in the final
tiling that touch S. No more than two triangles on the same side of S
can share a common vertex that is not on S. Hence if n (or m) is three,
then at least four triangles must occur on the west (or east) of S; and if
n (or m) is four, then at least five triangles must occur on the west (or
east); and neither n nor m can be as much as five, since then at least
seven triangles would be required on one side of S.

We may change “east” and “west” if necessary to ensure m ≤ n.
Suppose n = 4. Since we have proved above that S cannot be of type
4 : 1, there are at least two triangles east of S, and as remarked above,
at least five west of S. For this to be the case, the triangles T1 and T2 on
the northwest must share a side and both have right angles where they
meet S, and the same for triangles T3 and T4 on the southwest, and for
triangles T5 and T6 on the east, and then T7 must share vertex V on S
with T2 and T3. That means that the largest angle γ is a right angle, and
the seven-triangle configuration has vertices at the endpoints of S and at
least one vertex east of S and at least one vertex west of S, and hence is
not a triangle. Hence n = 4 is not possible.

Suppose n = 3. We have proved above that type 3 : 2 is impossible.
We now consider type 3 : 3. But as remarked above, this would require
four triangles east of S and four triangles west of S, making more than
seven, so 3 : 3 is impossible. That completes the proof of the lemma.

The following figures show some possible configurations in which a
maximal segment of type 2 : 1 could occur. In these figures, α has to be
as shown, either π/6 or arctan 1

2
, so that 2a = c or 2a = b. In the first

two figures, γ has to be a right angle. In the third figure, γ and β have
one degree of freedom; the figure illustrates the case γ = 80 degrees.

Figure 7: Two three-triangle configurations
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Figure 8: Two five-triangle configurations

P

V

Q

E

R

S

W

R

W

S
P E

Q

V

Figure 9: Two four-triangle configurations
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Lemma 6 Suppose that a 7-tiling contains a maximal segment of type
2 : 1. Then the tiling contains one of the six configurations shown in the
preceding figures. To state the conclusion without reference to a figure:
the smallest angle α of the tile is π/6 or arcsin 1

2
, so 2a = c or 2a = b;

the maximal segment has length 2a, with the non-strict vertex V at its
midpoint, and one of the following holds.

(i) 3 triangles meet at the non-strict vertex, two of them having a right
angle there. See Fig. 8.

(ii) 5 triangles meet at the non-strict vertex. Denoting the maximal
segment by PQ, with midpoint V , the triangles “west” of PQ with vertices
at P and Q have right angles at P and Q, and angle β at V , and the other
two triangles west of PQ have angle α at V . See Fig. 9.

(iii) 3 triangles on one side of the maximal segment share the vertex V ,
with the middle one (the one that does not share a side with the maximal
segment) having angle α at V , and sharing another vertex with each of
the other two triangles with which it shares vertex V . Moreover, each two
adjacent triangles of the three on one side of the maximal segment form a
parallelogram. See Fig. 10.

Note that in cases (i) and (ii), the tile is a right triangle, while in case
(iii) that is not asserted.

Proof. The previous lemmas have ruled out all possible types of maximal
segments except 3 : 1, 2 : 2, and 2 : 1. We consider the possible con-
figurations in which a maximal segment has type 2 : 1. For convenience
of description, let us orient triangle ABC so the maximal segment PQ is
north-south, with two triangles on the west and one on the east. Because
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there is just one triangle on the east, the length of PQ is either b or c.
The two triangles on the left must divide the maximal segment equally,
because if they did not, then the two segments would have lengths a and b
and their sum (the side of the one triangle on the right) would necessarily
be c, but of course a+ b < c. It follows that the two segments have length
a, and 2a = b or 2a = c, since if the segments had length b instead of a,
we would have c = 2b ≥ a + b, so a triangle with sides a, b, and c would
be impossible.

We consider the “minimal configuration” M containing all the Ti with
a vertex at V . How many triangles will M contain? It contains at least
three. We will analyze the possibilities.

Let the direction of PQ be “north-south” with P at the north. Let T1

and T2 be the west triangles and T3 the east triangle with sides on PQ,
and V the midpoint of PQ, the shared vertex of T1 and T2. If T1 and
T2 share a side, then the largest angle γ is a right angle, so T1 and T2

must also share their west vertex W (at distance b from PQ). Then we
have 2a = b or 2a = c, leading to the possibilities listed in part (i) of the
conclusion and illustrated in Fig. 8.

We therefore may assume that T1 and T2 do not share a side, and
at least one additional triangle T4 shares their common vertex V at the
midpoint of PQ. Let S be the west vertex of T1 and R the west vertex of
T2, and E the east vertex of T3. Then angles PSV and V RQ are both α,
since they are opposite side a.

Assume first that there is exactly one triangle T4 between T1 and T2

sharing vertex V . One of the sides of T4 lying along SV or RV must be
b or a and since the a sides of T1 and T2 lie on PQ, the sides SV or RV
must each be b or c. Assume, for proof by contradiction, that triangle T4

does not share west vertices with T1 and T2, i.e. it is not triangle SV R.
Then one of its vertices lies on SV or on RV , since the b side of T4 cannot
be longer than the b or the c sides of T1 and T3. Interchanging “north”
and “south” if necessary, we can assume that the north vertex X of T4

lies on SV , and hence is a non-strict vertex. Since SV must be larger
than XV , we have either SV = c and XV = b, or SV = c and XV = a,
or SV = b and XV = a. The maximal segment of this non-strict vertex
has one end at V and extends westward along SV . By Lemma 5, its type
must be 2 : 1 or 3 : 1 or 2 : 2.

Case 1, angles SV P and RQV are equal. Since these are corresponding
angles made by the transversal PQ to SV and RQ, lines SV and RQ are
parallel. Then the alternate interior angles SV R and V RQ are equal.
Angle V RQ = α, since it is opposite V Q = a. Therefore angle SV R = α.
Therefore XV = b or XV = c; but since X lies on SV and X 6= S we
have SV = c and XV = b. If the type of the maximal segment of X is
2 : 1, we have a + b = c, which is impossible since a + b > c, or 2b = c,
which is impossible since 2b > a + b > c. If it is 3 : 1 we have 3b = c,
or a + 2b = c, or 2a + b = c, all of which are impossible since a + b > c.
By Lemma 5, the only remaining possibility for the type of the maximal
segment of X is 2 : 2. If γ is not a right triangle, then there must be
three triangles on each side of the maximal segment, making six triangles,
which together with T2 and T3 is more than seven. Hence γ is a right
angle. Since SV = c, angle SPV is a right angle and angle SV P = β.
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Hence angle RQV = β and angle RV Q is a right angle. Since XV = b,
the right angle of T4 is at X . Therefore the south side of T4 is c, and
extends west of R on RV . We now have a third non-strict vertex at R.
The exterior angle at R is more than π/2, so we will need at least two
more triangles to sharing vertex R to be placed south of RV . But we
must also place at least two more triangles with sides on line SV , since
the maximal segment of X has type 2 : 2. That makes eight triangles
altogether, which is more than seven. That disposes of Case 1.

Case 2, angles SV P and RQV are not equal. Since triangles SPV
and RQV are congruent and PV = V Q = a, we must have angles SV P
and RV Q equal; and they must both be equal to β, since the angle of T4

at V is at least α, and 2γ + α > α + β + γ = π. Then the angle of T4

at V cannot be γ, since 2β + γ > π. If it is α then we have 2β + α = π,
which would make β = γ so angles SV P and RQV would be equal and
Case 1 would apply. Therefore it is β and we have 3β = π. Then side XV
of triangle T4 must be a, since it cannot be c, because it is less than SV .
Consider the type of the maximal segment of X . Assume, for proof by
contradiction, that it is 2 : 1. Then 2a = c and X is the midpoint of SV .
Since β = π/3, the equation 2a = c implies γ is a right angle and α = π/6.
Then the side of T4 on line RV must be the c side, since if the vertex of
T4 on RV lies between R and V , the distance from X to that vertex is
less than c. Hence T4 has R for its southwest vertex. Now we have a four-
triangle configuration with parallel north and south boundaries SP and
RQ, a concave exterior vertex at X , and a right angle at the east vertex
E. If three additional triangles are added sharing vertex X , the resulting
configuration of seven triangles will not be a triangle, since it has three
vertices P , Q, and E and more to the west of PQ. If two triangles are
added sharing vertex X , they must not be placed so as to create new non-
strict vertices, as that would require placing a seventh triangle west of PQ,
leaving at least four vertices. Therefore if two more triangles are added
sharing vertex X , they share a west vertex W and are triangles SXW
and RXW . The resulting six-triangle configuration is convex and has six
vertices. Placing one more triangle can decrease the number of vertices
of a convex configuration by at most one, so this configuration cannot be
completed to a 7-tiling. Hence the concave exterior vertex at X must be
filled by just one triangle. If this triangle T5 is not SXR then its west
vertex W lies on SV extended, and it has side b along SV . Its south vertex
U lies on RX . New concave exterior angles are created at S and U , each
of which is more than π/2, and hence each will require placing at least two
more triangles with vertices S and U respectively. But that will require
a total of 9 triangles. Hence triangle T5 must be triangle SXR. We now
have a five-triangle configuration including rectangle SPQR and triangle
PQE. Either QE = b or PE = b. Suppose, for proof by contradiction,
that QE = b. Then it cannot be that both RS and QE lie on sides of the
final triangle, since the area to be filled south of RQ would require more
than two triangles. With only two more triangles available, we cannot
create more non-strict vertices. Consider placing a triangle T6 south of
QE. Then it must share vertices Q and E. If we do not place the right
angle at E then there will be a concave exterior vertex at Q that will
require two more triangles to fill, contradiction. Hence T6 must have its
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right angle at E. Now we have a six-triangle convex configuration with five
vertices. This cannot be completed to a 7-tiling since adding one triangle
to a convex configuration can reduce the number of vertices by at most
one. Hence QE is one of the sides of the final triangle. Placing a triangle
T6 north of PE without creating a new non-strict vertex would require
that T6 have side a along PE; that would create a concave exterior vertex
at P greater than π/2, which could not be filled with one more triangle.
Hence PE is also one of the sides of the final triangle. Then there must
be a triangle T6 north of SP whose c side lies on PE extended. But now
two triangles have sides on line RS, and we have already seen that not
both RS and QE can be sides of the final triangle. So at least two more
triangles will be required west of RS, but we have only one more available.
This contradiction shows that QE 6= b.

Therefore PE = b. Then it cannot be that both RS and PE lie on
sides of the final triangle, since the area to be filled north of SP would
require more than two triangles. With only two more triangles available,
we cannot create more non-strict vertices. Consider placing a triangle T6

north of PE. Then it must share vertices P and E. If we do not place the
right angle at E then there will be a concave exterior vertex at P that will
require two more triangles to fill, contradiction. Hence T6 must have its
right angle at E. Now we have a six-triangle convex configuration with five
vertices. This cannot be completed to a 7-tiling since adding one triangle
to a convex configuration can reduce the number of vertices by at most
one. Hence PE is one of the sides of the final triangle. Placing a triangle
T6 south of QE without creating a new non-strict vertex would require
that T6 have side a along QE; that would create a concave exterior vertex
at Q greater than π/2, which could not be filled with one more triangle.
Hence QE is also one of the sides of the final triangle. Then there must
be a triangle T6 south of RQ whose c side lies on QE extended. But now
two triangles have sides on line RS, and we have already seen that not
both RS and PE can be sides of the final triangle. So at least two more
triangles will be required west of RS, but we have only one more available.
This contradiction disposes of Case 2. That in turn completes the proof
by contradiction that triangle T4 is triangle SV R.

Now that we know T4 is triangle SV R, we again have cases to consider.
Case 1, angles SV P and RQV are equal. Since these are corresponding
angles made by the transversal PQ to SV and RQ, lines SV and RQ
are parallel. Then the alternate interior angles SV R and V RQ are equal.
Angle V RQ = α, since it is opposite V Q = a. Therefore angle SV R = α.
Since angles RSV and V QR are opposite side RV in their respective
triangles, they are equal. Since V Q and SR are opposite angle α, they
are equal. Hence sides SV and RQ are also equal. That makes SV QR
a parallelogram. This is the configuration described in part (iii) of the
lemma, so we are finished with Case 1.

Case 2, angles SPV and RQV are equal. Then since angle PSV = α,
angles SPV and RQV are equal either to β or to γ. Then angles SV P
and RV Q are also equal (either to γ or to β). They cannot be equal to
γ, because in that case it would not be possible to place even one triangle
T4 between T1 and T2, since α + 2γ ≥ α + β + γ = π. Hence SV P and
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RV Q are equal to β. Then 2β plus angle SV R equals π. Since angles
SPV and RQV are both equal to γ and SP and RQ are both equal to
b, SR is parallel to PQ, and triangle SV R is isosceles, with both sides
SV and RV equal to c. Hence angles SRV and RSV are both equal to
γ. Angles SRV and RV Q are alternate interior angles of the transversal
RV of parallel lines SR and PQ, so they are equal; but angle RV Q = β,
so SRV = β also. Then angle SRV is opposite side c and hence equals
γ; hence β = γ. Hence the triangles Ti are isosceles with 2a = b = c, and
triangle SV R is congruent to the Ti, and hence is a fourth triangle T4

belonging to the tiling. In this case conclusion (iii) of the theorem holds.
That completes the proof of the lemma in case there is only one triangle

between T1 and T2.
We still have to consider the case in which there are two or more

triangles, T4 (with a side on SV ) and T5 (with a side on RV ), and possibly
still more triangles, between T1 and T2. Changing south and north if
necessary, we can assume angle PQE = α. Angle QPE is either β or γ.
If γ is not a right angle, or if γ is a right angle but SPE is not a straight
angle, then this 5-triangle configuration has vertices (at least) at S, P ,
E, Q, and R, and at least one more vertex W of T4. If W is a concave
vertex it will have to be removed by placing T6 with a vertex at W . That
will leave at least five other vertices, all convex; that cannot be reduced
to three by placing one more triangle; hence W is not a concave vertex.
Unless W occurs on the line SR, we then have six convex vertices, which
cannot be reduced to three by placing two more triangles. The only way
W can occur on SR is if there are two triangles between T1 and T2, and
they share vertex W and have a right angle there. In that case γ is a right
angle. Hence γ must be a right angle, and one of two cases holds: either
2a = c and angle QPE = β, so α = π/6 and β = π/3, and there are
two triangles sharing a vertex at the midpoint of SR and another vertex
at V , or QPE = γ, and SPE is a straight angle. Then 2a = b, rather
than 2a = c, and α = arctan 1

2
. Now consider the angles at V . The angle

of T1 and V is β. If T2 has angle γ there, that leaves room for only one
triangle between them, with angle α; hence T2 has angle β at V . We
have β = π/2 − arctan(1/2), which is about 63.43 degrees. Hence any
triangles between T1 and T2 have angle α at V , since β is too big to fit.
The angle to be filled is π − 2β = 2α, so more than two triangles cannot
fit, but two fit nicely. If these two triangles are placed “naturally” then
both of their west sides will lie on SR. These are the two configurations
described in part (ii) of the lemma. The last two triangles must be placed
in this configuration, because any other placement would place a side of
length b along a side of length c in at least two places, each of which would
require placing two more triangles to make these vertices have type 2 : 2,
contradiction.

That completes the proof of the lemma.

Lemma 7 Suppose that a 7-tiling contains a non-strict vertex. Then the
type of that vertex is 2 : 1, the tile is a right triangle whose smallest angle
α is π/6 or arcsin 1

2
, and 3 triangles meet at the non-strict vertex. (See

Figure 8.)
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Proof. After the previous lemma, it only remains to rule out cases (ii)
and (iii) of that lemma’s conclusion. We first rule out case (iii). We may
suppose the non-strict vertex is V , the midpoint of the maximal segment
PQ, with P at the north, Q at the south; that triangles T1, T2, and T4

are on the west of PQ, sharing vertex V , and that P is a vertex of T1 and
Q is a vertex of T2, and S is the shared west vertex of T1 and T2 and R
is the shared west vertex of T4 and T2. Triangle T3 is east of PQ, and its
east vertex is called E. PV = V Q = SR = a. We have RQ parallel to SV
and SP parallel to RV . By changing “north” and “south” if necessary,
we can assume that angle RQV = β and angle SPV = γ. There are four
cases to consider. Namely:

Case 1: 2a = b, angle E = β, angle V QE = α
Case 2: 2a = b, angle E = β, and angle V QE = γ
Case 3: 2a = c, angle E = γ, angle V QE = α, and b 6= c
Case 4: 2a = c, angle E = γ, and angle V QE = β, and b 6= c
We call this four-triangle configuration M . All we have to do is prove

that it is not possible to add three more tiles to M and thereby create a
triangle. This could be done by computer, but it is within reach to do it
by hand.

M has five exterior vertices, all of which have angles less than π (be-
cause they are composed of two angles of the tile triangle, not both γ)
except possibly P in case 1, where two angles γ share vertex P . In cases
where M is convex and five-sided, placing three new triangles must leave
at least two of the original five edges as part of the boundary of the final
triangle. Hence two of the sides of the final triangle contain sides of M .
There are 10 pairs of sides of M to consider; in each case we can ask
whether it is possible to draw a third side and fill in the remaining area
with copies of the tile.

Case 1 divides into Case 1a (when γ = π/2), Case 1b (when γ > π/2),
and Case 1c (when γ < π/2). Before subdividing into these cases, we
first argue that SR cannot be a side of the final triangle. Assume, for
contradiction, that both EQ and SR are sides of the final triangle. Extend
EQ and SR to their intersection point L. The final triangle must include
triangle SLE, hence must contain triangle RQL. But the area of triangle
RQL is five tiles, not three, which we see as follows: Angle RQL = γ,
since the other two angles at Q are α and β. Angle SRV = γ (because it is
opposite SV which is oppositive angle SPV ), and angle V RQ = α, since
it is opposite V Q = a. S Angle L = α. Since the angles at R must add
up to π, angle QRL = β. Then angle QLR = α, in order that the angles
of triangle QLR add to π. So triangle QLR is similar to the tile, and
since RQ = c, the similarity factor is c/a. The area of RQL is therefore
c2/a2 times the area of a single tile. To complete a 7-tiling this way would
thus require 3a2 = c2. But c2 = a2 + b2 = a2 + (2a)2 = 5a2, not 3a2.
(Nevertheless, it does not seem that we can complete this configuration to
a 9-tiling, but that is irrelevant.) This contradiction shows that not both
EQ and SR are sides of the final triangle. If SR is a side, then another
triangle T5 must be placed east of EQ. If T5 does not share vertices E and
Q, then at least one concave exterior vertex is created, which will require
placing T6 south of EQ or on QE extended north of E. We will then have
vertices at S, R, at P unless γ = π/2, and at one of Q or E, at most one
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of which can be removed by placing T7, and at least two more on line QE,
which is too many. Hence T5 must share vertices E and Q. The resulting
five-triangle configuration is convex. Since in Case 1, angle E = β, the
vertex at E remains a vertex. Since EQ = c, angle γ does not occur in
T5 at Q, so the vertex at Q remains a vertex too. Then the five-triangle
convex configuration has six vertices. T6 must share the existing vertices,
as if we create a new non-strict vertex we do not have enough triangles to
fill the exterior angles thus created and tile a triangle. But if T6 shares
existing vertices, the resulting six-triangle configuration will be convex,
and will have at least five vertices, so cannot be completed to a triangle
by adding one more triangle T7. This contradiction proves that SR is not
a side of the final triangle.

Now we subdivide Case 1. First consider case 1a, when γ = π/2,
and hence SPE is a straight line. This is the only case in which M is
a quadrilateral, rather than having five sides. As proved above, we will
have to add one triangle T5 west of SR, with westernmost vertex W ,
with one of its sides containing segment SR (which has length a). If we
place this triangle so that W lies on SE extended and on RQ extended,
then we will create a 5-tiling. Placing T5 with vertices at S and R but
with angle γ at R instead of β will create a concave vertex at R with an
exterior angle greater than π/2, so two tiles would be required at vertex
R, leaving vertices at Q, E, S, and W at least. Placing triangle T5 with
one side along line SR but extending north of S would require placing at
least two more triangles north of SE, leaving vertices R, Q, E, and W .
Placing triangle T5 with one side along SR but with northernmost vertex
on SR south of S would require us to place T6 on SR north of T5, and
since SR = a, T6 would extend south of R, requiring T7 to share vertex R.
Then seven triangles would be used and more than three vertices would
still exist, e.g. Q, E, W , and the south vertex of T6. Hence the triangle
west of SR must be placed with W on SE extended, forming a 5-tiling.
We are then asked to add two more triangles to produce a 7-tiling.

Side WE has length 2b + a = 5a > 2c = 2
√

5a and hence cannot be
entirely covered by placing two triangles north of WE. Hence no triangle
can be placed north of WE, which is thus a side of the final triangle. Side
WQ has length 2c and hence if one triangle is placed south of WQ, a
second one must be placed there as well; if these are placed so as to cover
all of WQ then the result is not a triangle. Hence no triangles can be
placed south of WQ, which must be a second side of the final triangle.
We are thus asked to place two triangles east of EQ and complete a 7-
tiling. If these two triangles can be placed so that Q remains a vertex
of the final triangle then the vertices of the final triangle will be W , Q,
and a third vertex U east of E on WE extended. Triangle QEU must be
composed of two copies of the tile T . These two triangles share vertices E
and another vertex X on QU . The angle at X is a right angle by Lemma
1. Angle PEQ = β. Angle EQX = angle EUX since both are opposite
side EX . Hence angle QEX = angle UEX , and these angles are not γ
since the right angles occur at X . If they are β then, adding the three
angles at E, we have 3β = π; but since α = arctan(1/2), we do not have
β = π/3. If angles QEX and UEX are both α then we have 2α + β = π,
but that is impossible since α + β + γ = π and γ > α. Hence it is not the
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case that Q is a vertex of the final triangle.
Therefore we will have to extend side RQ past Q by adding another

triangle south of QE. Extending side RQ past Q will require creating a
right angle at Q; if that is done with one triangle, then the side it shares
with QE will have length b, creating a non-strict vertex at distance b along
QE, which has length c. That will create a concave vertex with exterior
angle more than π/2, which cannot be filled with our one remaining tri-
angle. Hence both remaining triangles will have to share vertex Q, using
angles α and β. Hence the shared side of those two triangles cannot have
length a or b in both triangles, and it cannot have length c either since the
first one has its side of length c along QE. Hence these two new triangles
do not even share a vertex along their shared side, and cannot form a
7-tiling. That disposes of case 1a.

Now we take up case 1b, when γ > π/2. Then the boundary of M
is concave at P , so in addition to adding a triangle T5 west of SR, with
westernmost vertex W , we must add T6 north of P , with a vertex at P .
Suppose, for proof by contradiction, that γ 6= 2π/3, in which case T6 does
not fill the vertex at P , or that γ = 2π/3 but T6 is not placed with angle
γ at P . Then we must also add T7 with a vertex at P . That would mean
that no triangles can be added south of PE or west of W , so that W
and Q must both be vertices of the final triangle, and R must not be a
vertex, and hence lies on WQ. Moreover, nothing can be added touching
QE, so QE must lie on one side of the final triangle. Therefore the third
vertex is either E or lies northeast of E on QE extended. It follows that
triangle T7 must have side a along PE, since it has a vertex at P and
cannot extend beyond E along line PE, and PE = a is the shortest side
of the tile. E cannot be a vertex of the final triangle, since W and Q are
vertices and triangle T7 does not lie inside triangle WQE, since it extends
north of E along line QE. Therefore only two tiles meet at E. Hence by
Lemma 1, γ = π/2. But in Case 1b, γ > π/2, so this is a contradiction.
This contradiction proves that γ = 2π/3 and T6 is placed with angle γ at
P .

Triangle T5 has to be placed west of SR, since we proved above that SR
cannot be a side of the final triangle. Assume, for proof by contradiction,
that it is placed with its a side along SR. Consider the three interior
angles at R. They are angle QRV = α, angle V RS = γ, and angle WRS
which might be γ or β, but not α since angle W = α, because it is opposite
SR. If angle WRS = γ then a concave exterior angle exists at R that
would have to be filled by one more triangle T7, leaving four vertices W ,
S, E, and Q still present. S would be a vertex since the angles there
would be α from T6, α from T1, β from T4, and β from T5, and their
sum is 2α + 2β = 2π − 2γ = 2π/3 6= π. Four vertices remaining means a
triangle is not created. Hence angle WRS 6= γ. Hence angle WRS = β.
Then WRQ is a straight line. Consider the angles at S. They are α
from T6, α from T1, β from T4, and this time γ from T5. Their sum is
2α +β + γ = α +π > π. Hence a concave exterior vertex exists at S after
the placement of T5 and T6. The exterior angle is β + γ, too large to be
filled by the placement of one more triangle T7. This contradiction shows
that T5 cannot be placed with its a side along SR.
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Hence triangle T5 must be placed west of SR in such a way that not
both S and R are vertices. Suppose, for proof by contradiction, that T5

is placed so that it does not have a vertex at R. It must have two vertices
on line SR, of which say U is the southernmost. We then have a concave
exterior vertex either at R (if U is south of R) or at U (if U is north of
R). T7 will have to be placed to fill this exterior concavity. Since Q and
E will remain vertices after the placement of T7, the third vertex must
be W ; hence S lies on line WE. That implies that T7 has S for a vertex
and the sum of the angles at S must be π. Those angles are α from T6,
α from T1, β from T4, and an unknown angle from T5. The unknown
angle must be π − 2α − β = γ − α. This cannot be γ, nor can it be α,
since 2α = γ = 2π/3 implies α = π/3 which in turn implies β = 0, a
contradiction. Hence the angle of T5 at S is β = γ −α. Hence α + β = γ;
but also α + β = π − γ, which contradicts γ = 2π/3. (So we do not
even have to analyze the impossible situation near R.) This contradiction
shows that R must be a vertex of T5 and S is not a vertex. Since SR = a
is the shortest side of the tile, triangle T5 extends north of S along SR.
Then T7 must be placed with a vertex at S north of SE. There will then
be vertices E, Q, W , and a vertex north of S on line SE. That is four
vertices at least, so no triangle is created. That disposes of Case 1b.

Now we take up case 1c, when γ < π/2. Triangle T5 must be placed
west of SR. Suppose, for proof by contradiction, that it is placed with
angle β at R and angle γ at S. Then the first five triangles form a
quadrilateral with vertices at W , Q, E, and P , and straight angles at R
and S. Consider the possibility that WSP is a side of the final triangle.
Then triangle T6 must be placed with a side along PE and a vertex at P .
But the angle at P will then be at least 2γ + α, which is more than π.
Hence WSP cannot be a side of the final triangle. But the length of WP
is 2b, and we have 2b > c since 2b = 4a > 3a = a + b > c. Hence at least
two triangles will have to be placed north of WSP . But that will leave
vertices W , Q, E, and another vertex north of WSP–more than three.
This contradiction shows that T5 cannot be placed west of SR with angle
β at R and angle γ at S. If it is instead placed with angle γ at R and angle
β at S, there will be a concave exterior angle at R, and convex vertices
at W , S, P , E, and Q. Even if it is possible to fill the exterior angle
at R with T6, that still leaves five vertices in a convex configuration, or
more than five vertices with some concave exterior angles. In either case,
a triangle cannot be created by adding T7. Hence T5 cannot be placed in
either orientation with its a side along SR. Therefore T5 must be placed
with a side extending past SR, either north or S or south of R along line
SR (or both). Suppose, for proof by contradiction, that T5 extends north
of S to a vertex N on RS extended, but has R for a vertex. Then T6

must be placed north of PS to fill the concave exterior angle at S. That
leaves convex vertices at W , N , E, and Q at least. There will also be a
vertex at R unless T5 has angle β there; that must be the case since five
convex vertices is too many to create a triangle by placing T7. Then T5

has angle α at N and γ at W . Hence NS has length c − a. Triangle T6

must also eliminate vertex P , or there will again be five vertices, which
is too many. To do that, T6 must fill the entire angle NSP = γ, and
must supply an angle equal to π − 2γ at P . Since SP = b, T6 has angle
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β at N , so it must have α at P . Therefore α = π − 2γ. Adding β + γ to
both sides of this equation we have π = π + β − γ, which implies β = γ.
We now have a 6-tiling of quadrilateral NEQW . But this quadrilateral
is a parallelogram: NPE is parallel to WRQ because transversal PQ
makes equal alternate interior angles RQP = β and QPE = γ, and
QE is parallel to WN because transversal NE makes complementary
corresponding interior angles WNP = α + β and QEP = β = γ. By
placing one more triangle T7, one cannot turn a parallelogram into a
triangle. This contradiction shows that T5 cannot be placed with R for a
vertex.

Now suppose, for proof by contradiction, that T5 is placed with one
vertex at S and a second vertex U south of R on SR extended. Then T6

must be placed south of RQ to fill the concave exterior angle at R. That
leaves convex vertices at W , U , E, and P at least. There will also be a
vertex at S unless T5 has angle γ there; that must be the case since five
convex vertices is too many to create a triangle by placing T7. Then T5

has angle α at U and β at W . Hence UR has length b−a = a, so the angle
of T6 opposite UR must be α. Triangle T6 must also eliminate vertex Q,
or there will again be five vertices, which is too many. To do that, T6

must have a vertex at Q, and must fill the entire angle URQ = β, and
must supply an angle equal to π − α − γβ at R. Since RQ = c, T6 has
angle γ at U , so it must have α at Q. Therefore to eliminate vertex Q we
must have 2α + β = π. This implies α = γ, so the tile is an equilateral
triangle. Now we have a 6-tile convex configuration with vertices at W ,
U , E, P , and S. Placing T7 can decrease the number of vertices by at
most one, since the configuration is convex. Hence no final triangle can
be created. This contradiction shows that triangle T5 cannot be placed
with a vertex at R or at S.

Hence triangle T5 is placed west of SR, with two vertices on line SR
somewhere, but not at R or at S. Then at least two concave exterior
vertices will be created somewhere on line SR, which must be filled by
placing triangles T6 and T7 with one vertex each on line SR and a side
contained in line SR. That will create two new vertices on line SR, say
N to the north and U to the south. We then have vertices W , E, N ,
and U , even if straight angles at P and Q are created by placing T6 and
T7. Four vertices do not make a triangle, so this placement of T5 is also
contradictory. That disposes of case 1c, and with it, of case 1.

Now we take up Case 2. In that case SR is parallel to PQ since the
alternate interior angles SV P and RSV are both equal to β. We ask which
pairs of sides of the pentagon SPEQR could be (contained in) sides of
the final triangle.

Case 2a: SR and PE are sides. Let N be the intersection point of SR
extended and EP extended. Then triangle NSP has angle β at S and γ
at P , because the angles at S and P must add to π. Then angle N is α,
and triangle NSP is similar to the tile T . But it has side b = 2a opposite
angle α, so its area is four times that of the tile. It therefore requires
four triangles congruent to T1 to cover triangle NSP , which is eight total,
more than seven.

Case 2b: SR and QE are sides of the final triangle. Then we have to
add triangle T5 southwest of RQ, and the third side will have to be east of
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PE and require at most two triangles to complete the figure, one of which,
say T6, will have to be north of SP , say SPN and one, say T7, will have
to be east of PE, say PEX . But it will not be possible for T7, adding
just one angle at E, to have a side extending QE, since then by Lemma
1, the tile would contain a right angle, so γ = π/2, and triangle PEQ
would have two right angles, one at Q and one at E. This contradiction
disposes of case 2b.

Case 2c: SR and SP are sides. Since PE and QE are not sides (by
Case 2a and Case 2b), there must be two new triangles sharing vertex E,
one on each side of the existing triangle PQE. These triangles must share
(respectively) side PE and side QE, since otherwise additional triangles
will have to be placed sharing vertex P or Q, and a triangle will not be
created. Thus we have triangle T5 = PEF and triangle T6 = QEG, with
FEG and RQG and SPF straight lines. Then angle PFE = γ (being
opposite PE which has length c) and angle EPF = γ (so that SPF is
straight, since angle V PS = β and angle QPE = α), so angle PEF = α
and the tile is isosceles with β = γ, since triangle PEF has two angles
γ. Angle QEG = γ since the sum of angles at E is π. Angle G = α
since it is opposite QE = a. Hence angle EQG = β = γ. Now there are
three angles γ at Q and since RQG is a straight angle, γ = π/3. Hence
the isosceles tile is actually equilateral. But that contradicts the equation
b = 2a. That disposes of Case 2c.

Now suppose, for proof by contradiction, that SR is (contained in) a
side of the final triangle. Then since SP is not an edge, we must place a
triangle, say T5, north of SP, and since PE is not an edge, we must place
T6 east of PE, and since QE is not an edge, we must place T7 south of
QE. Then we count vertices: We have the north vertex N of T5 north
of SP , and the south vertex of T7, south of QE, and R. In addition, S
will be a vertex unless N lies on RS extended; and N must also be the
third vertex triangle T6, which has PE for one side. Consider the angles
at P . Angle QPE = α because angle PQE = γ and angle E is opposite
PQ = b = 2a. Angle SPQ = γ. Angle SPN must be γ, since if it is α
or β, the remaining angle NPE will be π or more, but it is a single angle
of triangle T6. Since there are four angles at P and one of them is α, we
have γ > π/2. Since in triangle NSP , γ is used at P , angle NSP is either
α or β. Then the angles at S are β, α, and angle NSP ; the total is at
most α + 2β which is less than π, since β < π/2 < γ. Hence N does not
lie on RS extended, after all. This contradiction shows that SR is not
contained in a side of the final triangle.

We therefore must place T5 west of SR. Let W be its western vertex.
Unless T5 is placed so that at least one of vertices S and R are eliminated,
i.e. WSP is a straight angle or WRQ is a straight angle, then there will
be six vertices, too many to allow the creation of a triangle by placing
two more copies of T1. Suppose, for proof by contradiction, that WSP
is a straight angle. Angle V SP = α and angle V SR = β. Hence angle
WSR = γ. Since SR = a because it is opposite to angle SV R = α, angle
SWR = α. Hence angle WRS = β and side WS = b. We will show that
no triangle can be placed north of WSP . If T6 is placed north of WSP
with north vertex N then there will be vertices Q, E, and N . Assume,
for proof by contradiction, that T6 has WP for a side. The length of side
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WSP is 2b, so we must have c = 2b. But b = 2a, so c = 4a. This is
impossible, since then 4a = c < a+ b = 3a. This contradiction shows that
T6 cannot have WP for a side. Hence two triangles, T6 and T7, must be
placed north of WSP . If any side of length a is placed along WSP then
we need at least three triangles (which is too many). Suppose triangles
T6 and T7 are placed north of WSP with their b sides along WS and
WP . Then there will be vertices Q and E, and in order to create a final
triangle, there must be straight angles at P and at W , and triangles T6

and T7 must share a side. By Lemma 1, triangles T6 and T7 have right
angles at the shared vertex on WSP . Hence γ = π/2. Then T6 and T7

have acute angles at P and W . Hence there is a vertex at W , as well
as at Q, E, and the north vertex of T6, so no triangle is created. This
contradiction shows that WSP is not a straight angle after the placement
of T5.

It follows that WRQ is a straight angle after the placement of T5.
Since angle RQV = β and angle QRV = α, we have angle QV R = γ and
hence RQ = c. We have angle V RS = γ and since angle WRQ = π we
have angle WRS = β. If angle W = α then T5 has SR = a for a side
and WSP is a striaght angle, which have already disproved. Hence angle
W = γ and triangle T5 has side c along RS extended, creating a concave
exterior vertex at S, which must be filled by T6. Let the north vertex of
T5 be N . Then NS = a, so it is possible to place triangle T6 = NSP . If
this is done, we have a six-triangle convex configuration with five vertices
WQEPN . (There is a vertex at P since the angles at P are 2α + γ < π;
there is a vertex at N since the angles there are α + β < π.) Such a
configuration cannot be completed to a triangle by placing T7. Hence
triangle T6 is not NSP . But any other way of placing T6 with a vertex
at S will create another convex exterior vertex north of or on WSP and
east or or on SR extended, so T7 will have to be placed north of WSP
and east of SR extended. That will leave vertices at Q, E, and W , as
well as at least one vertex north of SP , so a triangle will not be created.
This contradiction finally disposes of Case 2.

We now take up Case 3. Since the angles at P are γ and β, the
possibility that SPE is straight does not arise; M is a convex pentagon.
Adding three triangles will still leave two of the five sides on the boundary;
hence at least two sides of M are (contained in) sides of the final triangle.
We will consider each of the ten pairs of two sides and show that those
two sides cannot be sides of the final triangle.

Case 3a: SR and QE are sides of the final triangle. Then let X
be their intersection point. The transversal RQ makes alternate interior
angles RQX = γ and QRS = γ + α with QE and SR, so X lies to the
south of RF . The triangle RFX can be covered exactly by four copies of
T1 (since it is similar to the tile but has side c = 2a opposite angle α),
but it must be contained in the final triangle, which is contradictory, since
only three more triangles are available. That disposes of Case 3a.

Case 3b: SR and PE are sides of the final triangle. Then let X be
their intersection point; triangle T5 will be required to cover SXP . Then
XPE must be a side of the final triangle, or else we will need to place
T6 and T7 north of XPE, leaving vertices R, Q, and at least two north
of or on XPE, contradiction. Therefore XPE is a side. Since EQ is not
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a side, we must place triangle T6 with a side on line QE. Suppose, for
proof by contradiction, that T6 does not have E for a vertex. Then a
convex exterior vertex is created on line QE, which must be filled by T7.
If T6 extends north of E along QE then T7 must be placed with a side on
XE; but that would create another exterior vertex on XE, because XE
has length greater than c, and so no triangle would be created. If, on the
other hand, T6 has its north vertex on QE south of E, then T7 must be
placed east of QE, leaving parallel sides RQ and XE, so no triangle is
created. Hence T6 does have E for a vertex. Now suppose, for proof by
contradiction, that T6 does not have Q for a vertex. If the south vertex
of T6 is north of Q, then T7 must be placed east of QE, leaving parallel
sides RQ and XE, so no triangle is created. If the southwest vertex U of
T6 lies on QE south of Q, then since QE = b and T6 has E for a vertex,
T6 must have side c along QE, and T7 will have to be placed south of RQ
and west of QE, in order to fill the concave exterior angle at Q. That will
leave vertices at X , R, U , and the southeast vertex of T6, so no triangle
is created. This contradiction proves that T6 has Q for a vertex, as well
as E. In other words, T6 has QE for a side.

Let Y be the third vertex of T6. Since QE = b, angle EY Q = β.
If angle Y QE = γ, then EY is parallel to XR, and we have two pairs
of parallel sides in the six-triangle configuration, a problem that cannot
be fixed by placing T7. Hence angle Y QE = α. Assume, for proof by
contradiction, that γ is not a right angle. Then we have five vertices X ,
E, Y , Q, and R. If γ < π/2 then this is a convex pentagon, and cannot be
completed to a triangle by placing T7. If γ > π/2, then there is a concave
exterior angle at E, which possibly could be filled by T7 if γ = 2π/3, but
then another concave exterior angle would be created on XPE somewhere,
since the length of XPE is more than c. This contradiction proves that
γ is a right angle. Therefore PEY is a straight angle. Now, however, we
have parallel sides XPEY and RQ; since XPEY has length more than
c, we must place T7 south of RQ with its c side along RQ. Suppose, for
proof by contradiction, that T7 has angle α at R. Then there is a vertex at
R, since the sum of the angles at R is 2α + γ < π, since we know γ = π/2
and hence, in view of c = 2a, α = π/6. We then have vertices at X , R, Y ,
and the third vertex of T7, so no triangle is created. This contradiction
proves that T7 does not have angle α at R. Hence it has angle β at R,
making a straight angle there. Then T7 has angle α at Q. The sum of the
angles at Q is then β +3α = π/2 + 2α < π. Hence there is a vertex at Q.
Since there are also vertices at X , Y , and the third vertex of T7, making
at least four vertices, no triangle is formed. That disposes of Case 3b.

Case 3c: SR and RQ are both sides of the final triangle. Since the
intersection of lines PS and QR lies west of SR, PS is not a side of the
final triangle. That requires the placement of a triangle T5 north of PS.
Since PE is parallel to RQ, we must place a triangle T6 north of PE.
This triangle T6 cannot reach all the way to SR extended, requiring the
placement of T7 north of T5. This cannot leave a triangle, as we have
vertices at Q, R, and a north vertex X on RS extended, and in addition
a fourth vertex either at E, or if T6 created a straight angle at E, then
at another vertex of T6 on QE extended. That vertex lies east of QP
extended and hence cannot coincide with X . This disposes of Case 3c.
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Case 3d: SR and SP are both sides of the final triangle. Then by
Case 3b we would have to place T5 north of PE. It would have to have
angle α at P in order not to extend north of PS. Then E would become
a non-strict vertex, with T5 extending past E. Since by Case 3c, we must
place one triangle T6 south of RQ, we must fill the concave exterior angle
at E with a single triangle T7. Hence by Lemma 1, γ = π/2. T7 and
T5 must share a common east vertex Y , or else further concave exterior
angles are formed. At Y the sum of angles is 2β = 2π/3 < π, so there are
vertices at S, Y , and the northeast vertex Z of T5. Since Q does not lie
inside triangle SY Z, there is a fourth vertex and no triangle is formed.
This disposes of Case 3d.

Case 3e: RQ and PE are both sides of the final triangle. This is
impossible since they are parallel, because transversal PQ makes equal
alternate interior angles β with RQ and PE. That disposes of Case 3e.

Case 3f: RQ and SP are both sides of the final triangle. The inter-
section point of lines RQ and SP , say W , lies to the west of SP and
triangle SPW is congruent to the tile. Since by Cases 3a to 3d, SR is
not a side of the final triangle, we must place T5 as triangle SPW . Since
PE is parallel to RQ, we must place T6 north of PE and south of SP
extended. This is only possible if T6 has P for a vertex and has angle α
there, so the north side of T6 extends segment SP , i.e. there is a straight
angle at P . That creates a concave exterior angle at E, since PE = a < b
(we cannot have a = b since c = 2a). Let N be the vertex of T6 on SP
extended and let X be the south vertex of T6. We must therefore place
T7 with a vertex at E and a side along QE and a side along PX . Unless
T7 is triangle QEX , more exterior concave angles (and hence no triangle)
will be formed; hence T7 is triangle QEX . Then considering the triangles
meeting at E, by Lemma 1, γ = π/2. Triangle QEX has angle α at Q
and β at X . The sum of the angles at Q is β + 2α < π, so there is a
vertex at Q. The sum of the angles at X is 2β < π, so there is a vertex
at X . There are also vertices at N and W , so no triangle is formed. That
disposes of Case 3f.

Case 3g: RQ and EQ are both sides of the final triangle. By Cases 3a
to 3d, SR is not a side of the final triangle, so we must place T5 west of
SR but touching segment SR. Assume, for proof by contradiction, that
R is not a vertex of T5. Then the southern vertex of T5 on SR lies north
of R and south of S. But SR = a, so the portion of SR south of T5 has
length less than a and cannot be covered by a triangle lying north of RQ
extended; that will leave a concave exterior angle that cannot be filled.
This contradiction proves that R is a vertex of T5. There are two possible
orientations of T5: either it has its a side along SR, so that W lies on
SP extended, or it has its c side along SR, so that S is the midpoint
of the east side of T5. Assume, for proof by contradiction, that S is the
midpoint of the east side of T5. Let N be the north vertex of T5, and
W its west vertex. Then WN is parallel to QE, since the corresponding
interior angles made by transversal WQ are angle NWQ = γ and angle
EQR = α+β, which are supplementary. Since EQ is (in Case 3g) a side of
the final triangle, NW cannot be, so triangle T6 must be placed northwest
of NW . Then T7 has to have a vertex at S to fill the concave exterior
angle there. But by Case 3e, PE is not a side, so some triangle has to
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be placed north of PE; but we have no more triangles, so a contradiction
has been reached. That disposes of Case 3g.

Case 3h: SP and QE are both sides of the final triangle. We note
that the intersection point X of those two sides lies to the northeast of
PE, because of the alternate interior angles made by the transversal PQ.
Hence triangle T6 will have to be placed with its a side along PE. But
then its α angle is not at P and it cannot lie south of SP extended,
contradiction. That disposes of Case 3h.

Case 3i: SP and PE are both sides of the final triangle. By Case 3e,
RQ is not a side of the final triangle, and by Case 3h, QE is not a side.
By Cases 3a to 3d, SR is not a side. Therefore we will have to place T5

west of SR, T6 south of RQ, and T7 southeast of QE. T7 will have to be
placed with a vertex at E in order to avoid creating a concave exterior
vertex on QE. Let W be the west vertex of T5; this must be the west
vertex of the final triangle. It must therefore lie on SP extended. Hence
T5 has WS for its north side. If T5 has R for a vertex, then there is a
concave exterior angle at the western vertex of T6 on RQ or RQ extended.
Hence T5 has its southern vertex Y south of R on SR extended. T5 has
angle γ at S, since the sum of angles there must be π, and angle β at W ,
since the side opposite W is greater than SR = a. Hence T5 has angle α
at Y . But WR is parallel to PE, so the intersection point of lines WY
and PE will lie north of SP . Hence SP , PE, and WY cannot be sides of
a triangle including any points (such as V ) south of SP . But in Case 3i,
by hypothesis SP and PE are sides of the final triangle, and WY must
be a side since it is on the boundary of the seven-triangle configuration.
This contradiction disposes of Case 3i.

Case 3j: PE and QE are both sides of the final triangle, then as we
have already shown, none of SP , SR, and RQ can be sides. Hence we
will have to place the remaining three triangles on those sides, say T5 on
SR, T6 on RQ, and T7 on SP . T6 must be placed with its c side on RQ
(or else a concave exterior angle will be created), so its angle at Q will
not be γ, and the seven-triangle configuration has a vertex at Q, since
the angle sum there is less than π. Assume, for proof by contradiction,
that T5 and T7 do not have the same third vertex. Then we have four
vertices–those two plus E and Q. That contradiction shows that T5 and
T7 must share their third vertex, say N . Let X be the southern vertex
of T6. For a triangle to be formed, the sides must be NPE, XQE, and
NRX . Now RS = a so in T5, NS must be b or c. In T7, SP = b so NS
must be a or c. Therefore NS = c, and angles NRS and NPS are both
γ. The angle sum at P is then 2γ + β = π. But since α + γ + β = π,
this yields γ = α, so the tile is equilateral, contradicting 2a = c. That
contradiction disposes of Case 3j.

We have now shown that no pair of sides of M can be sides of the final
triangle. This completes Case 3.

Now we take up Case 4. As in Case 3, M is convex.
We first prove that the three sides of the final triangle cannot be SP ,

PE, and RQ. Suppose, for proof by contradiction, that those are the
three sides. The intersection point W of lines SP and RQ lies to the west
of SR, because the transversal SR makes corresponding interior angles
RSP = β + α and SRQ = γ + α, and in Case 4 we have c > b, which
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implies γ > β. Triangle WSP has angle β at R (since the angle sum at R
is π) and angle γ at S (since the angle sum at S is π); hence it has angle
α at W , opposite side SR = a. Hence triangle WSP is congruent to the
tile and we can call it T5. Let X be the intersection point of lines PE and
RQ, which exists because we have assumed the third side is RQ. Then
triangle QEX is 2-tiled by triangles T6 and T7. Hence the tile is a right
triangle, γ = π/2. Since there is a straight angle at Q, we have β = π/3
and hence α = π/6. Consider the angle sum of triangle WPX : the angle
at W is α, that at P is γ + α, so that at X is π − γ − 2α = π/6 = α.
Hence triangle QEX is congruent to the tile; it cannot be 2-tiled. This
contradiction proves that the three sides of the final triangle cannot be
SP , PE, and RQ.

We shall now argue that none of the ten pairs of sides of M can be
(contained in) sides of the final triangle.

Case 4a: SP and PE are both sides of the final triangle. Then QE
does not lie on the third side, because of the alternate interior angles made
by transversal PQ to SP and PE. Hence triangle T5 is required south of
QE. T5 must be placed along QE with a vertex at E, since PE is a side of
the final triangle. Let X be the east vertex of T5. SR cannot lie on a side
of the final triangle, since the intersection point of SR and PE lies north
of SP , because the transversal SP of RS and PE makes corresponding
interior angles RSP = β + α and SPE = γ + α, whose sum is π + α > π.
Hence triangle T6 must be placed west of SR. Let W be the west vertex
of T6. Since RQ cannot be a side of the final triangle when SP and PE
are sides (as shown above), T7 must be placed south of RQ. Now, what
can be the vertices of the final triangle? P is one of them; the others must
be X (the east vertex of T5), and W (the west vertex of T6). Then S is
not a vertex; hence triangle T6 has angle γ at S. Since RQ is not a side,
W lies to the west of the intersection point Y of lines SR and RQ. But
Y S = b since angle Y RS = β. Hence WS = c. Then the γ angle of T6

must be opposite WS; but we already proved T6 has angle γ at S. Since
in Case 4, we have b 6= c, we have β < γ so T6 has only one angle equal
to γ. This contradiction disposes of Case 4a.

Case 4b: SP and QE are sides of the final triangle. The intersection
point X of these two sides lies to the east, because of the alternate interior
angles made by the transversal PQ. Suppose, for proof by contradiction,
that γ is a right angle. Since 2a = c we have α = π/6 and β = π/3.
Considering the angle sum of triangle PQX , we have α + β at P and β
at Q, so we have π −α− 2β = α at X . Hence triangle PXE is similar to
the tile, but with α opposite its b side PE. Hence the similarity factor is
b/a = sin(π/3)/ sin(π/6) =

√
3. Hence the area of triangle PXE is three

times that of the tile, and after it is tiled there will be no more triangles,
but there will still be vertices at X , S, R, and Q. This contradiction
shows that γ is not a right angle.

Let W be the intersection point of lines RQ and SP . Suppose, for
proof by contradiction, that RQ is the third side. Then triangle WSR is
congruent to the tile, having angle β at R, angle γ at S, and angle α at R.
Give triangle WSR the name T5. Then triangle XPE is 2-tiled by T6 and
T7; hence the tile is a right triangle, which we have shown is not the case.
This contradiction shows that RQ is not the third side. Since triangle
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WSR is congruent to the tile, but RQ is not the third side, at least two
triangles will be required west of line SR, and at least one south of RQ.
That will use seven triangles, and leave none to tile triangle PEX . That
disposes of case 4b.

Case 4c: SP and RQ are sides of the final triangle. These lines inter-
sect in the west vertex W . Triangle WSR is congruent to the tile, and we
call it T5. Then, by cases 4a and 4b, triangles T6, and T7 will have to have
sides PE and QE, respectively. (If these triangles do not have vertices
matching already existing vertices, no triangle will be formed.) Let X be
the third vertex of T7, and N the third vertex of T6. Then the final trian-
gle is WXN . A straight angle is formed at P , and since angle SPV = γ
and angle QPE = α, we must have angle EPN = β. But PE = b so
the angle at N must also be β. But in Case 4, we have b 6= c so β 6= γ.
Hence β = α, since T6 has two angles equal to β. Then angle PEN = γ.
Now suppose, for proof by contradiction, that angle QEX = α = β. Then
considering the angle sum at E we have 2γ + α = π. But

2γ + α = 2(π − α − β) + α

= 2π − 3α

which implies α = π/3. But if α and β are both π/3 then so is γ,
contradiction, since b 6= c. This contradiction proves that angle QEX
is not β. Therefore it is γ, and the angle sum at E tells us 3γ = π, or
γ = π/3. But again that implies α = β = γ, contradiction. That disposes
of Case 4c.

Case 4d: SP and SR are sides of the final triangle. Then by Case 4a,
triangle T5 will be required east of PE; by Case 4b, triangle T6 will be
required south of QE; and by Case 4c, triangle T7 will be required south
of RQ. The three vertices of the final triangle must be S, a point X east
of P on SP extended, which must be the east vertex of T5, and a point Y
south of R on SR extended, which must be the south vertex of T7. Since
triangle SXY must include T6, located south of QE, triangles T7, T6, and
T5 must all share a vertex on line Y X , with an angle sum of π there. But
then the side of T7 along RQ must be longer than RQ = c, contradiction.
That disposes of Case 4d.

Case 4e: SR and PE are sides of the final triangle. Let N be the
intersection of PE and SR, which lies to the north of SP . Then triangle
NSP is similar to triangle T1, since it has angle β at P and angle γ at
S (and hence α at N), but the side opposite angle α is b, not a. So
triangle NSP could be tiled by an integral number K of copies of T1 only
if K = (b/a)2 is an integer. If K = 3 then a triangle is not formed, since
we have vertices at N , E, Q, and R. If K = 2 then NSP is 2-tiled, so
γ = π/2. Since c = 2a in Case 4, we have α = π/6 and β = π/3. Then
b/a = sinβ/ sin α =

√
3, so K = (b/a)2 = 3, not 2. Hence K 6= 2. But

these are all the possibilities for K . That disposes of Case 4e.
Case 4f: PE and QE are sides of the final triangle. Then we require

T5 south of QR by Case 4c, T6 north of SP by Case 4a, and T7 west of
SR by Case 4e. In order that a triangle be formed, the new triangles
must share existing vertices along the sides mentioned, and we must have
straight angles at Q and P . The vertices of the final triangle are E, the
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north vertex N of T6, on PE extended, and the south vertex X of T5, on
EQ extended. Then the three new triangles must share a vertex W west
of SR and the angle sum there must be π. But then the north side of T5

will be WQ, which is longer than c, since RQ = c. That contradiction
disposes of Case 4f.

Case 4g: PE and RQ are sides of the final triangle. Then we must
place T5 south of QE with its a side along QE. In case γ = π/2 this
can be done, with the third vertex X at the intersection point of PE and
RQ. Otherwise more triangles will be required south of QE. Since neither
SP nor SR is a side when PE is, by Case 4a and Case 4d, triangles T6

and T7 will be required north of SP and west of SR, so there can be no
second triangle south of QE. Hence γ = π/2. Since c = 2a, we then have
α = π/6 and β = π/3. The three vertices of the final triangle are X , and
the north vertex N of T6, which lies on PE extended, and the west vertex
W of T7, which lies on QR extended and is also a vertex of T6. If T6 does
not have vertices W and P or T7 does not have vertices S and R, no final
triangle is formed. We have SP = b; angle RSV = β; angle WRS = β
because the angle sum at R is π; hence WS = b. Hence WP , the south
side of T6, is 2b. Hence c = 2b. But c = 2a. Hence a = b and α = β. This
contradicts α = π/6 and β = π/3. This contradiction disposes of Case
4g.

Case 4h: SR and QE are sides of the final triangle. Because PQ is
parallel to SR, the intersection point X of QE and SR lies to the south
of R. At least one triangle T5 will have to be placed inside triangle RQX .
Since SR is a side, PE and SP are not sides, by Case 4e and Case 4d,
so triangles T6 and T7 are required north of SP and northeast of PE,
areas which cannot intersect triangle RQX . Hence triangle T5 must be
exactly triangle RQX . Angle RXQ = β because angle PQE = β and PQ
is parallel to SRX . But angle RXQ is opposite side RQ = c, so angle
RQX = γ. Hence β = γ. Hence b = c. But in Case 4 we have b 6= c. This
contradiction disposes of Case 4h.

Case 4i: Suppose QE and RQ are sides of the final triangle. Since QE
is a side, none of PE, SP , and SR are sides, by Case 4f, Case 4b, and
Case 4h, so triangles T5, T6, and T7 must be placed on those three sides,
respectively. Let X be the east vertex of T5, and let Y be the northwest
vertex of T6. Then these must be the vertices of the final triangle, so Y
is also the west vertex of T7, and T7 is triangle SRY , T6 is triangle PSY ,
and T5 is triangle PEX . Since only two triangles meet at E, by Lemma 1
γ = π/2. Then because c = 2a we have α = π/6 and β = π/3. But at S,
there are four angles, two of which are α and β, so the angles of T6 and
T7 at S must add to 3π/2, which is impossible. That disposes of Case 4i.

Case 4j: RQ and SR are sides of the final triangle. By Case 4c,
Case 4g, and Case 4i, neither SP , PE, nor QE can be sides along with
RQ. Therefore we must place triangles T5, T6, and T7 along those sides,
respectively. Let X be the southeast vertex of T7, and N the north vertex
of T5. Then X , N , and R must be the vertices of the final triangle. Hence
X lies on RQ extended and N lies on RS extended. The vertex Y of T6

that does not lie on PE extended must lie on NX . Then Y must lie on
SP extended, so that SPY is the south side of T5; and Y must lie on QE
extended, so that QEY is the north side of T7. That is, lines SP and QE
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meet at Y . Since only two triangles lie to the north of E and QEY is a
straight line, by Lemma 1 we have γ = π/2. Then because c = 2a we have
α = π/6 and β = π/3. Because the angle sum at P of the angles SPV ,
QPE, and EPY is π, we must have angle EPY = β. Because the sum of
angles QEP and Y EP must be π, we have angle Y EP = γ. Hence angle
EY P = α. But side PE = b since it is opposite angle PQE. Hence angle
EY P = α = β, which is a contradiction since α = π/6 and β = π/3.
That disposes of Case 4j.

That completes all ten sub-cases of Case 4, and with them, the proof
that case (iii) of the previous lemma’s conclusion is impossible.

We now take up showing that case (ii) of the previous lemma’s conclu-
sion is impossible. In that case we start with a five-triangle configuration
M , and we must show it is not possible to make it into a triangle by adding
two more copies of T . Since SP is parallel to RQ, those two sides cannot
both be sides of the final triangle. Suppose, for proof by contradiction,
that triangle T6 is placed south of RQ. Let X be the south vertex of T6.
Then we have vertices at S, E, and X . Suppose, for proof by contradic-
tion, that RQ is not a side of T6. Then we will have to place T7 with a
vertex on RQ. Then we still have vertices at X , S, and E, so the final
triangle must be SXE. Then T6 and T7 must 2-tile triangle RQX . Then
angle QRX is less than a right angle, so angle WRX is not a straight
angle, since angle WRQ is a right angle. This contradiction shows that
RQ is a side of T6. Since RQ = b, T6 has a right angle at R and α at Q,
or the other way around. Unless the right angle of T6 is at R and SPE
is straight, the resulting six-triangle configuration will have five or more
convex vertices, and cannot become a triangle by placing one more copy
of T . Therefore T6 must be placed with its right angle at R. Let X be
its south vertex. Then SX is longer than c since SR = 2a = c. Hence
we cannot create a triangle by placing T7 west of SR. Also SPE, even if
it is a straight line, has length b + a > c, so we cannot create a triangle
by placing T7 north of SPE. The only remaining possibilities are south
of T6 or east of QE. In either case the triangle T7 will share vertex Q.
The angle already at Q is π/2 + 2α, so to make a triangle we must add
π/2 − 2α. If SPE is not straight, we cannot possibly create a triangle;
hence SPE is straight. Then α = arctan 1

2
, not π/6, so π/2−2α is neither

α nor β, and it is not possible to eliminate the vertex at Q by placing
T7. This contradiction shows that T6 cannot be placed south of RQ and
completed to a triangle.

Therefore RQ will be one of the sides of the final triangle. Then SP
cannot be a side of the final triangle, since it is parallel to RQ. Hence
we must place T6 north of SP . We must not create a concave vertex
anywhere on SP by placing T6, so the vertices of T6 must include S and
P , unless SPE is straight and SE is one side of T6; but SE = b + a > c,
so that is not possible. Hence SP is a side of T6. If SPE is straight, i.e.
α = arctan 1

2
, then we have created a concave vertex at P , so we must

have α = π/6. In that case the total angle at P after placing the α angle
of T6 there is π/2 + α + β = π, so if N is the north vertex of T6 we have
NPE straight. We cannot make a triangle by placing T7 west of NR, or
north of NPE, since these segments are longer than c, so that leaves east
of QE as the only possibility, since we know RQ must be a side of the
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final triangle. Since QE = b, we must place the b side of T7 along QE,
with the right angle at E, because the sides of the final triangle must be
NSR, NPE (extended), and RQ (extended). The angle of T7 at Q must
then be α. The total angle at Q is then π/2 + 2α = 5π/6, not enough to
eliminate the vertex at Q. That completes the proof that case (ii) of the
previous lemma’s conclusion is impossible, and that completes the proof
of the lemma.

Lemma 8 A 7-tiling cannot contain more than one non-strict vertex.

Proof. The previous lemmas have shown that each non-strict vertex is of
type 2 : 1 and occurs in a certain 3-triangle configuration (shown in Figure
8.) Suppose a 7-tiling contains two (or more) non-strict vertices. We have
to consider the following cases: Case 1, the two 3-triangle configurations
overlap (share a triangle), thus requiring five or fewer triangles; Case 2,
the two 3-triangle configurations do not share a triangle, but share a side;
Case 3, the two 3-triangle configurations do not share a triangle or a side.
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Figure 10: Two non-strict vertices in five triangles, first configuration

We take up Case 1. Each of the two 3-triangle configurations exposes
only one side a on its boundary. If the (or a) shared triangle is one
of the two triangles whose a sides are on the maximal segment in one
configuration, then that triangle must be the T3 of the other configuration.
There are just two such configurations possible, when α = π/6. When
α = arctan 1

2
, we will show no such configuration is possible: let PQ be

the maximal segment, with triangles T1 and T2 west of PQ and T3 east of
PQ with its b side equal to PQ and its right angle at P . Then the north
side of T3 is the only exposed side of length a, and it cannot occur as part
of a pair in another configuration, since its b side is already used.

Therefore α = π/6. We will show that the two configurations with
α = π/6 cannot be completed to a 7-tiling. Let PQ be a (north-south)
maximal segment of length c, and T1 and T2 west of PQ with their a sides
together matching PQ and shared west vertex W ; then T3 is east of PQ,
with angle α at Q and east vertex E, and T4 shares side QE and has angle
α at Q and east vertex X , and T5 shares side PX , and can be placed in
either of two orientations. Let Y be the north vertex of T5. Suppose, for
proof by contradiction, that the β angle of T5 is placed at X , and the α
angle at P . (See Figure 11) Then WPXQ is a parallelogram: since angle
XPQ = angle PQW , PX is parallel to WQ, and since angle XQP =
angle QPW , QX is parallel to WP . Since only two more triangles can
be placed, the three sides of the final triangle are among the five sides of
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the pentagon WPY XQ. The remaining two triangles must therefore each
share a side with one of the existing triangles. Since WP is parallel to XQ,
we must place a triangle on one of those sides. It is not possible to place
T6 on any existing side in such a way as to create a concave exterior angle
of π/3 or less. Hence, T6 must be placed so as to create a quadrilateral by
creating straight angles where two vertices were before. There is only one
position in which that is possible: triangle T6 must be placed along PY
with its right angle at Y . (Technically, we should compute the angle sums
for all the other possibly positions of T6, rather than rely on inspection of
Figure 11 for a “proof”.) Then straight angles are created at Y and P .
Then since WP and QX are parallel, we must place T7 along QX . To
make a straight angle at X we need to place the β angle of T7 at X ; but
to make a straight angle at Q, we need to place the β angle there. Indeed
this six-triangle configuration can be completed to an 8-tiling, but not to
a 7-tiling. This contradiction shows that T5 cannot be successfully placed
with its β angle at X .
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Figure 11: Two non-strict vertices in five triangles, second configuration

Therefore the β angle of T5 is placed at P . (See Figure 12). Then
the total angle there is 3β = π, and WPY is straight. The quadrilateral
WY XQ is convex. If we place a triangle to share any of its sides, and we
do not match the side exactly, then another triangle will be required on
that side, and a large triangle cannot be created. Hence when we place a
triangle, it must match one of the sides of the quadrilateral exactly. That
means that two of the sides of the quadrilateral must be sides of the final
triangle. If any triangle is placed north of WPY then we must place two
triangles there, since the length of WPY is c + a. That will leave at least
four vertices; hence WPY is one of the sides of the final triangle. Since
QX is parallel to WPY , it cannot be a side of the final triangle. Hence
T6 must be placed south of QX , sharing side QX . There are two possible
orientations. If the β angle of T6 is at X , then the resulting figure has
vertices at W , Y , X , Q, and the south vertex Z of T6. It is convex, so it
is not possible to complete it to a triangle by placing T7. Therefore, the α
angle of T6 is at X . That creates a straight angle is created at Q, so the
resulting figure is a quadrilateral. Now we ask if it is possible to place T7

along any side of this quadrilateral so as to create a triangle. Sides WPY
and WQZ are longer than c, so it is not possible to place T7 there. If T7 is
placed along Y X , then the β angle would go opposite Y X , the right angle
would have to go at Y to avoid creating a fourth vertex there, leaving the
α angle to go at X , where the angle sum would then be 3α +β = 5α < π,
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so a triangle is not created. Hence T7 must be placed south of T6. That
means the sides of the final triangle are WY , Y X extended, and WQ
extended. Let Z be the intersection point of lines WQ and Y X . This
point lies to the southeast, because of the angles made by the transversal
WY . Triangle ZXQ is similar to the tile, because it has angle α at Z
(because the angle sum of triangle WY Z must be π), and angle β at Q
(because WQZ is a straight angle). But it has side QX = c = 2a opposite
angle α. Hence its area is four times that of the tile, and thus it cannot
be tiled by T6 and T7. That contradiction completes the proof of Case 1.

Now we take up Case 2, in which the two configurations share a side
but not a triangle. When we join two convex quadrilaterals along a side,
we get a figure with at least six convex vertices, and possibly with one
or two more vertices, which might be concave. Placing one triangle can
reduce the number of convex vertices by at most 2 (that can happen if a
concave vertex occurs in just the right position). But even if that happens,
there will still be four vertices left after placing T7. That completes the
proof in Case 2.

Finally we consider Case 3, in which the two configurations do not
even share a side. Since the quadrilaterals are convex, they share at most
one point. At that shared point there may be a vertex with a concave
exterior angle, so placing one triangle could possibly eliminate two of the
six remaining vertices, but that would still leave four, too many for a
triangle. That completes the proof of the lemma.

Theorem 5 (Main Theorem) There is no 7-tiling.

Proof. Suppose triangle ABC is 7-tiled by seven copies of triangle T .
Then according to our previous theorems, it is not a strict tiling, and
there is exactly one non-strict vertex V , and triangle T has a right angle,
and its small angle α is either π/6 or arctan(1/2), and the non-strict
vertex occurs in one of two specific configurations of three triangles (one
for each α). (Those configurations are illustrated in Figure 8.) To finish
the proof, we have to show that it is impossible, starting from either of
those configurations, to add four more copies of T to create a triangle.
We need only consider placements of new copies of T that share sides
with existing copies, since no additional non-strict vertices can occur in a
7-tiling.

There are 7π angles total in the seven copies of T . Of these, π are used
at the vertices A, B, and C, and π at the non-strict vertex V , leaving 5π
to be used at boundary and interior vertices (other than V ). An interior
vertex uses 2π, and a boundary vertex uses π. The possibilities are thus:
one boundary and two interior vertices, or three boundary and one interior
vertex, or five boundary vertices and no interior vertex. In particular there
are at most two interior vertices.

First we take up the case α = π/6. The starting configuration is the
first one shown in Figure 8. The non-strict vertex V is at the midpoint of
north-south line PQ. Triangles T1 and T2 are west of PQ, with a shared
west vertex W , a right angle at their shared vertex V , and angle α at W .
Triangle T3 is east of PQ, with angle PQE = α, and angle QPE = β.

Consider adding T4 north of PE with its third vertex N on QE ex-
tended. If we then add T5 north of PN , two additional triangles T6 and T7
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will be required to fill the angle 2π at P . Vertices Q and N remain, so if
this were to create a triangle, the west vertex Y would have to lie on QW
extended. That would require at least two more triangles to share vertex
W , one of which might be T6, but there is no second one available. Hence
the indicated placement of T5 fails. Similarly, if we add T5 southeast of
EN , with southeast vertex X , then the exterior angle at vertex E will be
concave, so we will have to add T6 sharing vertex E. That can fill vertex
E to 2π only if both T5 and T6 have a right angle at E, which will make
a six-triangle convex pentagon; such a configuration cannot be completed
to a triangle. If instead T5, T6, and T7 are all placed with a vertex at E,
the result cannot be a triangle since there are vertices at W , N , Q, and
at least one more southeast of QN . Hence it fails to place T5 southeast
of EN . Since T5 cannot be placed east of EN or north of PN , with this
placement of T4, two sides of ABC must be WPN and NEQ. We must
then add the remaining three triangles to the southwest of WQ. Since P
and E will now be boundary vertices, we are allowed only one interior ver-
tex in the process. That vertex S will be created when we add triangle T5

immediately south of WQ, with southwest vertex S. There are two ways
to place T5; first consider placing its α angle at Q. Then WS = a and
we must place T6 west of WS with its right angle at S (since otherwise
WS must be the third side of the final triangle, and there is not enough
area south of SQ and north of NQ extended to hold two more copies of
the tile). Let X be the west vertex of T6 (placed west of WS). We now
have a non-strict 6-tiling of triangle XNQ (Figure 13). This cannot be
made into a triangle by adding one more triangle south of XSQ. Hence
the indicated placement of T5 fails.
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E

Figure 12: A six-tiling that cannot be completed to a 7-tiling

Therefore T5 has to be placed with its β angle at Q, and its α angle
at W . Let S be the third vertex of T5. Then we cannot place T6 with its
α angle at Q to have its side extend NEQ, since that creates a non-strict
vertex at S. Hence QS must be the third side of the final triangle. But
that is not possible, either, since QS is parallel to WPN (since transversal
PQ makes equal alternate interior angles SQP and QPN , both equal to
2β). this placement of T5 also fails. Hence the indicated placement of T4

(north of PE with its third vertex N on QE extended) fails.
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Now consider adding T4 north of PE with is third vertex N not on
EQ extended, i.e. its right angle is at P instead of E. Then the exterior
angle at vertex P is concave, with total interior angle 7π/6. At least two
more triangles T5 and T6 must share vertex P . If we use T7 also at P ,
then we will still have vertices four vertices W , Q, E, and N , so we must
use only T5 and T6 at P . We must therefore place T5 along NP = b with
its right angle at P . Let Y be its third vertex. Then T6 must be placed
with its c side along WP and its β angle at P , so Y P = a is matched.
The angle of T6 at Y is π/2, so the total angle at Y is 5π/6, not π, and
our 6-triangle configuration has vertices at W , Y , N , E, and Q. (Figure
14.) Since this configuration is convex, the best we could hope to do by
placing T7 is to reduce the number of vertices by one to four. Hence this
placement of T4 also fails.
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Figure 13: Another configuration that cannot be completed to a 7-tiling

Thus T4 cannot be placed north of PE in either orientation. Hence
PE lies on the boundary of triangle ABC. Since WQ is parallel to PE, it
follows that WQ is not a side of triangle ABC. We must therefore place
T4 south of WQ; call its third vertex S. There are two orientations to
consider: either the angle of T4 at Q is β or it is α. First suppose T4

has angle α at Q. Then SW is a north-south line. Consider placing T5

along WP with α at P . Let X be the third vertex of T5. Then XP is
parallel to SQ, so T6 must be placed either north of XP or south of SQ.
In either case we are committed to making WS extended a side of ABC,
since placing another triangle west of WS extended will create concave
vertices. We must therefore definitely add T6 north of XP to reach the
intersection point Y of PE and WS extended. Now we have vertices Y ,
E, Q, and S, and we must remove the vertex at Q by placing T7. The
angle at Q is presently 2α + β = 2π/3. To remove it we would have
to put the β angle of T7 at Q, but the two sides SQ and QE are both
b, so the β angle of T7 cannot be placed at Q. Hence the placement of
T5 along WP with α at P fails. Now consider placing T5 along WP
with β at P . Then the third vertex X of T5 lies on PE extended, and
XW is perpendicular to PE. If we place T6 along XW , we again reach
the intersection point Y of PE and WS, and we have the same convex
quadrilateral 6-tiled as with the previous placement of T5, and again T7
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cannot be placed to make a triangle. Hence we cannot place T6 along
XW . But then XW must be a side of the final triangle ABC. Since
PE is a side, the vertex at W will have to be eliminated, but this is not
possible, since we would have to place angle α at W , but the side WS is
a, which cannot be adjacent to angle α. Hence the placement of T5 along
WP with β at P fails. Now both possible placements of T5 along WP
have failed. Hence WP is contained in one of the sides of triangle ABC.
We therefore must add T5 west of WS, matching its a side to WS. Let
X be the third (westernmost) vertex of T5. If XSQ is not a side of ABC,
we would have to add two more triangles south of XSQ, but that would
not make a triangle. Hence XSQ is the third side of ABC. Let Y be
the intersection point of EP and SQ. Then the remaining two triangles
would have to tile triangle EQY . Triangle EQY is similar to T , since it
has angle β at Q and a right angle at E, but the side opposite angle α
is EQ = b =

√
3/2. So the area of triangle EQY is 3 times the area of

T , not twice the area of T . Hence the placement of T4 with angle α at Q
fails.

Now consider the other possible placement of T4, namely south of WQ
with angle β at Q. Let S be the third vertex of T4. If WS is a side of
ABC, then we will need to use three more triangles north of WP to reach
the intersection point Y of WS and EP , and that will leave four vertices
Y , S, E, and Q. Hence WS is not a side of ABC, so we must place T5

along WS = b. There are two possible orientations, with the angle of T5

at W either α or a right angle. Consider first placing T5 on WS with a
right angle at W . Let X be the third vertex of T5. Then X lies on WP
extended and XS is parallel to WQ and PE. Then XS cannot be a side
of ABC (since PE is a side), so we must place T6 south of XS. Let Y be
the third vertex of T6. Then we have vertices Y , X , P , E, Q, and possibly
S. Since this figure is convex, we cannot possibly reduce the number of
vertices to three by placing T7. So the placement of T5 on WS with a
right angle at W fails. Now consider the other possible placement of T5,
on WS with angle α at W . Let X be the third vertex of T5. Now WX
cannot be a side of ABC, since in that case three more triangles would be
needed to reach the intersection point Y of PE and WX . Therefore we
must add T6 west of WX . Let Z be the westernmost vertex of T6. Then
we have vertices Z, X , Q, E, P at least, and the figure is convex, so it
cannot be made into a triangle by placing T7. Hence both orientations of
T5 on WS fail. Hence the second possible orientation of T4 (south of WQ
with angle β at Q) fails. That exhausts the possibilities, and completes
the proof in case α = π/6.

Now we consider the case α = arctan 1

2
, which is about 26.565 degrees.

Then β = arctan 2 is about 63.435 degrees. The starting configuration is
shown in the second part of Figure 8. The non-strict vertex V is at the
midpoint of north-south line PQ. Triangles T1 and T2 are west of PQ,
with a shared west vertex W , a right angle at their shared vertex V , and
angle α at W . Triangle T3 is east of PQ, with angle PQE = α, and angle
QPE is a right angle.

We first consider placing T4 north of PE with a right angle at P . Let
N be its northern vertex. That creates a concave vertex at P with exterior
angle π − β. That will require T5 and T6 to be used north of WP and
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west of NP ,respectively. Even if we managed to solve the problem of the
concave vertex at P , we would then have only one more triangle T7 to
place, and we cannot reduce the number of vertices by placing it on NE,
QE, or WQ, but it must be placed on one of those sides since not all
three can be sides of the final triangle ABC. Hence the placement of T4

north of PE with a right angle at P fails. Next consider placing T4 north
of PE with a right angle at E, and let N be its northern vertex. This
also creates a concave vertex at P , with exterior angle 3π/2 − 2β. We
cannot use all three remaining triangles at P , as that will leave vertices
W , Q, E, and N . Since we can place only two new triangles with vertices
at P , they must have their c sides along WP and PN , so they cannot
have right angles at P . Therefore their maximum contribution to the
angle sum at P is 2β, which is not enough to fill the angle at P , since
4β + π/2 is about 343.74 degrees, not 360. Hence the placement of T4

north of PE with a right angle at E fails. Hence T4 cannot be placed
north of PE at all. Hence PE is (contained in) a side of the final triangle
ABC. Suppose, for proof by contradiction, that WQ is a side of the final
triangle. Then we must place T4 north of WP , and T5 west of T4. Let
X be the west vertex of T5. Then XQE is 5-tiled. We must place T6

along QE, since XWQ and XPE are sides of the final triangle. There
are two possible orientations of T6, with angle α at E or angle β at E.
First consider placing T6 on QE with angle α at E. Let Y be the third
vertex of T6. Since QE = c, the angle of T6 at Y is a right angle and QY
is parallel to side PE of the final triangle. Hence T7 must be placed south
of QY = a, and its right angle must go at Y or a vertex will be created
there. Hence the angle of T7 at Q will be β, making the total angle at
Q equal to 3β + α = π/2 + 2β > π, contradicting our assumption that
WQ is a side of the final triangle. Hence the placement of T6 on QE with
angle α at E fails. Next consider the other possible placement of T6, on
QE with angle β at E. Let Y be the eastern vertex of T6. We cannot
place T7 north of EY , since 3β > π and T7 would then extend north of
PE. Hence the third side of ABC must be EY , and T7 must be placed
south of QY with its right angle at Y . Then the angle of T7 at Q is α
and the total angle at Q is 3α + β = π/2 + 2α < π, so a triangle has
not been created. Hence the placement of T6 on QE with angle β at E
fails. Now both possible placements of T6 have failed. This contradicts
our assumption that WQ is a side of the final triangle. Hence WQ is not
a side of the final triangle.

Therefore we must place T4 south of WQ. First consider placing T4

along WQ with angle α at Q, as shown in the first part of Figure 15. Let
R be the third vertex of T4. Suppose, for proof by contradiction, that RW
is a side of the final triangle. Then we must place T5 north of WP . Call
its north vertex N . Since RQ is parallel to PE, RQ is not a side of the
final triangle, and we must place T6 south of RQ. Call its south vertex
X . Since PE is (contained in) a side of the final triangle, the east vertex
of the final triangle must lie on PE (extended); but since the exterior
angle between EQ and PE extended is more than π/2, triangle T7 cannot
extend to the east of E on PE extended. Hence E is a vertex of the final
triangle. It is not possible to create a final triangle by placing triangle T7

along the east side of EQ, since then we will have four distinct vertices
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Figure 14: Two possible placements of T4

N , E, X , and the east vertex of T7. The latter two cannot coincide since
X is south of RQ and west of PQ extended, while the east vertex of T7

would be (in either possible orientation of T7) east of PQ extended. Since
T7 cannot be placed east of EQ, the third side of the triangle must be
EQ extended. Hence triangle T6 does not have its right angle at Q (or it
would extend east of EQ extended). Since RQ = b, triangle T6 has angle
β at X . Hence it has either angle α at Q. Then the angle sum at Q is
3α + β = 2α + π/2 < π. Now we have a six-triangle configuration with
four vertices N , E, Q, and X , and NR, NE, and QE are sides of the final
triangle. But T7 cannot be placed south of XQ so as to create a triangle,
since to do so it would need an obtuse angle at X . This contradicts our
assumption that RW is a side of the final triangle. Therefore RW is not
a side of the final triangle, and we are back to where only T4 has been
placed (along WQ with angle α at Q), as shown in the first part of Figure
15.

Since RQ is parallel to PE, RQ is not a side of the final triangle, and
we must place T5 south of RQ. If its right angle is placed at R, then since
RW is not a side of ABC, we will require both T6 and T7 west of SW
extended, since we are not allowed to create another non-strict vertex.
That will leave vertices at P , E, Q, and points west. Hence T5 cannot be
placed with its right angle at R. But then the right angle of T5 is at Q.
This creates a concave vertex at Q with exterior angle greater than π/2,
so two more triangles are required at Q, leaving none to place west of RW ,
where we need one since RW is not a side of ABC. This contradiction
shows that placing T4 along WQ with angle α at Q fails.

Hence we must place T4 south of WQ with angle β at Q, as shown in
the second part of Figure 15. Let R be the third vertex of T4. Suppose,
for proof by contradiction, that WP is not a side of triangle ABC. Then
we must add T5 with vertex α at P , side c along WP , third vertex N
on PE extended, with angle WNP = π/2. The total angle at W is now
3α+β = π/2+2α. To eliminate the vertex at W (making a straight angle
at W ) we would need an angle of π − (π/2 + 2α) = π/2 − 2α, which is
about 90− 2 · 26.5 = 37 degrees, more than α, but less than both 2α and
β, and hence impossible to supply. Possibly W might be eliminated as a
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vertex of ABC by becoming an internal vertex. Then the total angle at W
would have to be made equal to 2π. After placing T5 it is π/2+2α, so we
would need 2π−(π/2+2α) = 3π/4−2α more, which is about 217 degrees.
Even if we used the right angles of T6 and T7 we could not make it. Hence
W is definitely a vertex of triangle ABC (under the assumption that WP
is not a side.) This is, however, impossible, since two of the vertices must
be on line PE extended, and W cannot be the southernmost vertex, since
for example point Q lies farther to the south than W . This contradiction
shows that WP is, in fact, one of the sides of the final triangle ABC,
along with PE.

Thus P is one of the vertices of ABC, and the other two lie on PE
(extended) and PW (extended). W cannot be a vertex of ABC, since
then W would be the southernmost vertex of ABC, but R lies farther
south than W . Hence the vertex at W must be eliminated by placing
more triangles with a vertex at W . The angle sum at W (from the three
triangles already there) is 3α, about 79.5 degrees. To reach an angle sum
of π at W , we could place three triangles with angle β at W , but that
would use all seven triangles and still leave vertices at P , E, and Q, as
well as somewhere southwest of W on PW extended, so no triangle would
be formed. At least two must be used since 3α + π/2 < π. The possible
angle sums resulting from placing two more angles at W are among

5α < π

4α + β = 3α + π/2 < π

4α + π/2 > π

3α + 2β = π + α > π

3α + β + π/2 = 2α + π > π

None of these possibilities would succeed to eliminate vertex W . This
final contradiction completes the proof of the theorem.
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