
TILINGS OF AN ISOSCELES TRIANGLE

MICHAEL BEESON

Abstract. An N-tiling of triangle ABC is a way to cut ABC into N con-
gruent smaller triangles. The smaller triangle is the “tile.” When ABC is
isosceles with base angles α, and not equilateral, there are only four possible
tiles (aside from a tile similar to ABC): a right-angled tile with one angle α, a
tile with angles (α, β, 2α), a tile with angles (α, β, 2π/3), or a tile with angles
satisfying 3α + 2β = π (and in all but the first case, with α not a rational
multiple of π). We study the first three cases in this paper.

For tilings by a right triangle, N has to be a square, or an even sum of
squares, or six times a square; in particular it cannot be a prime congruent to
3 mod 4; and all these possibilities actually occur. We prove that unless ABC
is a right isosceles triangle, N has to be even.

For tilings by (α, β, 2α), we show that the tile is necessarily rational (the
ratios of its sides are rational), and we give a necessary condition for the
existence of a tiling. This condition implies that when an isosceles and not
equilateral ABC is N-tiled by such a tile, N cannot be a prime number, or
even squarefree.

In the last case, when the tile has a 120 degree angle, we also prove that
the tile must be rational, and find a necessary condition for the existence of
a tiling. That condition rules out N < 36, but leaves open whether N can
possibly be prime. The smallest known such tiling has N = 2736.

2010 Mathematics Subject Classification: 51M20 (primary); 51M04 (secondary)

1. Introduction

An N -tiling of triangle ABC by triangle T is a way of writing ABC as a union
of N triangles congruent to T , overlapping only at their boundaries. The triangle T
is the “tile”. We consider here the case of an isosceles (but not equilateral) triangle
ABC.

Our results fit into a larger research program, begun by Lazkovich [7]. Laczkovich
studied the possible shapes of tiles and triangles that can possibly be used in tilings,
and obtained results that will be described below. The reader who is new to the
subject may want to see examples of N -tilings for various shapes of ABC; such
pictures can be found in [1]. Here we give only examples relevant to the case of
ABC isosceles.

First we point out that any triangle can be decomposed into n2 congruent tri-
angles by drawing n − 1 equally spaced lines parallel to each of the three sides of
the triangle, as illustrated in Fig. 1. Moreover, the large (tiled) triangle is similar
to the small triangle (the “tile”). We call such a tiling a quadratic tiling.
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Figure 1. A quadratic tiling of an arbitrary triangle

It follows that if we have a tiling of a triangle ABC into N congruent triangles,
and m is any integer, we can tile ABC into Nm2 triangles by subdividing the first
tiling, replacing each of the N triangles by m2 smaller ones. Hence the set of N for
which an N -tiling of some triangle exists is closed under multiplication by squares.

Sometimes it is possible to combine two quadratic tilings (using the same tile)
into a single tiling, as shown in Fig. 2. We will explain how these tilings are

Figure 2. Biquadratic tilings with N = 13 = 32 + 22 and N =
74 = 52 + 72

constructed. We start with a big right triangle resting on its hypotenuse, and
divide it into two right triangles by an altitude. Then we quadratically tile each
of those triangles. The trick is to choose the dimensions in such a way that the
same tile can be used throughout. If that can be done then evidently N , the total
number of tiles, will be the sum of two squares, N = n2 +m2, one square for each
of the two quadratic tilings. On the other hand, if we start with an N of that form,
and we choose the tile to be an n by m right triangle, then we can construct such
a tiling. We call these tilings “biquadratic.” More generally, a biquadratic tiling
of triangle ABC is one in which ABC has a right angle at C, and can be divided
by an altitude from C to AB into two triangles, each similar to ABC, which can
be tiled respectively by n2 and m2 copies of a triangle similar to ABC. A larger
biquadratic tiling, with n = 5 and m = 7 and hence N = 74, is shown in at the
right of Fig. 2.

If the original triangle ABC is chosen to be isosceles, and is then quadratically
tiled, then each of the n2 triangles can be divided in half by an altitude; hence any
isosceles triangle can be decomposed into 2n2 congruent triangles. If the original
triangle is equilateral, then it can be first decomposed into n2 equilateral triangles,
and then these triangles can be decomposed into 3 or 6 triangles each, showing that
any equilateral triangle can be decomposed into 3n2 or 6n2 congruent triangles. For
example we can 12-tile an equilateral triangle in two different ways, starting with
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a 3-tiling and then subdividing each triangle into 4 triangles (“subdividing by 4”),
or starting with a 4-tiling and then subdividing by 3.

There is another family of N -tilings, in which N is of the form 3m2, and both the
tile and the tiled triangle are 30-60-90 triangles. We call these the “triple-square”
tilings. The case case m = 2 makes N = 12. There are two ways to 12-tile a
30-60-90 triangle with 30-60-90 triangle. One is to first quadratically 4-tile it, and
then subtile the four triangles with the 3-tiling of Figure 1. This produces the
first 12-tiling in Fig. 3. Somewhat surprisingly, there is another way to tile the
same triangle with the same 12 tiles, also shown in Fig. 3. The next member of
this family is m = 3, which makes N = 27. Two 27-tilings are shown in Fig. 4.
Similarly, there are two 48-tilings (not shown).

Figure 3. Two 12-tilings

Figure 4. Two 27-tilings

Whenever there is an N -tiling of the right triangle ABM , there is a 2N -tiling
of the isosceles triangle ABC. Using the biquadratic tilings (see Fig. 2) and triple-
square tilings (see Fig 3 and Fig. 4), we can produce 2N -tilings when N is a
sum of squares or three times a sum of squares. We call these tilings “double
biquadratic” and “hexquadratic”. For example, one has two 10-tilings and two 26-
tilings, obtained by reflecting Figs. 4 and 5 about either of the sides of the triangles
shown in those figures; and one has 24-tilings and 54-tilings obtained from Figs. 8
and 9. Note that in the latter two cases, ABC is equilateral.

In the case when the sides of the tile T form a Pythogorean triple n2+m2+k2 =
N/2, then we can tile one half of ABC with a quadratic tiling and the other half
with a biquadratic tiling. The smallest example is when the tile has sides 3, 4, and
5, and N = 50. See Fig. 7. One half is 25-tiled quadratically, and the other half is
divided into two smaller right triangles which are 9-tiled and 16-tiled quadratically.
This shows that the tiling of ABC does not have to be symmetric about the altitude.

As we shall see below, the work of Laczkovich implies that there are only four
possible shapes of the tile: right-angled, γ = 2α, γ = 2π/3, and 3α+ 2β = π. The
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last case is taken up in another paper, since the techniques apply also to tilings
of non-isosceles triangles ABC with 3α + 2β = π. The first three are studied in
this paper. We obtain, in the second and third case, necessary conditions on N ,
but not necessary and sufficient conditions. In the case of a right-angled tile, our
conditions are necessary and sufficient.

All known examples of tilings of isosceles ABC with α 6= π
2
have N even. We

could prove that it must be so when the tile is right-angled, but we could not prove
it in the other two cases, where indeed we know only a few tilings, all of which
require N with five to seven digits.

1.1. Acknowledgment. I am grateful to Miklos Laczkovich for his valuable com-
ments on my work and especially for his simplification of the proofs of Lemmas 7.1,
7.4, and 7.5, and of course for his many pioneering papers in this subject, on which
this paper rests.

1.2. Definitions and notation. We first note that this paper is about triangles
ABC that are isosceles and not equilateral. Let that be understood; then for the
rest of this paper, “isosceles” means “exactly two sides are equal.”1

We give a mathematically precise definition of “tiling” and fix some terminology
and notation. Given a triangle T and a larger triangle ABC, a “tiling” of triangle
ABC by triangle T is a set of triangles T1, . . . , Tn congruent to T , whose interiors
are disjoint, and the closure of whose union is triangle ABC.

Let a, b, and c be the sides of the tile T , and angles α, β, and γ be the angles
opposite sides a, b, and c. The letter “N” will always be used for the number of
triangles used in the tiling. An N -tiling of ABC is a tiling that uses N copies of
some triangle T . The meanings of N , α, β, γ, a, b,c, A, B, and C will be fixed
throughout this paper. We do not assume α ≤ β in general; although that may
sometimes be justified by symmetry, we often will consider some equation such as
3α+ 2β = π, in which case we do not want to assume α ≤ β.

2. History

Above we exhibited quadratic and biquadratic tilings in which the tile is similar
to ABC. There are hexagonal tilings, not exhibited in this paper, but see [1] for
pictures. These involve N being square, a sum of two squares, or three times
a square. The biquadratic tilings were known in 1964, when the paper [4] was
published. This is the earliest paper on the subject of which I am aware.2 Snover
et. al. [13] took up the challenge of showing that these are the only possible values
of N , when the tile is similar to ABC. The following theorem completely answers
the question, “for which N does there exist an N -tiling in which the tile is similar
to the tiled triangle?”

Theorem 2.1 (Snover et. al. [13]). Suppose ABC is N -tiled by tile T similar to
ABC. If N is not a square, then T and ABC are right triangles. Then either

(i) N is three times a square and T is a 30-60-90 triangle, or
(ii) N is a sum of squares e2 + f2, the right angle of ABC is split by the tiling,

and the acute angles of ABC have rational tangents e/f and f/e,

1That was Euclid’s definition of “isosceles.”
2The simplest hexagonal tiling is attributed to Major MacMahon (1921) in the notes accom-

panying a plastic toy I purchased at an AMS meeting in 2012.
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and these two alternatives are mutually exclusive.

Soifer’s book [14] appeared in 1990, with a second edition in 2009. He consid-
ered two “Grand Problems”: for which N can every triangle be N -tiled, and for
which N can every triangle be dissected into similar, but not necessarily congruent
triangles. (The latter eventually became a Mathematics Olympiad problem.) The
2009 edition has an added chapter in which the biquadratic tilings and a theorem
of Laczkovich occur.

Miklos Laczkovich published six papers [6, 7, 8, 2, 9, 10] on triangle and polygon
tilings. According to Soifer, the 1995 paper was submitted in 1992. Laczkovich,
like Soifer, studied dissecting a triangle into smaller similar triangles, not congruent
triangles as we require here. If those similar triangles are rational (i.e., the ratios of
their sides are rational) then if we divide each of them into small enough quadratic
subtilings, we can achieve an N -tiling into congruent triangles, but of course N may
be large. Laczkovich focused primarily on the shapes of ABC (or more generally,
convex polygons) and of the tile. His theorems give us an exhaustive list of the
possible shapes of ABC and the tile, which we will need in our proof that there
is no 7-tiling. This list can be found in §3 (of this paper). However, his theorem
published in the last chapter of [14] does mention N . It states that given an integer
k, there exists an N -tiling for some N whose square-free part is k.

3. Laczkovich

A basic fact is that, apart from a small number of cases that can be explicitly
enumerated, if there is an N -tiling of ABC by a tile with angles (α, β, γ), then the
angles α and β are not rational multiples of π. This theorem follows from Theo-
rems 4.1, 5.1, and 5.3 of [7]. Laczkovich is dealing with a more general situation,
tiling an arbitrary triangle by tiles that are only required to be similar, not congru-
ent. We extract the following theorem from his results by specializing to isosceles
ABC and congruent tiles.

Table 1. Possible tilings of isosceles triangles, according to Laczkovich.

ABC the tile

(β, β, 2α) similar to ABC

(β, β, 2α) γ = π/2

(α, α, π − 2α) γ = 2α

(α, α, π − 2α) γ = 2π/3

(α, α, α + 2β) 3α+ 2β = π

(β, β, 3α) 3α+ 2β = π

(α+ β, α+ β, α) 3α+ 2β = π

Theorem 3.1 (Laczkovich [7]). Let isosceles (and not equilateral) triangle ABC
be N -tiled by a tile with angles (α, β, γ). Then the possible shapes of ABC and the
tile are given by Table 1. In the table, the triples giving the angles of the tile are
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(α, β, γ) after a suitable permutation, i.e., they are unordered triples. In all but the
first two lines, α is not a rational multiple of π.

Remark. For example, in the second line of the table, we do not list separately
(α, α, 2β), as that is already covered by the entry (β, β, 2α), and the fact that we
do not assume α < β.

Proof. This theorem is proved in [7], but it is not stated in quite this way; therefore
we spell out in detail how this statement follows from theorems explicitly stated
in [7]. Let isosceles (and not equilateral) triangle ABC be N -tiled by a tile with
angles (α, β, γ). Then either all three angles are rational multiples of π, or not.
Case 1, they are not all rational multiples of π. Then by Theorem 4.1 of [7], where
T in that paper is our ABC, one of six cases holds. Cases (i), (ii), and (iv) are
the first three lines of our table. Case (iii) says ABC is equilateral, which we have
ruled out by hypothesis. Case(v) says 3α+2β = π and the base angles of isosceles
ABC must be α or β or α + β, by Theorem 2.4 of [7]; so that is lines 5, 6, and 7
of our table. Finally, case (vi) is has the tile (α, α, α+3β) with γ = 2π/3, which is
another way of writing line 4 of the table, since if γ = 2π/3, then α+3β = π− 2α.

Case 2, all three of (α, β, γ) are rational multiples of π. Then Theorem 5.1 of
[7] applies. That theorem is about dissections into similar (rather than congruent)
triangles, and according to the subsequent Theorem 5.3, the last three cases (cases
(v), (vi), and (vii)) in Theorem 5.1 cannot hold for dissections into congruent
triangles. Cases (i) and (ii) are the first lines of our table. Case (iii) requires ABC
equilateral, which we have ruled out by hypothesis. Case (iv) has ABC a right
triangle with one angle π/6, which is not isosceles and hence irrelevant here. That
completes the proof.

We note in passing the following immediate consequence of Laczkovich’s theorem:
If an isosceles triangle ABC is tiled by a right-angled tile (α, β, π

2
), then the base

angles of ABC are either equal to β or to α. That follows, because in Table 1,
there is only one entry corresponding to a right-angled tile, namely the second line.
Readers are invited to try to prove that directly, without appeal to Laczkovich, in
order to gain a deeper appreciation for Laczkovich’s work.

4. Some number-theoretic facts

The facts in this section may not be well-known to all our readers, and their
proofs are short.

Lemma 4.1. An integer N can be written as a sum of two integer squares if and
only if the squarefree part of N is not divisible by any prime of the form 4n+ 3.

Proof. See for example [5], Theorem 366, p. 299.

Lemma 4.2. N is a sum of two squares if and only if 2N is a sum of two squares.

Proof. The lemma follows immediately from the identities

(p− q)2 + (p+ q)2 = 2(p2 + q2)
(

p− q

2

)2

+

(

p+ q

2

)2

=
1

2
(p2 + q2).

This lemma is also a corollary of Lemma 4.1, of course, but that is not needed.
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The following lemma identifies those relatively few rational multiples of π that
have rational tangents or whose sine and cosine satisfy a polynomial of low degree
over Q.

Lemma 4.3. Let θ = 2mπ/n, where m and n have no common factor. Suppose
cos θ is algebraic of degree 1 or 2 over Q. Then n is one of 5, 6, 8, 10, 12. If both
cos θ and sin θ have degree 1 or 2 over Q, then n is 6, 8, or 12.

Proof. Let ϕ be the Euler totient function. Assume cos θ has degree 1 or 2. By
[12], Theorem 3.9, p. 37, ϕ(n) = 2 or 4. The stated conclusion follows from the
well-known formula for ϕ(n). The second part of Theorem 3.9 of [12] rules out
n = 5 or 10 when sin θ is also of degree 1 or 2.

Lemma 4.4 (Pythagorean triangles). The integer solutions of the equation x2 +
y2 = z2 have the form (x, y, z) = (m2 − k2, 2mk,m2 + k2) for some integers (m, k)

Proof. See any number theory textbook. But the proof is short, so we just give it
here. By the Pythagorean theorem, (x, y, z) form a right triangle, with one angle
α such that x/z = cosα and y/z = sinα. We use the Weierstrass substitution,
t = tan(α/2). Then

cosα =
1− t2

1 + t2
sinα =

2t

1 + t2

Setting t = m/k in lowest terms, and replacing sinα and cosα by y/z and x/z, we
find the formulas of the lemma for (x, y, z). That completes the proof.

Lemma 4.5. If the integer n is a sum of two rational squares then it is a sum of
two integer squares.

Proof. Suppose n = (p/q)2 + (s/t)2. Then (qt)2n = p2 + s2. Then by Lemma 4.1,
the square-free part of n is not divisible by any prime congruent to 3 mod 4. Then
by a second application of Lemma 4.1, n is a sum of two integer squares. That
completes the proof.

5. Tilings of an isosceles ABC by a right-angled tile: examples

Figure 5. A 54-tiling; N/2 is three times a square. Tile is 30-60-90.

Is it possible to have more complicated tilings without essential segments? Yes,
because when two tiles share their hypotenuses, they form a rectangle, and we can
just draw the diagonal of that rectangle the other way. In this way we can produce
(exponentially) many different tilings, but they differ only in this trivial way. And
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Figure 6. N is twice a square or twice a sum of squares.

Figure 7. 50 is both twice a square and twice a sum of squares.

Figure 8. N = 104, eight essential segments, base angles about 56◦

sometimes, as shown in Fig. 9, even those rectangles can be rotated. That figure
also shows that a tiling need not necessarily include the altitude of ABC.

In the tilings based on two biquadratic tilings, there are no c edges on AB and
BC, while in the tilings based on two quadratic tilings, there are only c edges.
There are of course some hybrid tilings when a square is also a sum of squares, in
which AB falls under one case and BC under the other. If N/2 is not a square (as
is the case for the biquadratic tilings) then there are no c edges on AB and BC, as
we see in the biquadratic tilings (and prove in the next section).

All these tilings, in which N/2 is a sum of squares, involve essential segments
(where tiles of different lengths occur on the two sides of an internal line). One sees
such linear relations in two of the tilings illustrated in Fig. 6.
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Figure 9. The altitude need not be part of the tiling.

Figure 10. N = 2312, N/2 = 342, (a, b, c) = (3, 4, 5)

b

6. Laczkovich’s graphs Γa

In trying to prove the impossibility of certain tilings directly, it is easy to be-
come involved in complicated arguments with many cases, involving complicated
diagrams. Laczkovich had the brilliant idea to abstract some of these arguments
using graph theory. The definition will not be grasped immediately, but instead
will require time and the study of examples to understand. But it leads to very
elegant proofs of theorems that are much more complicated or impossible to prove
more directly. To emphasize its importance, we devote a whole section just to the
definition.

Given a tiling of a triangleABC, an internal segment is a line segment connecting
two vertices of the tiling that is contained in the union of the boundaries of the
tiles, and lies in the interior of ABC except possibly for its endpoints. A maximal
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segment is an internal segment that is not part of a longer internal segment. A
segment is terminated at a vertex P if it has tiles on both sides with vertices at
P . (In that case there may or may not be a continuation of that segment past P .)
A left-terminated segment is an internal segment XY that is terminated at X . A
left-maximal segment is an internal segment PQ that cannot be extended past P
to a longer internal segment UPQ. (In these two concepts, we are using directed
segments; so PQ is not the same asQP in this context. The “left” in ”left maximal”
refers to the fact that P is listed to the left of Q in PQ.) A tile is supported by
XY if one edge of the tile lies on XY . The internal segment XY is said to have
“all c’s on the left” if the endpoints X and Y are vertices of tiles supported by XY
and lying on the left side of XY , and all tiles supported by XY lying on the left
of XY have their c edges on XY . Similarly for “all c’s on the right.” (Here again
XY is a directed segment, so the concept “left side” of XY makes sense; but this
is a different sense of the English word “left” than in “left-terminated.”)

An internal segment XY is said to witness the relation jc = ℓa+mb if one side
has j more c edges than the other, and the other has ℓ more a edges and m more
b edges than the first. The simplest example is when XY has all c’s on one side,
and exactly j of them (that is, the length of XY is jc), and on the other side XY
supports ℓ tiles with their a edges on XY and m tiles with their b edges on XY
(in any order) and no other tiles, and the endpoints X and Y are vertices of tiles
on both sides of XY . Similarly we use the terminology “XY witnesses a relation
jb = ℓa+mc.”

An internal segment that witnesses a relation is called an essential segment. The
definition allows that an essential segment might have different numbers of tiles of
lengths a, b, c on its two sides, without necessarily having all the tiles on one side
be the same length, but often it is the case that all the tiles on one side are the
same length.

To be sure that you understand the concept of “essential segment”, identify
the eight essential segments in Fig. 8. Also identify in that figure some internal
segments PQ that are not essential segments, because each side of PQ supports
tiles with three b and two a sides on PQ. (Those PQ connect the midpoints of the
sides of ABC in that figure.)

The following definition is equivalent to the one given in [10, p. 346], except that
there condition (iv) is automatic because of an additional assumption about the
tile.

Definition 6.1 (The directed graph Γa). Given a tiling of some triangle, the nodes
of the graph Γa are certain vertices of the tiling. A link of Γa connects vertices X
and Y if

(i) the segment XY is a left-maximal internal segment having all a edges on one
side (say Side 1) of XY , and

(ii) On the other side of XY (say Side 2) the first tile (the one with a vertex at
X) does not have its a edge on XY , and

(iii) At vertex Y , there is another tile supported by XY on Side 1 of XY with a
vertex at Y , that does not have its a edge on Side 1, and

(iv) No tile supported by XY on Side 2 of XY has a vertex at Y .

The directed graphs Γb and Γc are defined similarly.
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Remarks for clarification. We use “link” instead of “edge” with these graphs, to
avoid confusion with tile “edges.” IfXY is a link in Γa, thenXY does not terminate
at Y , because there is another tile past Y whose a side is not on XY ; and also
because Y lies on the interior of an edge of a tile on the other side of XY .

The reader is recommended to identify all three graphs Γa, Γb, and Γc in Fig. 8.
Hint: Γc is empty; Γb has four links, starting at the midpoints of the sides of ABC;
Γa is, in this example, the same graph as Γb.

7. Tilings of an isosceles ABC by a right-angled tile: theory

Laczkovich studied the possible shapes of tiles that can tile an isosceles triangle,
but did not characterize the possible N . We do so in this section for right-angled
tiles and N even. We have two ways to tile an isosceles triangle by a right triangle:
either tile each of its two halves by a quadratic tiling, in which case N is twice a
square, or tile each of its halves with a biquadratic tiling, in which case N is twice
a sum of squares. See Figs. 6 and 7. The main theorem in this section shows that
these are the only possible values of N . But Fig. 10 shows that, when N/2 is a
square, there are also more complicated tilings.

Lemma 7.1. Suppose isosceles (or equilateral) triangle ABC with base angles β is
N -tiled by tile (α, β, π/2) with sides (a, b, c), and α is not a rational multiple of π,
or α is an odd multiple of β. Let PQ be a link in Γc. Then there are two adjacent
tiles with vertices at Q whose common boundary contains an a or b edge of one tile,
and a c edge of the other tile.

Remarks. For short, there is an a/c edge at Q, or a b/c edge at Q. Consider Fig. 5,
in which β = π/6 and α = π/3, so α is not an odd multiple of β. Observe that the
present lemma fails in the tiling of Fig. 5, showing that the hypothesis that α is an
odd multiple of β cannot be removed.

Proof. Let ∆1, . . . ,∆k be tiles with vertices at Q, numbered so that ∆1 is supported
by PQ (and hence has side c on PQ), ∆i and ∆i+1 are adjacent, and ∆k has one
edge extending PQ past Q. Since PQ is a link in Γc, there does exist such a tile
∆k, and ∆k has its a or b edge extending PQ. (There may or may not be tiles on
the other side of PQ with a vertex at Q, but if so, we do not list them among the
∆i.)

If there are an even number of tiles with vertices at Q and an α or β angle at
Q, then each has a c edge ending at Q. Since ∆1 has its c edge ending at Q and
∆k does not, the remaining odd number of c edges cannot all be paired with other
c edges supported by the same line. Therefore, there is an a/c or a/b edge, as
claimed. Therefore, we may assume the number of such tiles is odd. At most one
tile can have its right angle at Q, and it cannot be ∆1.

Now, if α is not a rational multiple of π, then either k = 2 and both angles are
right angles, or k = 4 and there are two α and two β angles, or k = 3 and there are
one each of (α, β, π

2
). In all these cases, the above condition that there are an even

number of tiles at Q with an α or β angle at Q is fulfilled.
If α is an odd multiple m of β, then the same argument works, as the number

of tiles with vertices at Q that do not have their right angle at Q will still be even.
That completes the proof of the lemma.

Lemma 7.2. Suppose isosceles (or equilateral) triangle ABC with base angles β is
N -tiled by tile (α, β, π/2) with sides (a, b, c), and α is not a rational multiple of π,
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or α is an odd multiple of β. Suppose there is no relation jc = ua+ vb with j > 0
and u, v ≥ 0, and u, v, j integers. Then

(i) Let PQ be a link in Γc. Then there is a vertex R such that QR is a link in
Γc.

(ii) The in-degree and out-degree of each node of Γc is exactly 1.

Remark. Note that in Fig. 8, it is not true that the in-degree of every vertex in Γb

is equal to the out-degree of that vertex. That is because, in that tiling, there is
a relation 2b = 3a. Please take the time to verify that in Fig. 5, the conclusion of
this lemma fails, but so does the hypothesis that α is an odd multiple of β; this
shows the necessity of that hypothesis.

Proof. According to Lemma 7.1, there is an outgoing a/c edge from Q. Let R lie
on the internal segment containing that edge, as far as possible from Q such that
there are only c edges on one side of QR. Then R is not a vertex of a tile on the
other side of QR, since that would give rise to relation jc = ua + vb, where j is
the excess of the number of c edges on one side of QR over the other. Then, by
definition of Γc, QR is a link in Γc. That completes the proof of (i).

Next we observe that the in-degree of each node Q of Γc is at most 1. For, if PQ
is a link of Γc, then PQ is part of an internal segment of the tiling that extends
past Q and on one side, is not a vertex of any tile on that side. Hence no other
internal segment can pass through Q; hence there is no other link of Γc ending at
Q.

By part (i), the out-degree of each node of Γq that has positive in-degree is at
least 1. Hence, the out-degree always is greater than or equal to the in-degree.
But since every link has one head and one tail, the total in-degree is equal to the
total out-degree. Therefore, the in-degree and out-degree are equal at every node.
Therefore, if the in-degree is positive, both the in-degree and out-degree are 1. If
the in-degree is zero, so must the out-degree be zero, but then that node is not in
Γc at all. That completes the proof of the lemma.

Corollary 7.3. Suppose isosceles (or equilateral) triangle ABC with base AC and
base angles β is N -tiled by tile (α, β, π/2) with sides (a, b, c), and α is not a rational
multiple of π, or α is an odd multiple of β. Suppose there is no relation jc = ua+vb
with j > 0 and u, v ≥ 0, and u, v, j integers. Then AC is composed only of c edges
and there are no c edges on AB or BC, or AB and BC are composed only of c
edges and there is no c edge on AC.

Proof. According to Lemma 7.2, each link PQ in Γc has a corresponding link QR.
Suppose there is a tile with a c edge on AB. Unless the entire segment AB

supports only tiles with their c edges on AB, there will be a segment PQ lying on
AB such that PQ is composed of c edges but beyond Q there is another tile with an
a or b edge on PQ. But that contradicts Lemma 7.2, as there will be an outgoing
link of Γc from Q, but at a boundary point, there can be no incoming link. Hence
if there is any c edge on AB, then AB is composed entirely of c edges. Similar for
BC and AC.

At vertex A, there is an angle β. There must be a single tile there, with its β
angle at A, since either β < α or α is not a rational multiple of π. The c edge of
that tile must lie on AB or AC. If it lies on AB, then AB is composed entirely of c
edges. If it lies on AC, then AC is composed entirely of c edges. If AC is composed
of c edges, then AB and BC do not contain any c edges, since if they contained
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one, then there would also be a c edge at A or C, which is impossible since the tiles
at A and C have only one c edge, and it is on AC. That completes the proof of the
lemma.

Lemma 7.4. Suppose isosceles (or equilateral) triangle ABC with base angles β
at A and C is N -tiled by a tile with angles (α, β, γ) and sides (a, b, 1). Suppose

β 6= π/6 and
√

N/2 is irrational (i.e., N is not twice a square). Then a and b

belong to Q(
√

N/2).

Remark. The tiling in Fig. 5 shows that the exception for β = π/6 is necessary.

Proof. Let X = |AB|. Twice the area of ABC is the cross product of the two equal
sides, which is

X2 sin 2α = 2X2 sinα cosα

= 2X2 sinα sinβ = 2X2ab

Twice the area of the tile is ab. Since N tiles cover ABC we have the area equation

2X2 = N

Define

λ :=
√

N/2

Then X = λ. Let M be the midpoint of the base AC. Then triangle ABM has
a right angle at M , angle α at B, and angle β at A, so it is similar to the tile.
Therefore AM = X sinα = λa. Therefore |AC| = 2aλ. Since there is a tiling of
ABC, there are non-negative integers (p, q, r) and (s, t, u) such that

λ = pa+ qb+ r

2aλ = sa+ tb + u

We write this as a system of equations in unknowns a, b:

pa+ qb = λ− r

(s− 2λ)a+ tb = −u

The determinant D = pt− q(s− 2λ). If D 6= 0, then both a and b belong to Q(λ),
since that field contains D and the right-hand sides of the system.

Now suppose, for proof by contradiction, that D = 0. Then since λ is irrational,
we have q = 0 and pt = qs = 0. Since pa + qb = λ − r 6= 0, we have p 6= 0 and
hence t = 0. Then the two equations become

pa = λ− r

(s− 2λ)a = −u

Multiplying these two equations we have

(s− 2λ)(λ− r) = −pu

−2λ2 + λ(s+ 2r)− sr = −pu

−N + λ(s+ 2r)− sr = −pu since λ2 = N

Since λ is irrational, and s and r are non-negative, we have s = r = 0. Hence
AC = u is made up only of c edges (each of length 1) and X = pa+ qb , so AB has
no c edges. Since also q = 0 (as shown above), X = pa, so AB also has no b edges,
and is therefore composed entirely of a edges. A similar argument applies to show
that CA also is composed entirely of a edges.
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Therefore a = X/p = λ/p belongs to Q(λ). We cannot, however, immediately
conclude that b is in Q(λ). But we can conclude that there is no relation jc = ua+vb
with integers j, u, v: Suppose there was such a relation. Since c = 1, that would
mean a is a rational multiple of b, and since a belongs to Q(λ), so does b, and we
are done. Therefore, as claimed, there is no relation jc = ua+ vb.

Now consider the tiles with a vertex at B, where triangle ABC has an angle
of 2α. Since sides AB and CB are composed entirely of a edges, the tiles at B
supported by AB and CB have their a edges on AB or BC, and hence do not have
their α angles at B. In particular, the case when there is only one tile at B is ruled
out, since it cannot have an a edge on both AB and BC; and the case of just two
tiles at B, both with α angles at B, is also ruled out, since neither would have an a
edge on AB or BC. Therefore there must be some tiles with β angles at B. Either
α, or 2α, or 2α− π/2 must be a multiple of β. In the latter case, 2α−π/2 = α−β
is a multiple of β, so α is a multiple of β. In all of these cases, then, 2α is a multiple
of β, say 2α = mβ, with m > 1. Then

β =
π

2
− α

2β = π − 2α = π −mβ

(m+ 2)β = π

β =
π

m+ 2
=

2π

2(m+ 2)

Now cosβ = sinα = a belongs to Q(λ). By Lemma 4.3, 2(m+ 2) equal to one of
5, 6, 8, 10, 12. Therefore m + 2 is one of 3, 4, 5, 6. Since m > 1, we have m = 3 or
m = 4.

Case 1, m = 3. Then 2α = 3β. Then α = 3π/10 and β = π/5. The 2α angle
of ABC at B is filled with three tiles, each with their β angle at B. The two tiles
on AB and BC have their a edges on AB and BC, and their c edges on the two
interior segments. The a edge of the middle tile must lie on one of the c edges of
the outer tiles. Hence, there is a c/a edge emanating from the vertex. Since there
are no relations jc = ua+ vb, there is a link of Γc emanating from B. Since α is an
odd multiple of β, Lemma 7.2 is applicable; then there must be an incoming link at
B, which is impossible, as links of Γc cannot terminate on the boundary of ABC.
Hence Case 1 is impossible.

Case 2, m = 4. Then 2α = 4β, α = π/3 and β = π/6, which is ruled out by
hypothesis (and has to be, because of Fig. 5). Note that Lemma 7.2 does not apply,
since 2α is an even multiple of β. That completes the proof of the lemma.

Lemma 7.5. Suppose isosceles triangle ABC with base angles β at A and C is
N -tiled by a tile with angles (α, β, γ) and sides (a, b, c). Suppose β 6= π

6
and

√

N/2
is irrational. Then

(i) a and b are rational multiples of λ =
√

N/2, and

(ii) AC is composed only of c edges, and there are no c edges on AB or BC.

Proof. Without loss of generality, we may assume c = 1. Since by hypothesis,
√

N/2 is irrational and β 6= π
6
, we can apply Lemma 7.4 to conclude that a and b

belong to Q(λ).
I say that

λ = X = |AB|.
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Twice the area of ABC is equal on the one hand to Nab, and on the other to

X2 cos 2α = X22 sinα cosα = 2X2ab.

Hence N = 2X2. But N = 2λ2 by definition of λ. Hence X = λ, as claimed.
Let a = xλ + y and b = zλ + w, where x, y, z, w are rational. Then for some

nonnegative integers p, q, r,

λ = pa+ qb+ r = (px+ qz)λ+ (py + qw + r).

Since λ is irrational,

py + qw + r = 0.(1)

We also have

1 = a2 + b2 = (xλ + z)2 + (yλ+ w)2 = (x2 + z2)
N

2
+ 2(xy + zw)λ.

Since λ is irrational we have

xy + zw = 0.(2)

Case 1: xy 6= 0. Then xy and zw have different signs. I say that x > 0 and
z > 0. We will prove this by cases, according to the sign of xy. First suppose
xy > 0. Then x and y are of the same sign. Since a = λx + y > 0, it follows that
x, y > 0. Since the tile at B has either its b or c edge on AB, not both q and r are
zero; hence (1) implies that qw ≤ 0; hence w ≤ 0. Since zw < 0, we have z > 0
and w < 0. Thus the claim x > 0 and z > 0 holds if xy > 0.

Now suppose xy < 0. Then zw > 0, and we find z > 0 and w > 0, since
b = zλ+ w > 0. Since not both q and r are zero, and w > 0, we have qw + r > 0.
Then (1) implies py < 0; hence y < 0. Since xy < 0, we conclude x > 0, establishing
the claim x > 0 and z > 0 also in case xy < 0. Thus we have proved that xy 6= 0
implies x > 0 and z > 0.

I say there is no relation jc = j = ua+ vb with non-negative integers j, u, v and
j > 0. Suppose such a relation exists; then

j = ua+ vb

= u(xλ+ y) + v(zλ+ w)

= (ux+ vz)λ+ (uy + vw)

Since λ is irrational, we have ux+ vz = 0. Since x and z are positive and u, v ≥ 0,
this implies u = v = 0, which is a contradiction, since j > 0.

Then by Corollary 7.3, AC is composed of all c edges, and there are no c edges
on AB. Since the length of AC is 2aλ, we conclude that a = s/(2λ) = (s/N)λ,
since 2λ2 = N . Hence a is a rational multiple of λ. Since AB has no c edges, r = 0
and X = λ = pa+ qb. Hence b = (λ − pa)/q is also a rational multiple of λ. That
completes the proof in Case 1.

Case 2: xy = 0. Then also zw = 0. I say this case implies y = w = 0. We argue
by cases on whether x = 0 or not. If x = 0, then a = y is rational and y > 0. If
z = 0, then b = w > 0, contradicting (1). If w = 0, then b = zλ,

2aλ = sa+ tb+ u = − tzλ+ (sy + u)

sy + u = 0

s = u = 0
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and AB is composed only of b edges, which is impossible, since the tile at A cannot
have its b edge on AB.

On the other hand, if x 6= 0 then since xy = 0 we have y = 0. Then qw + r = 0
by (1). If z = 0, then b = w > 0 and therefore q = r = 0, contradiction. The only
remaining possibility is y = w = 0, as claimed. Then a = xλ and b = zλ. Then
X = λ = pa+ qb+ r = (x + z)λ+ r, so r = 0 and

Y = 2aλ

= 2xλ2

= xN

= sa+ tb+ u

= (sx+ tz)λ+ u,

which implies s = t = 0. That completes the proof in Case 2, and also the proof of
the lemma.

Theorem 7.6. Suppose ABC is isosceles with base angles β, or ABC is equilateral,
and ABC is tiled by triangle T similar to half of ABC. If α is a rational multiple
of π, then either

(i) N is even and N/2 is a square, or

(ii) N is a square and β = π/4 and ABC has base angles π/4, or

(iii) N/2 is three times a square and β = π/6 and α = 2β = π/3.

Remark. One possible tiling under case (iii) of the theorem is illustrated in Fig. 5. N
can be odd in case (ii), since half the triangle ABC is similar to ABC, so quadratic
tilings are allowed.

Proof. We begin by remarking that N/2 is a rational square if and only if it is an
integer square, since if it is a rational square then 2N is an integer that is a rational
square, hence it is an integer square. Then it is the square of an even integer 2m,
so N/2 = m2. Hence if

√

N/2 is rational, then N is even and N/2 is a square.
Then condition (i) holds.

Therefore we may assume that
√

N/2 is irrational. We now divide into cases
according as β = π

6
or not.

First assume β 6= π
6
. Then by Lemma 7.4, a = cosα and b = sinα belong to

Q(
√

N/2). By hypothesis, α is a rational multiple of π. These two facts make
Lemma 4.3 applicable, so we can drastically limit the possible values of α. Namely,
by Lemma 4.3, α and β are odd multiples of 2π/n, where n is one of 6, 8, 12; that is,
they are odd multiples of π

3
, π
4
, orπ

6
. Since they are both less than π

2
, α and β must

be exactly π
3
, π

2
, or π

6
. Those are the values of α and β allowed in the statement of

the lemma. We arrived at that conclusion under the assumption that β 6= π
6
, but

since that conclusion includes β = π
6
, it holds without that assumption. That is,

we have proved outright that α and β are equal to π
3
, π

2
, or π

6
.

It remains to show that N has one of the stated values. Let X = pa+ rb+ q be
the length of AB. Then the area equation is

Nab = X2 cos 2α = 2X2ab

so N = 2X2.
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Case 1. α = β = π
4
. Then with c = 1 we have a = b = 1/

√
2, so the area of each

tile is 1

2
. By Lemma 7.5, q = 0, so X = pa+ rb. Therefore

X = (p+ r)(1/
√
2)

X2 = (p+ r)2/2

N = 2X2 as shown above

N = (p+ r)2/2 by the previous two lines

Hence 2N is a rational square. As remarked at the beginning of the proof, it is
therefore an integer square, and hence N is even. Therefore conclusion (i) of the
theorem holds. That completes Case 1.

Case 2, α = π
6
. (This is the case when ABC is equilateral.) Then a = cosα =√

3/2 and b = sinα = 1/2; hence X = |AB| = pa+ qb+ r belongs to Q(
√
3). Then

√

N/2 has the form u + v
√
3 with u and v rational. Squaring both sides we have

N/2 = u2 + 3v2 + 2uv
√
3. Hence uv = 0. Hence either u = 0 or v = 0.

In case u = 0 then N/2 is three times a rational square (which is possible, for
example see Fig. 5). Then let v = s/t with s and t relatively prime integers, so
N/2 = 3(s/t)2. Then 6N = (6s/t)2 so Nt2 = 6s2. Since s and t are relatively
prime, 6 divides N . Hence N/6 = (s/t)2 = v2 is a integer that is a rational square;
hence N/6 is an integer square. Hence N/2 is three times a square, so conclusion
(iii) holds.

In case v = 0 then N/2 = u2 is a rational square, so it is an integer square by
the first paragraph of this proof. Hence conclusion (i) holds.

Case 3, α = π
3
. Then β = π

6
, which is no Then a = cosα =

√
3/2 and b =

sinα = 1/2; hence X = |AB| = pa + qb + r belongs to Q(
√
3). Then the proof is

completed verbatim as in Case 2. That completes the proof of the theorem.

Lemma 7.7. Suppose isosceles (and not equilateral) triangle ABC is N -tiled by a
tile with angles (α, β, π

2
). Then the base angles of ABC are equal to α or to β.

Remark. The lemma fails for equilateral ABC.

Proof. This is an immediate consequence of Laczkovich’s work: the first and second
lines of Table 1 are the only ones allowing a right-angled tile, and the first line can
apply to an isoscelesABC only if ABC and the tile are both right isosceles triangles.

Theorem 7.8. Suppose isosceles triangle ABC is N -tiled by a tile with angles
(α, β, π

2
). Then

(i) N is a square and α = β = π
4
, or

(ii) N is twice a square (possible for any such N with any right-angled tile), or

(iii) N = 6k2 and β = π/6 or α = π/6 (example with N = 54 in Fig. 5), or

(iv) N is an even sum of squares (so N/2 is also a sum of squares). (Possible
for any such N with a suitable tile by a double biquadratic tiling as in Fig. 6).

Proof. By Lemma 7.7, the base angles of ABC are equal to α or to β. Since
the conclusion of the theorem is insensitive to which angle is labeled α, we may
assume the base angles are β. By Theorem 7.6, the conclusion is correct when α is
a rational multiple of π; indeed in that case either (i), (ii), or (iii) holds. Therefore
we may assume that α is not a rational multiple of π. If N/2 is a rational square,
then 2N is a rational square, and an integer, hence an integer square. Hence N is
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even, and N/2 is an integer. Since N/2 is a rational square and an integer, it is
also an integer square, so N is twice a square, and case (ii) of the theorem holds.

Therefore we may assume that

λ =
√

N/2 is irrational.

Let X be the length of AB. I say that

X = λ

Twice the area of ABC is

X2 cos 2α = 2X2 cosα sinα = 2X2ab.

It is also Nab, since there are N tiles each of area ab/2. Therefore N = 2X2. But
N = 2λ2 by definition of λ, and both X and λ are positive. Therefore X = λ, as
claimed.

Let (a, b, c) be the sides of the tile; we may choose the scale so that c = 1. Since α
is not a rational multiple of π, it is not equal to π

6
. Since λ is irrational, Lemma 7.5

is applicable. Therefore, side AC is composed only of c edges. Let u be the number
of those edges. Let M be the midpoint of AC (which may or may not be a vertex
of the tiling). Then triangle ABM has angle α at B and a right angle at M . The
length of AM is u/2, and the length of AB is λ. Therefore

tanα =
u

2λ

Since λ is irrational, tanα is irrational. It follows that there does not exist any linear
relation pa = qb with integers p and q, for if there were, then tanα = b/a = p/q
would be rational. It follows that there are no relations of the form ja = pb + qc,
jb = pq + qc, or jc = pa + qb with j 6= 0. From this it follows that every internal
segment in the tiling has equal numbers of a edges on both sides, equal numbers of
b edges on both sides, and equal numbers of c edges on both sides.

I say that N is even. For proof by contradiction, assume N is odd. Now the
number of a edges in the interior is even, and the number of b edges in the interior
is even, and there are no a or b edges on AC. Hence the number of a edges on AB
and BC together is odd, and number of b edges on AB and BC together is odd.
Suppose AB = pa+ qb and BC = ra+ sb. Then p 6= r and q 6= s, since p+ r is odd
and q + s is odd. We may suppose p ≥ r by relabeling A and C if necessary. Then

|AB| = |BC|
(pa+ qb) = (ra+ sb)

(p− r)a = (s− q)b

with p−r a positive integer, and hence s−q also a positive integer. Since we showed
above that no such relations between a and b exist, we have reached a contradiction.
Hence N is even, as claimed.

Lemma 7.5 also tells us that a and b are rational multiples of λ. Let x and z
be rational numbers such that a = xλ and b = zλ. Then the equation 1 = a2 + b2

becomes

1 = (x2 + z2)λ2

= (x2 + z2)N/2



TILINGS OF AN ISOSCELES TRIANGLE 19

Multiplying by 2N we have

2N = (xN)2 + (zN)2(3)

Thus 2N is a sum of two rational squares. Then by Lemma 4.5, 2N is a sum of
two integer squares. Then by Lemma 4.2, N is also a sum of two squares. That
completes the proof of the theorem.

Corollary 7.9. Suppose isosceles triangle ABC is N -tiled by a right triangle. Then
N is not a prime congruent to 3 mod 4, nor is it twice such a prime, except for
N = 6.

Proof. The Corollary follows from Theorem 7.8 by Lemma 4.1.

Theorem 7.8 gives necessary and sufficient conditions on N for the existence of
an N -tiling of some isosceles ABC by a right-angled tile, if N is even. It remains to
specify exactly which isosceles ABC can be N -tiled, when N is given. The following
theorem spells it out.

Theorem 7.10. Given a positive integer N > 1, the possible isosceles triangles
ABC that can be N -tiled by a right-angled tile are as follows. Here the sides of the
tile are (a, b, c) and the angles are (α, β, π

2
).

(i) if N/2 is a square, any isosceles triangle can be N -tiled (by a double quadratic
tiling)

(ii) if N/2 is a sum of two squares, then isosceles triangle ABC with base angles
β can be N -tiled with tile (α, β, π

2
) if and only if

tanβ = r/p where N/2 = r2 + p2.

(iii) if N is a square, the right isosceles ABC can be N -tiled by a quadratic
tiling.

(iv) if N is six times a square, then the isosceles triangle with base angles π
6
can

be N -tiled by the tile with α = π
3
and β = π

6
.

(v) If none of the above apply, then no isosceles triangle can be N -tiled by any
tile.

Remark. Since N/2 may sometimes be expressible in more than one way as a sum
of two squares, there can sometimes be more than one possible ABC and tile for
a given N , but only finitely many. Moreover, if N is both a square and a sum of
squares, there are more possibilities, as in Fig. 6. It will be very difficult to provide
a full characterization of all N -tilings.

Proof. Ad (ii). Just divide ABC by its altitude BD and tile each half with a
quadratic tiling.

Ad (iii). If ABC is N -tiled, and N/2 is not a square, then by Theorem 7.8,
the tile has the form mentioned. In case N/2 = p2 + r2, there is a tiling made by
combining biquadratic tilings of the two halves of ABC.

Ad (iv). By Theorem 7.8, if N = 6k2 then a tiling with β = π
6
is possible; see

Fig. 5. It remains to show that no other tile is possible. Let N = 6k2. Then N is
not a square, and N is not twice a square. Since N contains an odd power of 3, N
is not a sum of two squares, and the same is true of N/2. Hence no other case in
the theorem can apply, and β = π

6
is the only possibiity.

Ad (v). By Theorem 7.8, these cases are exhaustive. That completes the proof
of the corollary.
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8. Possible values of N in tilings with commensurable angles

We wish to add a third column to Laczkovich’s Table 1, giving the possible forms
of N if there is an N -tiling of ABC by the tile in that row. For example, when
ABC is similar to the tile, then N must be a square, so we put n2 in the third
column. While we are at it, we add a fourth column with a citation to the result,
and delete the rows corresponding to the tilings of the equilateral triangle that we
have proved impossible. The revised and extended table is Table 2. All the entries
in this table except the last one give necessary and sufficient conditions on N for
the tilings to exist. The last one gives necessary conditions for certain tilings that
probably do not actually exist, but since ABC is equilateral, this question is out
of scope for this paper.

Table 2. N -tilings by tiles with commensurable angles, with form
of N

ABC the tile form of N citation

(β, β, 2α) similar to ABC n2 [13]

(β, β, 2α) (α, β, π
2
) e2 + f2 [13]

(π
6
, π
3
, π
2
) similar to ABC 3n2 [13]

(β, β, 2α) (α, β, π
2
) 2n2 Theorem 7.6

(π6 ,
π
6 ,

2π
3 ) (π6 ,

π
3 ,

π
2 ) 6n2 Theorem 7.6

equilateral (π6 ,
π
3 ,

π
2 ) 6n2 Theorem 7.6

equilateral (π6 ,
π
6 ,

2π
3 ) 3n2 Theorem 7.6

Theorem 8.1. Suppose (α, β, γ) are all rational multiples of 2π, and triangle ABC
is N -tiled by a tile with angles (α, β, γ). Then ABC, (α, β, γ), and N correspond
to one of the lines in Table 2.

Proof. As discussed above, Laczkovich characterized the pairs of tiled triangle and
tile, as given in Table 1.3 It remains to characterize the possible N for each line. In
several cases lines in Table 1 split into two or more lines in Table 2, which supplies
the required possible forms of values of N . That table lists in its last column
citations to the literature or theorems in this paper for each line. That completes
the proof.

9. Tilings with γ = 2α and (a, b, c) commensurable

In this section and the next, we take up the row of Laczkovich’s second table
in which ABC is isosceles with base angles α and is tiled by a tile with γ = 2α,
and α is not a rational multiple of π. The condition γ = 2α can also be written as
3α+ β = π. Unlike the similar-looking condition 3α+ 2β = π, this condition does
not imply γ > π/2. The vertex angle of ABC is then π − 2α = α + β. The tile
(4, 5, 6) satisfies γ = 2α; this is shown below as an example of Lemma 11.2.

3 Again, we remind readers who may check with [7] that there are three entries in Laczkovich’s
Theorem 5.1 that are shown in the subsequent Theorem 5.3 not to apply to tilings by congruent
triangles, so they do not appear in our tables.
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The numbers (a, b, c) are called commensurable if their ratios are rational. In
that case we say the “tile is rational.” If the edges of a triangle are commensurable,
then the triangle is similar to one with integer edges. The remarkable fact is that, if
ABC is isosceles with base angles α and vertex angle α+ β, then it can be N -tiled
for some N by a tile with angles (α, β, γ) if and only if the edges of the tile are
commensurable. This fact is really two different theorems:

• If the tile is rational, there is an N -tiling for some N , and
• If the tile is not rational, there is no N -tiling for any N .

. The first statement is due to Laczkovich [7]. We will explain his proof in this
section. The second statement is proved in the next section.

Laczkovich [7] proves that an isosceles triangle with angles as described, can be
dissected into triangles similar to the tile, plus one parallelogram; then using the
commensurability condition, these triangles and the parallelogram can all be tiled
with the same size of tile. The only problem is that the tile will have to be really
tiny.

We illustrate this with the tile (4, 5, 6). The idea of Laczkovich’s construction
(Fig. 3 in [7]) is shown in Fig. 11. Laczcovich’s idea is to quadratically tile each

Figure 11. Laczkovich’s dissection of isoscelesABC into triangles
similar to (4, 5, 6) and a parallelogram

triangle, and then tile the parallelogram. As Laczcovich pointed out, the commen-
surability of the tile edges mean that with a small enough tile, this will succeed.
We illustrate the idea in Fig. 12. But observe that the tiles shown in that figure
will not work, because with that size of tile, we cannot continue the tiling into the
next (blue) triangle, as if the tile is (4, 5, 6), the boundary between light green and
blue is five 6-edges, total 30, which cannot be made of 4-edges, as it would have
to be to tile the blue triangle. Clearly we should have chosen a smaller tile, for
example half that size. But with a tile half that size, we run into similar trouble
at the next boundary. To choose the tile correctly, we introduce a variable for each
triangle to count the number of tiles on each side of that triangle. Then there is a
linear equation at each boundary. If we assume that the parallelogram will be tiled
by n tiles on its diagonal side and m on its horizontal side, then these variables will
satisfy the following equations. The equations show that everything is determined
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Figure 12. We look for a tiling starting like this

once the number of tiles on each side of the red triangle is chosen.4

red = 1

orange = 4 red/6

lightgreen = 5 orange/4

blue = 6 lightgreen/4

green = 5 blue/4

lightblue = 6 blue/4

pink = 5 lightblue/4

m = (5 pink − 4 orange)/6

n = (5 red)/5

total = red 2 + orange2 + yellow2 + blue2

+ green2 + lightblue2 + pink2 + 2mn

Solving these equations, starting with red = 1, we get these answers (in the order
of variables listed above):

1
2

3

5

6

5

4

25

16

15

8

75

32

869

576
1 .

This reveals that Fig. 12 is misleading, in that the parallelogram of Fig. 11 is
not accurately tiled–the tiled parallelogram is off by less than a pixel. To get it
accurately tiled requires a much smaller tile. To clear those denominators we have
to start with red = 576 instead of red = 1. Then we get

576 384 480 720 900 1080 1350 869 576

So the number of tiles required (namely the sum of the squares of the color numbers
plus 2mn) is 6028020.

Here matters stood for about eight years. Then, in 2024, Bryce Herdt found
N -tilings for N = 1125 and then 720. These tilings are exhibited in an Appendix.

4For readers without colors: red is the triangle to the right of the parallelogram, and the other
colors are in counterclockwise order from red.
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10. No tilings with γ = 2α and (a, b, c) incommensurable

In this section we rule out tilings of an isosceles triangle with base angles α and
vertex angle α+ β, in case the tile edges are incommensurable. To state the point
another way, if there is a tiling of such an isosceles ABC, then the tile must be
rational.

10.1. Stars and centers. Suppose isosceles triangle ABC is tiled by a tile with
angles (α, β, γ), not a right triangle, and α is not a rational multiple of π. We will
consider and analyze the possible configurations formed by tiles at a vertex of the
tiling. We begin by ruling out certain possibilities.

Lemma 10.1. Let isosceles ABC with base angles α (at A and C) be N -tiled by
a tile with angles (α, β, 2α), and suppose that the tile is not a right triangle and α
is not a rational multiple of π. Let P be a vertex on the boundary of ABC. Then
there are not two β angles of tiles at P , and there are not two γ angles of tiles at
P .

Proof. Suppose, for proof by contradiction, that two tiles have their β angles at the
same boundary vertex. Then for some nonnegative integers u, v, w we have

π = uα+ (v + 2)β + wγ

π = (u+ 2w)α+ (v + 2)β since γ = 2α

0 = (u+ 2w − 3)α+ (v + 1)β since 3α+ β = π

β =

(

3− u− 2w

v − 1

)

α

Putting that value for β into 3α+ β = π we can solve for α/π:

α/π = 3 +

(

3− u− 2w

v − 1

)

− 1

But that is rational, contradicting the hypothesis that α is not a rational multiple of
π. That completes the proof that two β angles do not occur at the same boundary
vertex.

The proof for two γ angles is similar. First, if there are no β angles, then

π = uα+ (w + 2)γ

= (u+ 4w + 4)α

contradiction, since α is not a rational multiple of π. And if there is one β angle,
then

π = uα+ (w + 2)γ + β

0 = (u− 1)α+ (w + 1)γ

= (u− 1 + 2(w + 1))α

= (u+ 2w + 1)α

contradiction, since u+2w+1 > 0. Since we already proved there cannot be more
than one β, that completes the proof of the lemma.

We define the angle sum of a vertex to be the sum of the angles of the tiles
sharing that vertex. Except for the vertices A, B, and C, that angle sum will
always be either π or 2π. It will be π if and only if the vertex lies on the interior of
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the boundary of a tile or of ABC. For short, we refer to a vertex with angle sum
π as a boundary vertex, though it need not be on the boundary of ABC.

Consider a boundary vertex. A normal boundary vertex has three tiles, with
angles α, β, and γ. A star has three α angles and a β. These are the only
possibilities for a boundary vertex, since α is not a rational multiple of π, as spelled
out in Lemma 10.1. Next, consider an interior vertex. A normal interior vertex has
two each of (α, β, γ) angles. A center has three γ and two β angles. (For example,
there is a center in Fig. 11, more or less in the center of the figure.) There may also
be interior vertices other than centers that are not normal; these will have either
4α + 2β + γ or 6α + 2β. These vertices we call interior stars. The case of angles
4α + 2β + γ we call a single interior star and the other case is a double interior
star.

Lemma 10.2. Suppose isosceles triangle ABC is tiled by a tile with angles (α, β, γ)
with α not a rational multiple of π. Let C be the number of centers and S the number
of stars, counting double interior stars twice. Then S + 1 = C. In particular there
is at least one center.

Example. When the tiling begun in Fig. 11 is completed, there will be one center
and zero stars. All the vertices introduced by quadratic tilings will be normal
vertices. If we then combine four copies of this tiling to create a quadratic tiling of
a triangle twice the size, there will be four centers, balanced by four interior starts
in the midpoints of the sides, where the three of the four copies have common
vertices.

Remark. This lemma is about the only thing we can prove about the internal
structure of tilings. We use it only for the existence of at least one center.

Proof. Each tile has one each of α, β, and γ angles. At the vertices of ABC we
have three α angles and one β angle (just as we have at a star). Counting the
vertex angles we have equal numbers of α, β, and γ angles at each normal vertex.
At each vertex we define the “excess” or “deficit” of each of (α, β, γ) to be the
difference between the number of those angles at the vertex and the number at a
normal vertex. At a star we have two excess α angles and a deficit of one γ angles.
At a single interior star the same applies; at a double interior star we have double
that contribution. At a center we have an excess of one γ and a deficit of two α. At
interior stars we have excesses of α and β and deficits of γ. Adding up the excesses
and deficits from the vertices of the tiling, including A, B, and C, we must get zero.
The vertices of ABC count the same as a star. One center will “balance” one star,
in the sense that the deficits and excesses add to zero. (For example, in Fig. 11, we
have one center, and no stars; so the center balances the vertices of ABC, which
count as a star.)

If there are no interior stars, then the number of stars, plus one for ABC, will
equal the number of centers. If, however, there are interior stars, those will require
additional centers to balance them, one center for each single interior star and two
for each double interior star. Since we defined S by this double-counting of double
interior stars, we still have C = S + 1. That completes the proof of the lemma.

10.2. The tile is rational. If Q is a vertex of a tiling, and QR is an internal
segment of the tiling supporting a tile on one side with its a edge on QR and a
vertex at Q, and supporting a tile on the other side with its b edge on QR and a
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vertex at Q, then we say QR is an a/b edge, or an a/b edge at Q. Similarly for a/c
edge and b/c edge. Note that an a/b edge is also a b/a edge.

Lemma 10.3. Let the isosceles triangle ABC with base angles α be N -tiled by a
tile with angles (α, β, 2α), with α not a rational multiple of π. Let Q be a center
in the tiling. Then either there is an a/b edge at Q or there are both a/c and b/c
edges at Q.

Proof. Assume there is no a/b edge. We must prove there is an a/c and a b/c edge
at Q. Each tile with a vertex at the center Q has an a edge ending at Q, since the
angles at Q are all β or γ. At a center, five tiles meet, so that is a total of five a
edges. Since five is an odd number, these edges cannot all be paired with other a
edges. We have assumed there is no a/b edge; hence there is an a/c edge. Similarly,
there are three b edges ending at Q, belonging to the tiles with their γ angles at Q.
Since three is odd, these cannot each be paired with another b edge. Since there
are no a/b edges, there is a b/c edge. That completes the proof of the lemma.

Lemma 10.4. Let the isosceles triangle ABC with base angles α be N -tiled by a tile
with angles (α, β, 2α) with α not a rational multiple of π. Then the tiling contains
essential segments with associated relations jb = ua+ vc and Ja = Ub+ V c.

Proof. Suppose, for proof by contradiction, that there are no such essential seg-
ments. We consider the directed graph Γb defined in Definition 6.1. We wish to
identify the terminal links in this graph. To that end we must consider the possible
configurations that can arise when an internal segment UQ of the tiling supports
on the same side a series of (one or more) tiles with their b edges, followed by a
tile with an a or c edge. Let PQV be the three successive vertices, with PQ of
length b and QV of length a or c. We consider all possible configurations in which
Q is a vertex where three tiles on one side of a line PQ each have a vertex at Q,
contributing one angle each, so the angle sum at Q is α + β + γ on one side of
PQ. All these configurations are shown in Fig. 13. The figure shows that in each
of those cases, there is a unique outgoing segment QT that is a b/c edge or a b/a
edge. If this segment is extended far enough, we will come to the last b edge on
the side that has a b edge at Q. Since there are no essential segments, that point
cannot be a vertex of a tile on the other side of QT , so QT is an outgoing link in
Γb.

On the other hand, if Q is a star, the possible configurations are more compli-
cated, and some of them have zero outgoing b/c or b/a edges, while others have
two. It turns out that we do not need to make use of that fact, so we do not give
a diagram of these configurations.

If PQ is a link, then line PQ extends past Q as an interior segment of the tiling.
Therefore no link terminates on the boundary, so certainly not at a boundary star.
At an interior star Q, no interior segment of the tiling passes through Q, as if it
did, two of the three γ angles would lie on one side of it, leaving an angle β −α on
that side, which cannot be filled by a tile. Therefore, no link can end at an interior
star, since an interior star is not located on the interior of a tile edge, but the end
of a link must be on the interior of a tile edge.

Therefore the out-degree of any star is ≥ the in-degree, since the in-degree is
zero. At a center, the out-degree is at least one, and the in-degree is zero.

At a given vertex Q (star or not) there can be at most one link ending at Q,
since Q lies on the interior of a tile boundary. At a normal vertex Q, if there is an



26 MICHAEL BEESON

Figure 13. A link PQ in Γb gives rise to another link through QR.
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incoming link PQ, there is an outgoing link QR, as shown above. So out-degree
≥ in-degree at a normal vertex. At a star or center, there are no incoming links,
and there is at least one outgoing link, so out-degree > in-degree. By Lemma 10.2,
there exists at least one center. Therefore the total out-degree minus in-degree is
positive. But since each link has one head and one tail, the total out-degree equals
the total in-degree, contradiction.

We have reached a contradiction from the assumption that there is no essential
segment with associated relation of the form jb = ua + vc. Hence there is such a
segment.
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Next we prove the existence of essential segments with relations of the forms
Ja = Ub + V c. This is proved in the same way, using the graph Γa instead of Γb.
Again there is an outgoing link from each center, since by Lemma 10.3, there is
either an a/b or an a/c edge at Q, and that edge is part of an outgoing link since
there are no essential segments. Again we have to prove that at a normal boundary
vertex there is a unique outgoing link. See Fig. 14. That completes the proof.

Theorem 10.5. Let the isosceles triangle ABC with base angles α be N -tiled by
a tile with angles (α, β, 2α) with α not a rational multiple of π. Then the tile is
rational; that is, the ratios of its sides are rational.

Remark. If the tile is rational, then after scaling we can assume its sides are integers
with no common factor.

Proof. By Lemma 10.4, there is an essential segment witnessing a relation ja =
ub + vc, and another essential segment witnessing Jb = Ua + V c. In matrix form
we have

(

j −u
U −J

)(

a
b

)

=

(

vc
−V c

)

.

This equation can be solved for (a, b) provided j/u 6= U/J . We have

ja = ub+ vc ≤ ub

j/u ≤ b/a with equality only when v = 0

Jb = Ua+ V c ≤ Ua

Jb ≤ Ua with equality only when V = 0

b/a ≤ U/J

j/u ≤ U/J with equality only when v = V = 0

Thus: either a/b is rational (when v = 0 or V = 0), or a and b are both rational
multiples of c (when the equation can be solved). In either case a/b is rational.
Similarly, a/c is rational. That completes the proof of the theorem.
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Figure 14. A link PQ in Γa gives rise to another link through QR.
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11. On the number of tiles required when γ = 2α

We continue to consider tilings of isosceles ABC with base angles α and vertex
angle α+β. In the previous two sections, we showed that the tile has to be rational,
and that in that case, an N -tiling always exists, for some N . Next we will try to
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show that some values of N are impossible. We have two theorems along that line:
First, N cannot be a prime number. Second, N has to be “at least so big”, i.e., we
have a lower bound on N .

11.1. Characterization of the tile.

Lemma 11.1. Suppose (a, b, c) are the integer sides of a triangle with angles
(α, β, 2α). Then

c2 = a2 + ab.

Remark. Rational triangles with γ = 2α correspond to solutions of this equation
with c < a+ b and b < a+ c and a < b+ c. For example, (4, 5, 6), and (9, 7, 12).

Proof. By the law of cosines,

c2 = a2 + b2 − 2ab cosγ

= a2 + b2 − 2ab cos2α since γ = 2α

= a2 + b2 − 2ab(2 cos2 α− 1)

= a2 + b2 + 2ab− 4ab cos2 α

By the law of sines, sinα/a = sin γ/c = sin 2α/c = 2 sinα cosα/c, so cosα = c/(2a).
Hence

c2 = a2 + b2 + 2ab− bc2/a(4)

= (a+ b)2 − bc2/a(5)

c2(1 + b/a) = (a+ b)2(6)

c2 = a(a+ b)(7)

c2 = a2 + ab(8)

That completes the proof of the lemma.
The following lemma gives a more nuanced characterization of (a, b, c). It was

published in [11], but we give the short proof here.5

Lemma 11.2. Let (a, b, c) be integers with no common factor, and suppose the
triangle with sides (a, b, c) has angles (α, β, 2α). Then (a, b, c) = (k2,m2 − k2,mk)
for some relatively prime integers (k,m), with 2k > m > k.

Conversely, let (a, b, c) be a triple of integers (a, b, c) = (k2,m2 − k2,mk) with
2k > m > k and m and k relatively prime. Then (a, b, c) form a triangle, and it
has angles (α, β, 2α).

Examples: (4, 5, 6) satisfies this equation with k = 2 and m = 3. Therefore it is an
example of a tile satisfying γ = 2α. Although (1, 3, 2) satisfies this equation with
k = 1 and m = 2, it does not correspond to a triangle.

Remarks. Thus b and c are relatively prime, but a and c have a common factor k
(if k 6= 1). Also, c > a but not necessarily c > b, and γ can be more or less than a
right angle.

Proof. By Lemma 11.1, we have

c2 = a2 + ab

5 I am indebted to Gerry Myerson for pointing out this representation of (a, b, c) to me on
MathOverflow.
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Luthar observed that this can be written as

b2 + (2c)2 = (2a+ b)2

as is apparent upon expanding the right side. But now we can apply Lemma 4.4,
according to which there are integers (m, k) such that

b = m2 − k2

2c = 2mk

2a+ b = m2 + k2

These equations imply the equations to be proved. That completes the proof of the
first claim of the lemma.

Conversely, suppose (a, b, c) = (k2,m2 − k2,mk), and (a, b, c) form a triangle.
Then one can check that

c2 = a2 + ab

= a(a+ b)

and we showed above that this equation characterizes γ = 2α.
Finally, if (a, b, c) = (k2,m2−k2,mk), then b+c > a becomesm2−k2+mk > k2,

or m2 +mk > 2k2, which follows from m > k.
a+ c > b is k2 +mk > m2 − k2, or k(k +m) > (m+ k)(m− k), or k > m− k,

which follows from 2k > m.
a + b > c is k2 + (m2 − k2) > mk, which follows from m > k. That completes

the proof of the lemma.

11.2. Possible shapes of the tile. In this section, we consider the possible shapes
of a tile (a, b, c) with γ = 2α. We begin by observing that a < c is the only obvious
restriction on the ordering of the edges. As well as a < b, we can have b < a, as in
(9, 7, 12), or a < c < b, as in (9, 16, 15).

One way of describing the shape of a triangle is by the ratios of its sides. Here
we give lower bounds on some of those ratios. Actually, we use only the bound on
c/b, and that only once, but it does seem necessary. We present all the bounds
anyway, as they improve the reader’s mental picture of these (possible) tilings.

Empirically, these bounds are tight, though we have not proved that they are
best-possible. There are apparently no positive lower bounds on b/a or b/c, al-
though again we have not proved that. When b/a is very small, an isosceles tri-
angle ABC with γ = 2α will be very close to equilateral, and by Laczkovich’s
method (see Fig. 12), it can be tiled with trillions of tiny needle-shaped tiles.
For example, (a, b, c) = (61504, 497, 61752) has a/b > 123, and we get N =
7227976999088825426993, more than a billion trillion, and the side and base of
ABC are 470043721566328 and 471939059153289.

Lemma 11.3. Suppose (a, b, c) are the integer sides of a triangle with angles
(α, β, 2α). Then

a/c > 1/2

a/b > 1/3

c/b > 2/3
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and if b < a we also have

a/c > 1/
√
2

Proof. By Lemma 11.2, there are relatively prime integers k,m with m/2 < k < m,
such that a = k2, b = m2 − k2, and c = mk. Then

a/c = k2/mk = k/m > 1/2,

proving the first claim of the lemma.

We have

a/b =
k2

m2 − k2

>
k2

4k2 − k2
since 4k2 > m2

= 1/3

proving the second claim.

To prove the third claim, we consider the function

f(m,x) =
mx

m2 − x2
.

Then f is monotone increasing for x < m. Since k > m/2, and c/b = f(m, k), a
lower bound is f(m,m/2), namely

c/b >
m2/2

m2 − (m/2)2

=
2m2

4m2 −m2

= 2/3

That is the third claim.

Now suppose b < a. That is, k2 −m2 < k2. Then 2k2 < m2, so a/c = k/m <

1/
√
2. That completes the proof of the lemma.

11.3. The area equation.

Lemma 11.4 (Area equation). Suppose isosceles triangle ABC, with base angles
α, is N -tiled by a tile with sides (a, b, c) and angles (α, β, 2α). Let X be the length
of the equal sides AB and BC. Then X2 = Nab.

Proof. Let γ = 2α. The base angles of ABC are α, so π = 2α + ∠B = γ + ∠B.
But also π = α + β + γ, so ∠B = α + β. Twice the area of ABC is given by the
magnitude of the cross product of BA and BC, namely X2 sin(α + β). Twice the
area of the tile is given by ab sin γ. Since γ = π− (α+ β), twice the area of the tile
is also ab sin(α+ β). But the area of ABC is N times the area of the tile. Hence

X2 sin(α+ β) = Nab sin(α+ β)

Dividing both sides by sin(α + β), we have the area equation of the lemma. That
completes the proof of the lemma.

Lemma 11.5 (Area equation, second form). Suppose isosceles triangle ABC, with
base angles α, is N -tiled by a tile with sides (a, b, c) and angles (α, β, 2α). Let X
be the length of the equal sides AB and BC, and let Y be the length of AC. Then
XY = Nbc, and Y = (c/a)X.
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Proof. Twice the area of ABC is given by the magnitude of the cross product of
AB and AC, namely XY sinα. Twice the area of the tile is bc sinα. But the area
of ABC is N times the area of the tile. Hence

XY sinα = Nbc sinα

XY = Nbc

which proves the first claim of the lemma. By Lemma 11.4, we have X2 = Nab.
Dividing XY = Nbc by X2 = Nab we have

Y

X
=

Nbc

Nab
=

c

a
.

That completes the proof of the lemma.

11.4. The non-primality of N . In this section, we will show that N cannot be
a prime number. What is more, N cannot even be squarefree.

Lemma 11.6. Let ABC be isosceles with base angles α, and α not a rational
multiple of π. Suppose ABC is N -tiled by a tile with γ = 2α and integer sides
(a, b, c) with no common factor. Then the squarefree part of N divides b and the
squarefree part of b divides N . If N is squarefree, then N divides b, and b/N is a
square, i.e., b = Nℓ2 for some integer ℓ.

Example. In Fig. 12, we indicated a tiling with tile (4, 5, 6) and N = 669780.
Factoring that number, we find N = 22 · 32 · 5 · 612. So the squarefree part of N is
b = 5, in accordance with this lemma. This provides a check on the computation
of the value of N , since it is not at all apparent from the construction of the tiling
that 5 has to be the squarefree part of N .

Proof. By Lemma 11.2, there exist relatively prime integers m, k with 0 < m/2 <
k < m such that

a = k2, b = m2 − k2, c = km.

Let X be the length of the equal sides AB and BC, and Y the length of AC.
Then

X2 = Nab by Lemma 11.4(9)

XY = Nab by Lemma 11.5(10)

Squaring both sides of (10), we have

X2Y 2 = N2b2c2

Dividing by (9),

Y 2 =
X2Y 2

X2
= Nb

c2

a

We know a divides c2, since c = km and a = k2, so c2/a = m2. Then

Y 2 = Nbm2.

Then N divides Y 2. Then the squarefree part of N divides bm2. But I say that
actually the squarefree part of N divides b, not just bm2.

Let p be a prime dividing N to an odd power p2k+1, and let pj be the highest
power dividing m. Then p2j+2k+1 divides Y 2, so pj+k+1 divides Y , so p2j+2k+2

divides Y 2, so p2j+1 divides bm2. If p does not divide b, then pj+1 divides m,



TILINGS OF AN ISOSCELES TRIANGLE 33

contradiction. Therefore p divides b. Since p was any prime dividing N to an odd
power, it follows that the squarefree part of N divides b, as claimed.

Now let p be a prime dividing b to an odd power p2j+1. Then p2j+1 divides Y 2,
so p2j divides Y , so p divides Nc2/a. But b is relatively prime to c2/a = m2, so p
divides N . Therefore the squarefree part of b divides N .

If N is squarefree, then b/N is an integer. Since Y 2 = Nbm2, we have

b/N =

(

Y

Nm

)2

.

Therefore b/N is a rational square. Since b/N is an integer, it is also an integer
square.

That completes the proof of the lemma.

Theorem 11.7. Let ABC be isosceles with base angles α, and α not a rational
multiple of π. Suppose ABC is N -tiled by a tile with angles (α, β, 2α) and sides
(a, b, c). Then N is not squarefree. In particular, N is not prime.

Proof. By Theorem 10.5, the tile is rational, so we can assume without loss of
generality that (a, b, c) are integers with no common factor. By Lemma 11.2, there
exist relatively prime integers m, k with 0 < m/2 < k < m such that

a = k2, b = m2 − k2, c = km.

Let X be the length of the equal sides AB and BC, and Y the length of AC. Then
by Lemma 11.4,

X2 = Nab

= N2a since b = Nℓ2, by Lemma 11.6

= N2k2ℓ2 since a = k2

Taking the square root of both sides, we have

X = Nkℓ(11)

The tiling gives rise to a relation

X = pa+ qb + rc(12)

Nkℓ = pk2 + q(m− k)(m+ k) + rkm since X = Nkℓ by (11)(13)

By (11), X ≡ 0 mod k. Taking the last equation mod k we find

0 ≡ qm2 mod k

Since k and m are relatively prime, we can divide by m2:

q ≡ 0 mod k(14)

Putting Nℓ2 = b = (m− k)(m+ k) into (13), we have

k(m− k)(m+ k)/ℓ = pk2 + q(m− k)(m+ k) + rkm

0 = pk2 + (q − k/ℓ)(m− k)(m+ k) + rkm

Then k/ℓ is necessarily an integer. Since m − k > 0, we have q − k/ℓ ≤ 0, and
either q − k/ℓ < 0 or p = r = 0. We argue by cases:

Case 1, q − k/ℓ < 0. Then q < k/ℓ ≤ k. Then by (14), we have q = 0.
Therefore, no tile supported by AB or BC has its b edge on AB or BC, since a
relation X = pa + qb + rc would arise from each of AB or BC (although perhaps
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with different coefficients (p, q, r)). However, at B there are two tiles, one with an
α angle and one with a β angle at B. Renaming A and C if necessary, we may
assume the tile with α at B is supported by AB. Since each tile supported by AB
has its a or c edge on AB, each of those tiles has a β angle at one of its vertices
on AB. But there are α angles at A and at B. Then by the pigeonhole principle,
one of the vertices on AB is a vertex of two tiles with β angles there. But that
contradicts Lemma 10.1. That disposes of Case 1.

Case 2, p = r = 0. Then every tile supported by the side Z = AB or BC that
gave rise to (12) has its b edge on Z. Hence every tile supported by Z has a γ angle
on Z. There are no γ angles at A, B, or C, so by the pigeonhole principle, there
must be a boundary vertex with two γ angles. But there cannot be two γ angles at
the same boundary vertex, since the only integer relations between the angles are
α+ β+ γ = π and 3α+ β = π. This contradiction shows that Case 2 is impossible.
That completes the proof of the theorem.

11.5. The number of tiles on a side of ABC. We wish to show that, given N ,
we can calculate a finite set of triangles and a finite set of possible tiles (a, b, c),
such that if there is an N -tiling of some isosceles ABC with base angles α by some
tile with γ = 2α and α not a rational multiple of π, then ABC and the tile are in
those finite sets.

It will be important for that proof to have an upper bound on the number of tiles
on the sides AB and BC of isosceles triangle ABC, in terms of N . This section is
devoted to that problem.

We can count either the tiles supported by AB, or the tiles with an edge or a
vertex on AB. At a given boundary vertex, there can be three tiles or there can be
four tiles, as π = α+ β+ γ = 3α+ β. So the two ways of counting tiles “on a side”
differ, but by a bounded factor.

One might initially think that such a bound should be on the order of
√
N , but

that idea is based on the picture in which ABC is not long and narrow. If we
consider the case when α is tiny, so AB and BC are almost half as long as BC
and the triangle has comparatively little interior, maybe most of the tiles touch the
boundary! In that case, neglecting for the moment the fact that some tile edges
may be a lot larger than others, we would expect almost a quarter of the tiles to
have an edge or vertex on AB, and a quarter on BC, and half on AC. The bound
we actually prove is that one of AB or BC must support fewer than (N−1)/4 tiles.
The number of tiles supported by AB should be about half the number of tiles with
edges or vertices on AB, neglecting the vertices with four instead of three tiles.

One illustration of the difficulty is the case when b is tiny, and a and c are almost
equal. We already mentioned the example (a, b, c) = (61504, 497, 61752). Then
angle β is tiny, and α and β are both close to π/3, so ABC is nearly equilateral, and
the tile is needle-shaped, long and narrow. Note that this is not at all the situation
considered above when ABC itself is long and narrow. But in this situation, AB
might be tiled by millions of tiles with their tiny b edges on AB, while BC might
be tiled with relatively fewer tiles with their long c or a edges on BC. So there
is no obvious relation between the number of tiles supported by one side and the
number supported by another.

The difference between N/4 and N/2 and (N − 1)/4 may not seem important at
first, but (N − 1)/4 enables us to prove that N cannot be twice a prime, while the
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others mentioned do not, though they might suffice for N not being a prime. Fur-
thermore, the better the bound, the more candidate values of N can be ruled out
because they violate certain simple conditions. We conjecture that all N that corre-
spond to tilings are not squarefree; but there are certainly not-squarefree numbers
N that we cannot yet rule out.

We need to “get off the ground” by a close analysis of the case when N is very
small. In particular, what is the smallest number of tiles that can be supported by
the base AC? We show that at least four tiles are required. (That already shows
N > 7.) A few of our lemmas will be proved also for tilings with γ = 2π/3; for
example at least three tiles must be supported by AC in that case.

After these preliminary remarks, we plunge into the technical lemmas.

Lemma 11.8. Let isosceles ABC with base angles α (at A and C) be N -tiled by
a tile with angles (α, β, 2α), and suppose that the tile is not a right triangle and α
is not a rational multiple of π. Then no tile has one vertex on AB and another on
BC.

Proof. By Theorem 3.1, α is not a rational multiple of π, and π cannot be expressed
as a linear combination of α, β, and γ, except in the way determined by the vertex
angles of ABC. (That is, π = 3α+ β if γ = 2α, or π = 3α + 3β if γ = 2π/3). By
Theorem 10.5, the tile is rational, so we may assume its sides are integers (a, b, c)
with no common factor, with a opposite angle α and b opposite β.

Suppose some tile has an edge EF with E on AC and F on BC. Consider the
triangle BEF . Since it has the same angle at B as triangle ABC, namely α + β,
its angles at E and F must each be α. Then the north side of EF cannot be
covered by a single tile, since if it were, that tile would have two α angles, one at E
and another at F . Therefore the north side of EF supports at least two tiles. By
hypothesis, EF is an edge of a single; that tile, say Tile 1, must lie on the south
side of EF .

Since the tile is rational by Theorem 10.5, we may assume without loss of gener-
ality that (a, b, c) are integers with no common factor. In particular, none of (a, b, c)
is an integer multiple of another. Since the south side of EF is equal to one tile
edge, the north side cannot be composed of all a edges, or all b edges, or all c edges,
since then the edge on the south would be an integer multiple of the edge on the
north.

Suppose Tile 1 has its a edge on EF . Since a < c, there are no c edges on the
north side of EF . Hence north of EF are only b edges, so a is an integer multiple
of b, contradicting the fact that a and b are relatively prime (by Lemma 11.2).

Similarly, if Tile 1 has its b edge on EF , then b is an integer multiple of a,
contradiction. Finally, if Tile 1 has its c edge on EF , then since a+b > c, either all
the tiles on the north of EF supported by EF have their a edges on EF , or they
all have their b edges on EF . Then c is an integer multiple of a or c is an integer
multiple of b. We argue by cases:
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Case 1, c is a multiple of a, say c = pa. Then

c2 = p2a2

= a2 + ab by Lemma 11.1

p2a = a+ b by the previous two lines

a = 1 since a and b are relatively prime

k = 1 where a = k2 and b = m2 − k2, by Lemma 11.2

Then a = 1 and c = mk = m and b = m2 − 1 = c2 − 1, so a+ b = m2 = c2 ≥ c, so
(a, b, c) do not form a triangle, contradiction. That completes Case 1.

Case 2, c is a multiple of b, say c = pb. Then

pb2 = c2

c2 = a2 + ab by Lemma 11.1

p2b2 = a2 + ab by the previous two lines

a2 ≡ 0 mod b

a ≡ 0 mod b since a and b are relatively prime

But then b divides a. Since a and b are relatively prime, that implies b = 1.
By Lemma 11.2, there are relatively prime (k,m) such that b = m2 − k2. Then
m2 = k2 + b = k2 + 1, which is impossible, since k > 0. That completes Case 2.

These contradictions complete the proof of the lemma.

Lemma 11.9. Let isosceles ABC with base angles α (at A and C) be N -tiled by
a tile with angles (α, β, 2α), with α not a rational multiple of π. Let T be a tile
supported by AC but not having a vertex at A or C. Then T does not have a vertex
on AB or BC.

Proof. Let PQ be the edge of T that lies on AC. Let R be the third vertex of T .
We must show R does not lie on AB or AC. Suppose, for proof by contradiction
that it does. By renaming A and C if necessary, we can assume that R lies on AB.
Since α is not a rational multiple of π, there is only one tile, say T1, with a vertex
at A. The interior edge of T1 connects AB with AC. That is not a shared edge
with T , since at least three tiles meet at P . See Fig. 15.

Figure 15. RPQ cannot be a single tile as RP is too long.
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Fig. 15, although already counterfactual, is not counterfactual enough, as it
shows a gap between T1 and T , which we must prove must be there, before we can
prove that “RP would be too long.” That is, T might share a vertex with T1. We
will begin by showing that cannot happen.

I say that P does not share a vertex on AC with T1. Suppose, for proof by
contradiction, that it does. Then P , the western vertex of T on AC, is also the



TILINGS OF AN ISOSCELES TRIANGLE 37

eastern vertex of T1 on AC. Let S be the third vertex of T1, so S lies on AB. See
Fig. 16.

Figure 16. What if T1 and T share a vertex on AC?
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Consider triangle SPR. The side SP has length a, because that is the edge of
T1 opposite its α angle. Since a = mk and b = m2 − k2, a and b are relatively
prime, so a cannot be expressed as a sum of b edges; since a < c that means that
SP supports only one tile on the east, sharing an a edge with T1. Call that tile T2.
Then T2 and T1 each have a β or γ angle at S. At P , T1 has a β or γ angle, since
its α angle is at A. By Lemma 10.1, T2 and T1 do not both have either a β or γ
angle at P . T2 does not have its α angle at P , since PS is its a edge. So one of T2

and T1 has a β angle at P , and the other has a γ. Then T has its α angle at P ,
and exactly those three tiles have a vertex at P . Since T has its α angle at P , its
side PS is equal to b or c. Now triangle PSR has one side equal to a (namely PS),
side PR equal to b or c (since T has its α angle at P ), and its angle at P is either
β or γ, since T has α at P and T1 has β or γ. Therefore PSR is congruent to the
tile, by the ASA congruence theorem. But T1 has angle β or γ at S, so angle PSR
is α + γ or α + β, contradicting the fact that PSR is congruent to the tile. That
proves that T and T1 do not share a vertex on AC.

Now I say that T does not share a vertex with T1 on AB either. Suppose to
the contrary that it does. Then R is the eastern vertex on AB of T1 as well as the
northern vertex of T . See Fig. 17.

Figure 17. What if T1 and T share a vertex on AB?
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Then triangles T1 and T have the same height (measured from AC) and since
they are each one tile, they are congruent; so they have the same area. Hence they
have the same base. The base of T1 is b or c, since it has its α angle at A. Then
the base PQ of T is also b or c.

Since the edge RP is not shared with T1, as we have already proved, there is
another tile between T1 and T with a vertex at R. Since the third vertex of T ,
namely Q, does not lie on AB, there are at least four tiles meeting at R. Therefore
there are three α angles and one β angle at R. The β angle must belong to T1,
since it has its α angle at A. Then T has its α angle at R. Hence its base PQ is
opposite its α angle. Hence PQ = a. But we showed above that PQ is b or c. That
is a contradiction; that proves (as claimed) that T does not share a vertex with T1

on AB.



38 MICHAEL BEESON

Let X be the length of AR and Y the length of RP . Since R is not a vertex of
T1, AR is composed of at least two tile edges. One of those edges is not a, since T1

has its α angle at A. I say that also one of them is not b. For suppose AR supports
only b edges of tiles. Then for some integer ℓ, X = ℓb. Each of those tiles has its α
angle to the west and its γ angle to the east. Then at R, the tile to the west of R
has its γ angle at R. Then there are exactly three tiles with vertices at R. Since
RQ is an interior segment, T is the middle one of those three. Then triangle ARP
is similar to the tile, since it has one α and one γ angle. Triangle ARP has α at
A, and γ at R, and therefore β at P . But angle ARP is the supplement of angle
of T , which is impossible, as neither α, β, nor γ is the supplement of β. Hence, as
claimed, one of the edges supported by AR is not b.

We now intend to reach a contradiction by showing that the length of RP is more
than the length of any tile edge a, b, or c. That will be a contradiction, because
RPQ is a tile, so RP has to be equal to a, b, or c.

Let x and y be two of (a, b, c), not necessarily distinct, but one of x and y is not
a, and one is not b. Then I say that x + y > a, x + y > b, and x + y > c. If we
prove that, we can take x and y to be two of the edges supported by RP , and since
Y is a tile edge, and thus equal to a, b, or c, we will have RP > Y as claimed.

Since x + y > x, and x + x > x, we are done unless the third edge is distinct
from the two to be added. If the two to be added are distinct, we are done, because
two sides of a triangle are together greater than the third. That leaves the cases
a+ a > b, b+ b > c, a+ a > c, b+ b > a, c+ c > b, c+ c > a. The cases c+ c > a
and b + b > a follow from c > a and b > a. We can drop a + a > b and a+ a > c
because we know one of two edges to be added is not a. We can drop b + b > a
and b + b > c because we know that one of two edges to be added is not b. That
leaves only c + c > b still to prove. By Lemma 11.3, we have c/b > 2/3. Hence
c+ c > (4/3)b > b. That completes the proof of the lemma.

Remark. b+ b > c is not generally true. We have seen that b can be much smaller
than c. Hence we had to show that RP could not support only b edges.

Lemma 11.10. Let isosceles ABC with base angles α (at A and C) be N -tiled by
a tile with angles (α, β, 2α), with α not a rational multiple of π. Then there are at
least four tiles supported by AC. If the tile instead has angles (α, β, 2π/3) instead
of (α, β, 2α), then there are at least three tiles supported by AC.

Proof. First assume γ = 2α. We start by proving that at least three tiles are
supported by the base AC. Suppose, for proof by contradiction, that only two tiles
are supported. Those two tiles have their α angles at A and C, and their a edges
both end at the shared vertex P on AC. Without loss of generality we may assume
that Tile 1, with edge AP , has its β angle at P , and Tile 2, with edge PC, has
its γ angle at P , since two β angles or two γ angles at P is impossible. Then the
remaining angle to be filled at vertex P is α. By Theorem 3.1, α is not a rational
multiple of π, and hence not a multiple of β. Since α is not a multiple of β, the
gap must be filled by a single tile, Tile 3, with its α angle at P . Then Tile 3 has its
c side either against Tile 1 or Tile 2, but that is impossible since those edges are
of length a and terminate at the boundary, and c > a. Hence there are indeed at
least three tiles supported by AC. Note that this argument works for both cases,
γ = 2α and γ = 2π/3.

Now suppose there are exactly three tiles supported by AC. Not all three tiles
on AC can have their c edges on AC, since then each would have a β angle on AC,
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and by the pigeonhole principle, there would be a vertex on AC with two β angles.
If the tiles at A and C both have their b edges on AC, then they have their γ angles
on AC, so the middle tile on AC cannot have a γ angle on AC, so it has its c edge
on AC. Therefore the possible values of Y are exactly 2c+ b, 2c + a, 2b + c, and
b+ c+ a. So far, γ could be 2α or 2π/3.

Now we assume γ = 2α. Then Lemma 11.5 applies, yielding X = (a/c)Y .
Therefore, the possible values of X are exactly

2a+ (ba/c), 2a+ a2/c, 2ab/c+ a, (a+ b+ c)(a/c)

By Lemma 11.2, a = k2, b = m2− k2, c = mk, where k and m are relatively prime.
Note that

(a+ b+ c)(a/c) = (k2 + (m2 − k2) +mk)(k/m) = (m+ k)k = a+ c.

Then the possible values of X are

2k2 + k(m2 − k2)/m, 2k2 + k3/m, 2k(m2 − k2)/m, (m+ k)k

Since m > k ≥ 1, none of the first three can be an integer. Therefore

X = (m+ k)k = a+ c.

The question now is, what are the tiles supported by AB, the sum of whose
edges on AB is a+ c? One possibility is that there are exactly two tiles supported
by AB, one with its a edge on AB and the other with its c edge. However, that
is impossible, since the tiles at A and C both have their α angles at A or C, and
hence their a edges do not lie on AC. So X has some other configuration of tiles
supported. Then X = ua+ vb + wc = a+ c for some nonnegative integers u, v, w.
Then u or w must be zero.

If u = w = 0 then vb = a + c, i.e., v(m2 − k2) = k2 + km. Dividing by m + k
we have v(m − k) = k. Since k is relatively prime to m− k, k divides v. But also
v divides k. Hence v = k. Then AC is composed of k tile edges of length b. Then
each edge has a γ angle on AC. Since there are α angles at A and C, then by the
pigeonhole principle there is a vertex with two γ angles. But that is impossible,
since the only relations between the angles are α+3β = π and α+β+γ = π. Thus
we have ruled out the case u = w = 0.

Now suppose v = w = 0. Then ua = a+ c, i.e., (u− 1)a = c, or (u− 1)k2 = km,
so u− 1 = m. Then ma = c = km, so m = k, contradiction. Hence not both v and
w are zero.

I say that w 6= 0. To prove that, suppose w = 0. Then u 6= 0 and v 6= 0 and
ua+ vb = a+ c. Then

uk2 + v(m2 − k2) = k2 + km

(u − 1)k2 + vm2 = km

Then k divides v, since k is relatively prime to m. Since v 6= 0, we have v ≥ k.

km = (u− 1)k2 + vm2

≥ vm2 since u− 1 ≥ 0

≥ km2 since v ≥ k

> km since m > k ≥ 1

km > km
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But that is a contradiction, reached on the assumption w = 0. Therefore w 6= 0, as
claimed.

Then

ua+ vb+ wc = a+ c

uk2 + v(m2 − k2) + wkm = k2 + km

uk2 + vm2 + (w − 1)km = (v + 1)k2

(u− 1)k2 + vm2 + (w − 1)km = vk2

I say that u = 0. If u 6= 0, then all the terms on the left are non-negative, and
vm2 > vk2 since m > k, so the equation is impossible. Hence u = 0, as claimed.
Then

v(m2 − k2) + wkm = k2 + km

vm2 + (w − 1)km = (v + 1)k2(15)

Since m > k, we have vm2 > vk2, and since w 6= 0 we have (w− 1)km > (w− 1)k2.
If w 6= 1 then the left side of (15) is greater than the right, contradiction. Hence
w = 1. Then

a+ c = ua+ vb+ wc = vb+ c

since w = 1 and u = 0. Then a = vb, which is impossible since a and b are relatively
prime and not zero. This contradiction depends only on the assumption that there
are exactly three tiles supported by AC. Since we already proved there are at
least three tiles supported by AC, we have now proved there are at least four tiles
supported by AC. That completes the proof of the lemma.

Lemma 11.11. Let isosceles ABC with base angles α (at A and C) be N -tiled by
a tile with angles (α, β, 2α), with α not a rational multiple of π. Then one of the
sides AB or BC supports strictly less than (N − 1)/4 tiles. If the tile instead has
angles (α, β, 2π/3), then one of the sides supports strictly less than N/4 tiles.

Remarks. This bound is not used in our tiling non-existence theorem that N cannot
be squarefree. But it is crucial to the theorem that, given N , there is an explicitly
computable set of possible ABC and tiles.

Proof. Let P be a vertex of the tiling lying on the interior of a side of ABC. If
only two tiles meet at P then they cannot have different angles, since any two of
(α, β, γ) make together less than π. But if they have the same angle at P , that
angle would be a right angle, contrary to hypothesis. Therefore at least three tiles
meet at each such vertex P .

Let n and m be, respectively, the total number of tiles with an edge or vertex on
AB, and the total number of tiles with an edge or vertex on BC. First suppose the
tile has γ = 2α. By Lemma 11.10, AC supports at least four tiles. The middle two
do not touch AB or BC even in a vertex, by Lemma 11.9. and Lemma 11.8, and
between the tiles that have no vertex at A or C there is (at least) a fifth tile, having
only a vertex on AC, which also does not touch AB or BC, by Lemma 11.9. Then
n+m ≤ N−3, since N is the total number of tiles, but at least three have a side or
vertex on AC and do not touch AB or BC, and by Lemma 11.8, no tile contributes
to both n and m. Therefore either n ≤ (N − 3)/2 or m ≤ (N − 3)/2. Relabeling A
and C if necessary, we can assume without loss of generality that n ≤ (N − 3)/2.
Now let p and q, respectively, be the number of tiles supported by AB, and the
number of tiles with one and only one vertex on AB. Then q ≥ p − 1 (it might
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be strictly greater if some vertices have more than three tiles sharing that vertex).
Therefore

p− 1 ≤ q

p+ q = n ≤ (N − 3)/2

p ≤ (N − 3)/2− q

≤ (N − 3)/2− (p− 1)

2p ≤ (N − 3)/2 + 1 = (N − 1)/2

2p ≤ (N − 1)/2

p ≤ (N − 1)/4

We now will establish strict inequality in place of ≤. Suppose that p = (N − 1)/4.
Then there are exactly four tiles supported by AC, and at all vertices on AC except
A and C, there are just three tiles meeting, since any more would introduce a strict
inequality p − 1 < q, instead of p − 1 ≤ q. Therefore each boundary vertex has
one α, one β, and one γ angle. The corner tiles have their α angles at A and C.
The two tiles adjacent to the corner tiles, with only a vertex on AC, do not have
their α angles on AC, since their a sides must match the a sides of the corner tiles.
(It is impossible that a is an integer multiple of b, since a is relatively prime to
b, by Lemma 11.2.) Therefore the middle vertex on AC must have two α angles,
contradiction. (In other words, if AC supports only four tiles, there must be a
“boundary star” on AC.) Hence, as claimed, p < N/4. That completes the proof
in case the tile is (α, β, 2α).

Now suppose the tile is (α, β, 2π/3) and p = N/4. Then we start with n+m ≤
N − 1 instead of N − 3, since Lemma 11.10 gives us only three tiles supported by
AC instead of four. The result is p ≤ N/4 instead of p ≤ (N − 1)/4. Then there
must be exactly three tiles supported by AC and each boundary vertex has one α,
one β, and one γ angle, or else there would be strict inequality in the computation.
That completes the proof of the lemma.

11.6. What is the least N permitting a tiling? The smallest explicitly-known
such tiling has N = 1125, with tile (4, 5, 6), as shown in Fig. 23. We will show
below that N ≥ 45. There is a swath of ignorance between 45 and 1125.

Until now, we have no a priori estimate on the size of (a, b, c). For example,
there is no a priori reason why we could not have N < 100 and (a, b, c) each greater
than a million. We now provide such a bound.

Lemma 11.12. Suppose isosceles triangle ABC is N -tiled by tile (a, b, c) with
γ = 2α. Then a, b, and c are less than m2, where m is as in Lemma 11.2 and
satisfies

m < N +
(N + 1)2

16
.

Remark. The form of the bound is not very beautiful, but we want to use it for
fairly small N , and its asymptotic value is not of interest. We only care that there
is some explicit and reasonably-sized bound.

Proof. By Lemma 11.2, there exist relatively prime integers m and k ≤ m such
that a = k2, b = m2 − k2, and c = mk. Let X = |AB| be the length of the two
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equal sides of ABC. The tiling provides integers p, q, r such that X = pa+ qb+ rc.
Then

X2 = Nab

X2 = N(k2)(m2 − k2)

X = pk2 + q(m2 − k2) + rmk

X ≡ (p− q)k2 mod m

X2 ≡ (p− q)2k4 mod m

N(k2)(m2 − k2) ≡ (p− q)2k4 mod m

−Nk4 ≡ (p− q)2k4 mod m

−N ≡ (p− q)2 mod m, since gcd(k,m) = 1

N + (p− q)2 ≡ 0 mod m

Therefore m divides N + (p− q)2. Since N + (p− q)2 is positive, that implies

m ≤ N + (p− q)2(16)

By Lemma 11.11, we may assume p+ q + r < (N + 1)/4, since that is true on one
of the two sides of ABC of length X . In particular, each of p, q, r is < (N + 1)/4.
Hence

|p− q| < (N + 1)/4

(p− q)2 <
(N + 1)2

16

By (16), we have

m < N +
(N + 1)2

16
.

Since k ≤ m, both a and b are ≤ m2. Hence both a and b are bounded by
(

N +
(N + 1)2

16

)2

.

That completes the proof of the lemma.

By a boundary tiling of ABC by the tile (a, b, c), we mean a placement of tiles
supported by the boundary of ABC touching every point of the boundary of ABC.
Let X be the side AB, and Y the base AC, of isosceles ABC. A boundary tiling
of ABC provides integers (p, q, r) and (u, v, w) with

X = pa+ qb+ rc

X2 = Nab the area equation

Y = ua+ vb+ wc

We use the phrase possible boundary tiling to mean a way of writing X and Y in
this form, with integers (p, q, r) and (u, v, w) satisfying Lemma 11.11, and (a, b, c)
satisfying Lemma 11.12. Of course, a tiling gives rise to a boundary tiling, but
not every boundary tiling can be completed to a tiling, let alone every “possible”
boundary tiling. Each “possible boundary tiling” might correspond to many dif-
ferent ways of arranging the tiles (in different orders) on the boundary, but there
will be only finitely many ways. We note that a boundary tiling might use different
(p, q, r) on the two sides AB and BC; we shall return to that point below.
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Lemma 11.13. Let isosceles triangle ABC with base AC and vertex B have base
angles α, not a rational multiple of π. Let (a, b, c) be integers with no common
factor forming a triangle with angles (α, β, 2α). Let X be the length of side AB
Suppose there is an N -tiling of ABC by (a, b, c) whose boundary tiling on AB or
BC corresponds to X = pa+ qb+ c. Then q 6= 0 and r 6= 0.

Proof. First suppose q = 0. That means there are no b edges on AC, so every
tile supported by AC has a β angle on AC. But since the top and bottom tiles
have their α angles at C and A, and no vertex has two β angles, this violates the
pigeonhole principle. Now suppose r = 0. That means there are no c edges on AC,
so every tile supported by AC has a γ angle on AC. But since the top and bottom
tiles have their α angles at C and A, and no vertex has two γ angles, this violates
the pigeonhole principle. That completes the proof of the lemma.

Lemma 11.14. Given N , there is a finite set ∆ of tiles (a, b, c) having integer
sides with no common factor and angles (α, β, γ), and for each tile in ∆, a finite
number of representations

X = pa+ qb+ rc

Y = ua+ vb + wc

such that if isosceles triangle ABC with base angle α can be N -tiled with some tile,
then the tile belongs to ∆ and the boundary representations determined by the tiling
are among those allowed for that tile.

Example. With N = 36, there are just two possible tiles: (9, 16, 15) and (16, 9, 20),
as we will show below, and the possible boundary tilings are given in Table 3.

Proof. Let N be given. Then the number of possible boundary tilings is finite
(and one can easily loop through them), by definition of “boundary tiling.” By
Lemma 11.2 and Lemma 11.12, every N -tiling gives rise to a possible boundary
tiling.

We spell out the algorithm implicit in the preceding lemmas: Given N , we loop
through all (k,m) satisfying Lemma 11.12 and with k and m relatively prime.6

There are only finitely many (k,m) to loop through, because according to Lemma 11.12,
we have an explicit bound on m in terms of N . Since k < m, both m and k are
bounded in terms of N .

For each such (k,m), we compute the tile

(a, b, c) = (k2,m2 − k2,mk).

We reject triples (a, b, c) that either

• cannot form triangles because one side is greater than or equal to the sum
of the other two, or

• the squarefree part of N is not equal to the squarefree part of b

Then X is defined by the area equation X2 = Nab, and Y is defined by the area
equation XY = Nbc. We reject triples (a, b, c) if either

• X is not an integer, or
• Y is not an integer

6The condition k and m relatively prime is important, because it results in a and b being
relatively prime, which is assumed in Lemma 11.11. Without it, we got some spurious possi-
ble boundary tilings with tiles like (46, 45, 54), which cannot correspond to real tilings because
Lemma 11.11 would be violated.
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Then we loop through all triples (p, q, r) satisfying the bound of Lemma 11.11 such
that

X = pa+ qb+ rc

We can immediately reject (p, q, r) if q = 0 or r = 0, by Lemma 11.13. Now
Y = (c/a)X . We need to check whether Y can be expressed in the form ua+vb+wc.
There are only finitely many possibilities for (u, v, w), so we can check that. If Y
cannot be so expressed, then we can reject this (a, b, c).

Otherwise, we output the possible boundary tiling given by

X = pa+ qb+ rc

Y = ua+ vb+ wc.

That completes the proof of the lemma.

The algorithm as described above eliminates N < 20, but finds possible bound-
ary tilings for N = 20, 28, 36, 44, 45. Below we will discuss improvements to the
algorithm and eliminate some of these values.7

Theorem 11.15. Given N , it is decidable by a computation whether there exists
an N -tiling of some (any) triangle ABC by a tile with γ = 2α, (where ABC has
base angles α).

Proof. For a fixed ABC and tile, it is (in principle) computationally decidable
whether there is a tiling: By Lemma 11.14, there are finitely many possible bound-
ary tilings so in principle you can all the possible ways of arranging tiles on the
boundary, and check by backtracking search whether the boundary tiling can be
completed to an N -tiling, just like solving a jigsaw puzzle. That completes the
proof.

11.7. Ruling out more values of N . The problem of constructing an N -tiling
divides into two parts: first construct an ABC and a tile (a, b, c), and a possible
boundary tiling

X = pa+ qb+ rc

Y = ua+ vb + wc

Then, use backtracking search to either find an N -tiling, or show that there is none.
The second part of this (the part involving backtracking) is not a trivial program,

and even if coded, it would probably take too long when N is large. But the first
algorithm (searching for a possible boundary tiling) is very easy to implement, as no
geometry is involved, just some simple linear equations. We have already described
that algorithm in Lemma 11.14.

Lemma 11.16. Let isosceles triangle ABC with base angles α be N -tiled by an
integer-sided triangle with angles (α, β, 2α). Then N 6= 20.

Remark. It seems that N = 20 is the only value of N (among those passed by
Lemma 11.14) that can be rejected this way and is not rejected by simpler argu-
ments; at least, it’s the only one less than 1000.

7We coded the algorithm twice, once in SageMath, which offers unlimited precision integers,
and once in C, taking care to use 64-bit integers in C. We got the same results from both
implementations.
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Proof. Let n be the minimum possible number n of tiles supported on the boundary;
then there must be at least n−1 tiles with a side or vertex on the boundary, thanks
to there being that many gaps between the tiles, and no double-counting of tiles
filling those gaps, because of Lemma 11.8 and Lemma 11.9. Then if n + (n − 2)
exceeds N , we can reject that possible boundary tiling.

When N = 20, the tile (4, 5, 6) leads to X = 20 = a + 2b + c, so X supports 4
tiles, and 20 cannot be written as a sum of fewer tiles. Then Y = 30 = 5c, n = 11,
n + (n − 1) = 21 > 20. So this possible tile is rejected. Since that is the only
possible tile for N = 20, there is no 20-tiling. That completes the proof.

Lemma 11.17. Let isosceles triangle ABC with base AC and vertex B have base
angles α, not a rational multiple of π. Let (a, b, c) be integers with no common
factor forming a triangle with angles (α, β, 2α). Let X and Y be the lengths of side
AB and base AC respectively. Suppose

X = pa+ qb+ c

and

Y = ua+ vb + c or ua+ vb + 2c

Then there is no N -tiling of ABC by (a, b, c) whose boundary tilings correspond to
those representations.

Remark. So, if the only possible boundary tilings are as in the lemma, then there
is no N -tiling of ABC by (a, b, c) at all.

Example. Consider N = 28. Consider (a, b, c) = (9, 7, 12). By the area equations
(9) and (10), if there were a 28-tiling of an isosceles ABC with base angles α, we
would have X = 42 and Y = 56. Then X = a+ 3b+ c and Y = 2a+ 2b+ 2c. The
lemma shows we cannot have a tiling corresponding to these representations of X
and Y . Below we will show that these are the only possible decompositions of X
and Y realizable in a tiling, thus ruling out a 28-tiling.

Proof. Suppose that such a tiling exists. By hypothesis, the decomposition Y =
ua+ vb+ wc, with w = 1 or 2, corresponds to the tiles supported by AC, and the
decomposition X = pa+ qb + c corresponds to the tiles supported by AB and the
tiles supported by BC. That is, there is only one c edge on AB, only one c edge
on BC, and at most two c edges on the base AC.

The tile T1 at A has its α angle at A. Suppose, for proof by contradiction, that
T1 has its c edge on AB. Since there is only one c edge on AB, all the rest of the
tiles supported by AB have a γ angle on AB. No tile has its γ angle at B, since the
total angle at B is α + β, which cannot be written in any other way as a rational
linear combination of α and β.

Therefore the top tile on AB, with a vertex at B, has its γ angle to the south
on AB. Since there cannot be two γ angles at any boundary vertex, all the tiles on
AB above T1 have their γ angles are to the south. Let the next tile (that is, next
to T1) supported by AB be T3, and let the one between T1 and T3 be T2; and let
P be the shared vertex on AB of these three tiles. Then T1 has its β angle at P ,
and T3 has its γ angle at P . Hence T2 has its α angle there. Then the a edge of T2

is not shared with T1. Since a < c, and the a edge of T1 has both endpoints on the
boundary of ABC, the c edge of T2 is not shared with T1. Hence it must be the b
edge of T2 that is shared with T1. Then b < a. The remaining part of the a edge of
T1, namely a− b, must be composed of b edges, since its length is less than a and
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less than b. Then a is a multiple of b, say a = kb. By Lemma 11.1, c2 = a2 + ab.
Then c2 = k2b2+kb2, so b divides c as well as a, contradiction, since without loss of
generality we may assume a, b, and c have no common divisor. This contradiction
shows that T1 does not have its c edge on AB (as was assumed at the beginning of
this paragraph). Therefore, T1 has its c edge on the base AC, rather than on AB.

Now let R be the eastern vertex of T1, lying on AC, and as before let T2 be
the tile sharing the northeast edge of T1, which is the a edge. As before T2 cannot
share its b or c edge with T1, and therefore has its a edge there, so R is a vertex of
both T1 and T2. Then the angle of T2 at R is not α, and the angle of T1 at R is β.
At R the tile angles are either (β, γ, α) or (β, α, α, α). In either case the next tile
on AC, with western vertex at R, has angle α at R.

Now this whole argument can be repeated, using vertex C instead ofA. Therefore
the tile on AC at C has its c edge on AC, and the next tile west of that has its α
angle to the east; call that vertex S.

Then the two tiles at A and C account for both c edges that can occur on AC.
Then every tile supported by RS does not have its c edge on AC, and therefore
has a γ angle on AC. Since these γ angles do not occur at the endpoints of RS,
the number of γ angles exceeds the number of vertices where they can occur. By
the pigeonhole principle, there must be a vertex with two γ angles. But that is a
contradiction. That completes the proof of the lemma.

Theorem 11.18. Let isosceles triangle ABC with base angles α be N -tiled by a
triangle with angles (α, β, 2α), and α not a rational multiple of π. Then N ≥ 45.

Proof. N = 20 is eliminated by Lemma 11.16. By Lemma 11.14, the only possible
tiles are the ones shown in Table 3.

Table 3. Possible boundary tilings

N (a, b, c) X Y
28 (9,7,12) 42 = a+ 3b+ c 56 = 2a+ 2b+ 2c
36 (9,16,15) 72 = a+ 3b+ c 120 = a+ 6b+ c
36 (16, 9, 20) 72 = a+ 4b+ c 90 = 2a+ 2b+ 2c
44 (25, 11, 30) 110 = a+ 5b+ c 132 = 2a+ 2b+ 2c
45 (4,5,6) 30 = a+ 4b+ c 45 = a+ b+ 6c
45 (4,5,6) 30 = 2a+ 2b+ 2c 45 = a+ b+ 6c

It remains to eliminate 28, 36, and 44. According to Lemma 11.17, given N
and (a, b, c), if the representations of X and Y as combinations of (a, b, c) involve
only one c edge in X and one or two in Y , then there is no corresponding N -tiling.
Adding that easily-checkable condition to the algorithm in Lemma 11.14, we find
that N = 28, 36, and 44 are eliminated, leaving N = 45 as the least value for which
possible boundary tilings are found.

For the benefit of the reader who prefers pencil and paper to computer code, we
give a direct argument for each of those three values of N , with a few steps left to
the reader’s pencil:

We first take up the case N = 28, which was discussed in the example following
the statement of Lemma 11.17. That lemma shows that no tiling is possible cor-
responding to the representations of X and Y given in Table 3. There cannot be
other representations with more c edges, since no multiple of 12 cannot be made
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from (some of) one 9 and three 7s, and no multiple of 12 can be made from (some
of) two 9s and two 7s, and a and b are relatively prime.

It remains to consider representations with fewer c edges. In this case that would
mean zero c edges; but that would contradict Lemma 11.13. Hence no 28-tiling of
this isosceles triangle ABC by this (a, b, c) exists.

We turn to the case N = 36. Suppose, for proof by contradiction, there is a
36-tiling by (9, 16, 15). By Table 3, (X,Y ) = (72, 120). I say that 72 = a + 3b+ c
is the only possible representation of 72 that could occur in the tiling. Suppose
72 = pa + qb + rc. By Lemma 11.13, q and r are not zero. Suppose r ≥ 3. Then
11 = pa+(q− 1)b+(r− 3)c, which is impossible. If r = 2, then 26 = pa+(q− 1)b;
but that is impossible. By Lemma 11.13, r 6= 0. Then r must be 1, so 57 = pa+ qb.
We have p ≤ 6 since 6 · 9 > 57; so 57 − pa is a multiple of 16. One can check
that the only possibility is p = 1, q = 3, which gives the known decomposition
X = a+ 3b+ c. (Another way of looking at this is that, if r > 1, we must be able
to “trade in” some of one a and three bs for a number of cs, i.e., make a multiple
of 15 out of (some of) one 9 and three 16s. But that is impossible.)

We also must show that Y = a + 6b + c is the only decomposition of Y = 120
that could occur in the tiling.

Then by Lemma 11.17, those representations for X and Y in Table 3 do corre-
spond to the tiling, Therefore there is no 36-tiling by the tile (9, 16, 15).

Table 3 also has a second entry for N = 36, namely (a, b, c) = (16, 9, 20), with
X = 72 = a + 4b + c and Y = 90 = 2a + 2b + 2c. One can check with pencil and
paper that it is not possible to make a multiple of 20 with up to two a edges and
up to four b edges. Then by Lemma 11.17, no such tiling exists. Since Table 3
represents the results of Lemma 11.14, there is no 36-tiling of any isosceles ABC.

Turning to N = 44, the tile would have to be (25, 11, 30). To apply Lemma 11.17,
given the representations of X and Y in the table, it suffices to check (with pencil
and paper) that no multiple of 30 can be made of up to one a edges and up to five
b edges, or up to two a edges and up to two b edges. That completes the proof of
the theorem.

We note that the technique does not extend to N = 45. After that the next
possibilities left open are 63, 64, 72.

12. Tilings of an isosceles triangle by a tile (α, β, 2π/3)

In this section we take up the tilings of an isosceles triangle (and not equilateral)
ABC with base angles α or β, by a tiling with angles (α, β, 2π/3), where α is not
a rational multiple of π. Let γ = 2π/3. We could insist that the base angles are
called α, but then we may have to speak of tilings by (5, 3, 7) instead of (3, 5, 7); so
it is convenient to allow the base angles to be β sometimes. If the base angles are
α, then the vertex angle is π − 2α = α+ 3β.

Laczkovich proved [7, Theorem 2.5] that there exist tiles that can be used to
tile some such ABC, but N constructed by his method can be large. He proceeds
by first constructing a dissection of ABC into similar rational triangles and par-
allelograms. Fig. 18 shows such a preliminary dissection. Then to get a tiling by
congruent triangles, we have to choose a very small tile such that if each of the
visible triangles is tiled quadratically, then every shared edge is an integer multiple
of the tile edges. For example if the red triangle will get p2 tiles and the light
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blue triangle will get q2 tiles, then we must satisfy pb = qa, in this case 5p = 3q.
There will be another such equation on every shared boundary. To clear all the
denominators we will have to use a large number of tiles.

Figure 18. With tile (3, 5, 7), N would be 1878500, too large to draw.

Figure 19. With this configuration, N is 3681860–even larger.

Fig. 19 shows that a slightly different arrangement of the similar triangles and
parallelograms can make a difference in the resulting number of tiles. In one figure,
the parallelogram is tiled using a and c edges on the boundary; in the other figure,
the parallelogram is tiled using a and b edges on the boundary. That makes the
equations at the boundary different, even though the other boundary conditions
are the same and the areas of the two parallelograms are equal.

Nevertheless, these tilings are too large to draw. In 2024, Bryce Herdt discovered
a 2673-tiling, which is exhibited in the Appendix. This is presently the smallest
known tiling of an isosceles triangle by a tile with γ = 2π/3.

12.1. The tile is rational. Suppose given an N -tiling of some triangle ABC by
a tile with angles (α, β, γ) and sides (a, b, c). In this section we will prove that
the tile has to be rational, i.e., the ratios of the sides are all rational, so after a
suitable scaling, they will be integers. The proof uses the graphs Γc introduced
by Laczkovich and described above; several preparatory lemmas will be developed
first.

Definition 12.1. A c/a segment is a left-terminated interior segment PQ of the
tiling supporting two tiles on opposite sides of PQ, each with a vertex at P , one
with its c edge on PQ and one with its a or b edge on PQ. The segment is said to
“emanate from P .” Similarly for c/b segment and a/b segment.

Remarks. The point Q serves only to indicate the direction of the segment; it can
be any point on that ray.
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Lemma 12.2. Let ABC be an isosceles triangle with base angles α, tiled by tile
(α, β, γ) with γ = 2π/3. Let PQR be an internal segment of the tiling with only
c edges on one side of PQ, such that the tile on that side supported by QR with
a vertex at Q has an a or b edge on PQ. Then there is a c/a or c/b segment
emanating from Q.

Proof. We only consider tiles on the one side of PQR mentioned in the lemma.
There are two cases: Either there are three tiles with a vertex at Q, or there are
six.

Case 1, three tiles at Q. Then one of them has its γ angle at Q, and hence no
c edge at Q. The other two have a c edge ending at Q. One of those lies on PQ.
The other does not lie on QR, by hypothesis. Since there is no other c edge ending
at Q, that third c edge forms either a c/b segment or a c/a segment.

Case 2, six tiles at Q. Then all six angles are α or β. Each of the six tiles has a
c edge ending at Q. One lies on PQ and five lie on interior segments. Since five is
odd, one of those c edges is not paired with another c edge, and hence constitutes
a c/a segment or a c/b segment. That completes the proof of the lemma.

Lemma 12.3. Suppose isosceles triangle ABC with base angles α is N -tiled by
(α, β, 2π/3), with α not a rational multiple of π. Then there is a relation

jc = pa+ qb

with nonnegative integers p, q, j and j > 0.

Proof. Suppose, for proof by contradiction, that there is no such relation. Then,
by Lemma 12.2, if PQ is a link in the graph Γc, then there is a c/b or c/a segment
emanating from Q. Extend that segment to the maximal segment QR supporting
only tiles with c edges on QR. Since there is no relation jc = pa+ qb, R cannot be
the vertex of a tile on the other side of QR. Therefore QR is a link in Γc.

Therefore the out-degree of every node Q in Γc is at least one. But the in-degree
of Γc is always at most one. Since the total out-degree is equal to the total in-
degree, it follows that every node of Γc has both in-degree and out-degree equal to
1. Since no link of Γc can terminate on the boundary of ABC, there can be no
links of Γc emanating from a vertex on the boundary of ABC.

I say there is at least one c edge on AC. For if not, every tile supported by AC
has its γ angle at a vertex on AC. Since γ > π/2, there cannot be two γ angles at
any one vertex. But γ angles do not occur at A or C, where there are only α angles.
Then there is one more γ angle on AC than possible vertices to receive them, so
by the pigeonhole principle, some vertex on AC has two γ angles, contradiction.
Therefore, as claimed, there is at least one c edge on AC. Similarly, there is at
least one c edge on AB and at least one c edge on BC. Since there is a single tile
at A with its α angle at A, the b edge of that tile lies on AC or on AB. Then there
exists a segment PQ lying on AB or on AC supporting only tiles with c edges on
PQ, and with a b edge beyond Q. Then by Lemma 12.2, there is a c/a segment
or a c/b segment emanating from the boundary point Q, say QR. Choose R as far
as possible from Q such that QR bounds only c tiles on one side. Then R is not
a vertex of a tile on the other side of QR, since that would give rise to a relation
jc = pa + qb with j > 0. Hence QR is a link in Γc. But that is a contradiction,
since Q is on the boundary of ABC. That completes the proof of the lemma.
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Lemma 12.4. Suppose isosceles triangle ABC with base angles α is N -tiled by
(α, β, 2π/3), with α not a rational multiple of π. Then there is a relation

ja = pb+ qc

with nonnegative integers p, q, j and j > 0 and p > 0.

Proof. Suppose, for proof by contradiction, that there is no such relation. A center

is a vertex of the tiling where three tiles meet, each having its γ angle at that vertex.
A star is a vertex P where six tiles lying on one side of a line through P have three
α and three β angles at P . A star can occur on the boundary of ABC or in the
interior. A double star is a vertex where twelve tiles meet, six with α angles and
six with β angles. The three vertices of ABC together have six angles, three β and
three α, the same count as a star. Let S be the number of stars (counting a double
star as two), and C the number of centers. Now let us calculate the number of α
angles, plus the number of β angles, minus twice the number of γ angles. At each
vertex other than stars, centers, and A, B, and C, we get zero. At each center we
get −6. At each star we get 6 (and 12 at double stars). Adding them up we get
6S − 6 C+6, where the final 6 is for A, B, and C together. Since the total number
of α is N , the total number of β is N , and the total number of γ is N , we get zero
for the grand total. That is, 6S − 6 C + 6 = 0. Then S = C − 1. (For example, in
Fig. 19, we see one center and no stars.)

Now we consider the graph Γa. Every center has an out-link, since at a center
P there are three tiles, each with an a edge and a b edge at P . Since 3 is odd, one
of the a edges shares a segment with one of the b edges, i.e., an a/b edge emanates
from P . (For example, note the center in Fig. 19.) Let Q be the farthest point
from P along that segment such that PQ supports only a tiles on one side, say the
“left” side. If Q were vertex of a tile on the other side, we would have a relation
ja = pb+ qc, and p would be positive since there is a b edge on the “right” side of
PQ. Since by hypothesis, there is no such relation, Q is not a vertex of a tile on
the other side. Then PQ is a link in Γa. On the the other hand, the in-degree of a
center is zero, since no segment of the tiling passes through P .

At a star Q on an internal segment PQ, six tiles meet, providing six c edges,
three a edges, and three b edges. There could be an incoming link at Q, if the tile
on PQ at Q has its a edge there, the tile past Q does not have its a edge on PQ
extended, and the other two a edges are not on the same segment. The in-degree
of Γa can never exceed 1, since it is impossible for two lines of the tiling to cross at
Q when a link ends at Q. At the vertices A, B, and C the in-degree is zero, since
a link cannot terminate on the boundary. At A and C the out-degree is zero since
there are no interior edges. At B there might be outgoing links, or not.

Now we calculate the out-degree minus the in-degree vertex by vertex. At centers
it is 1. At stars it is 0 or -1 (or -2 possibly at double stars). Let t be the total
out-degree minus in-degree at stars; then 0 ≥ t ≥ −S. At A and C it is zero. At B
it is non-negative, say nB. At all other vertices it is zero. The total of out-degree
minus in-degree is then C + t+ nB ≥ C − S. Since S = C − 1, the total out-degree
minus in-degree is ≥ 1. On the other hand, it is zero since every link has a head
and a tail. This contradiction completes the proof of the lemma.

Theorem 12.5. Let ABC be an isosceles (and not equilateral) triangle with base
angles α. Suppose ABC is tiled by a tile (α, β, 2π/3) with α not a rational multiple
of π. Then the tile is rational.
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Proof. Suppose ABC is tiled as in the lemma. By Lemma 12.3 and Lemma 12.4,
there are relations

jc = pa+ qb with nonnegative integers j, p, q and j > 0

Ja = Pb+Qc with nonnegative integers J, P,Q and J > 0 and P > 0

Dividing by c we have

j = p(a/c) + q(b/c)

−Q = −J(a/c) + P (b/c)

Case 1, q 6= 0. The equations can be solved for (a/c) and (b/c), provided the
determinant pP + Jq 6= 0. Since q 6= 0 and J 6= 0, and p ≥ 0 and q ≥ 0, the
determinant is not zero.

Case 2, q = 0. Then a/c = j/p is rational by the first equation, and b/c is
rational by the second equation, since P 6= 0.

That completes the proof of the theorem.

12.2. The Diophantine equation c2 = a2 + b2 + ab. Let (a, b, c) be the sides of
a triangle with angles (α, β, 2π/3). According to the law of cosines, we have

c2 = a2 + b2 − 2ab cos(2π/3)

= a2 + b2 + ab since cos(2π/3) = −1/2

Therefore this Diophantine equation determines the possible rational triangles with
a 2π/3 angle.

Lemma 12.6. Suppose c2 = a2+b2+ab, and (a, b, c) are integers with no common
factor. Then (a, b, c) are pairwise relatively prime.

Proof. If prime p divides any two of (a, b, c) then it also divides the third one.

Lemma 12.7. Suppose (a, b, c) are integers with no common factor that are the
sides of a triangle with angles (α, β, 2π/3). Then 2b+ a is relatively prime to each
of a, b, and c, except that if a is even, 2 divides both a and 2b+ a.

Proof. By Lemma 12.6, 2b + a is relatively prime to b and a, with the exception
mentioned in the statement. It remains to prove 2b + a is relatively prime to c.
Suppose, for proof by contradiction, that p is a prime that divides both c and 2b+a.
Then p is not 2, since then c and a would both be even, contradicting Lemma 12.6.

Suppose, for proof by contradiction, that p = 3. Then mod 3 we have 2b+a ≡ 0.
Adding b to both sides we have 3b + a ≡ b. But 3b ≡ 0, so a ≡ b. Now c =
a2 + b2 + ab = (a + b)2 − ab ≡ a2 mod 3, since a ≡ b. Since p|c we have p|a2 and
hence p|a. Hence a and b are both divisible by 3, contradiction, since (a, b) are
relatively prime. Hence p 6= 3.

Then we have, mod p,

c ≡ 0

c2 ≡ a2 + b2 + ab

2b+ a ≡ 0

Substituting c = 0 in the last two equations we have

0 ≡ a2 + b2 + ab(17)

2b+ a ≡ 0(18)
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From the second equation we have a ≡ −2b. Since a and b are relatively prime,
and p 6= 2, this implies that neither a nor b is divisible by p. Substituting a = −2b
in (17), we have

0 ≡ 4b2 + b2 − 2b2

≡ 3b2

0 ≡ b2 since p 6= 3

0 ≡ b

Then a ≡ −2b ≡ 0. Hence p divides both a and b, contradiction, since a and b are
relatively prime. That completes the proof of the lemma.

Remark. Using the techniques of [3], Corollary 6.3.15, p. 353, we are able to
parametrize the solutions of c2 = a2 + b2 + ab by two integer parameters (s, t) or
one rational parameter s/t. Having worked this out, and used it in preliminary
versions, in the end I found simpler proofs without it. Nevertheless I mention the
reference in case it may be useful to somebody.

12.3. The area equation for an isosceles tiling with γ = 2π/3.

Lemma 12.8. Let isosceles triangle ABC with base angles α be N -tiled by a tile
with angles (α, β, 2π/3). Suppose α is not a rational multiple of π. Let X be the
length of the equal sides AB and BC, and Y the length of the base AC. Then the
area equation is

X2(2b+ a) = Nbc2

and another form of the area equation is

XY = Nbc

Proof. By the law of cosines,

a2 = b2 + c2 − 2bc cosα

cosα =
b2 + c2 − a2

2bc

=
b2 + (a2 + b2 + ab)− a2

2bc

=
2b2 + ab

2bc

cosα =
2b+ a

2c
(19)

Twice the area of ABC is X2 sin(π− 2α) = X2 sin 2α. Twice the area of the tile
is bc sinα. Equating the area of ABC to N times the area of the tile, we have

X2 sin 2α = Nbc sinα

2X2 sinα cosα = Nbc sinα

2X2 cosα = Nbc

Substituting for cosα the value from (19),

2X2

(

2b+ a

2c

)

= Nbc

X2(2b+ a) = Nbc2
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That completes the proof of the first formula of the lemma.

To prove the second form: twice the area of ABC is XY sinα. Twice the area of
the tile is bc sinα. Therefore XY = Nbc. That completes the proof of the lemma.

12.4. A necessary condition.

Lemma 12.9. Let isosceles triangle ABC with base angles α be N -tiled by a tile
with angles (α, β, 2π/3) and sides (a, b, c). Suppose α is not a rational multiple of
π. Then

(i) 2b+ a divides N , and Nb/(2b+ a) is a square, say m2.

(ii) The side and base of ABC are given by

X = mc

Y = m(2b+ a)

Remarks. This lemma gives us an a priori bound on (a, b, c), namely 2N , since
c2 = a2 + b2 + ab ≤ (a+ b)2 ≤ (2b+ a)2 ≤ (2N)2. Also, if N is prime, N = 2b+ a,
and b = m2. It is unknown if this actually can happen.

Proof. LetX be the length of the equal sidesAB andBC. According to Lemma 12.8,

X2(2b+ a) = Nbc2.

By Lemma 12.6, a, b, and c are pairwise relatively prime. By Lemma 12.7, if a is
odd, then 2b+a is relatively prime to each of a, b, and c. On the other hand, if a is
even, then b and c are odd, so 2b+ a is relatively prime to c and b. Thus, whatever
the parity of a, 2b + a is relatively prime to b and c. Then by the area equation,
2b+ a divides N .

According to the area equation,
(

X

c

)2

=

(

Nb

2b+ a

)

Therefore Nb/(2b+a) is a rational square, and since it is an integer, it is an integer
square, say m2. That completes the proof of part (i).

Ad (ii). Since X/c and m are positive and have equal squares, they are equal,
so X = cm as claimed. We compute Y :

cosα =
b2 + c2 − a2

2bc
by the law of cosines

=
2b2 + ab

2bc
since c2 = a2 + b2 + ab

=
2b+ a

2c
Y = 2X cosα where X = |AB|

=
X

c
(2b+ a)

By part (i), c divides X , so the right-hand side is an integer. That completes the
proof of the lemma.

Example 1. In the tiling whose construction begins with Fig. 19, we have N =
75140, (a, b, c) = (3, 5, 7), so 2b + a = 13, and Nb/(2b + a) = 1702, so m = 170,
X = mc = 1190, and Y = m(2b+ a) = 2210.
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Example 2. With N = 33, (a, b, c) = (5, 3, 7), 2b + a = 11, Nb/(2b + a) = 15,
m = 3, X = mc = 21, and Y = m(2b + a) = 33. We think that no such tiling
exists, although the present lemma does not rule it out. In principle one can “just
check all the possibilities”, but that is easier said than done.

Example 3. With N = 37, (a, b, c) = (5, 16, 19), 2b+ a = 37, Nb/(2b+ a) = 16,
m = 4, X = mc = 76, and Y = m(2b + a) = 148. See Fig. 20. We prove in
Theorem 12.11 that no such tiling exists. The method of proof does not depend on
37 being prime and does not extend to N = 71.

12.5. Ruling out small values of N .

Theorem 12.10. If there is an N -tiling of some isosceles triangle ABC with base
angles α by a tile with angles (α, β, 2π/3), then N is at least 33. If N ≤ 200 then
N is one of the values shown in Table 4, and the side and base of ABC must be as
given in the table.

Table 4. N < 200 and (a, b, c) not ruled out by Lemma 12.9.

N (a, b, c) (X,Y )
33 (5, 3, 7) (21, 33)
37 (5, 16, 19) (76, 148)
46 (7, 8, 13) (52, 92)
65 (3, 5, 7) (35, 65)
71 (39, 16, 49) (196, 284)
74 (56, 9, 61) (183, 222)

130 (16, 5, 19) (95, 130)
132 (5, 3, 7) (42, 66)
148 (5, 16, 19) (152, 296)
154 (8, 7, 13) (91, 154)
184 (7, 8, 13) (104, 184)
193 (143, 25, 157) (785, 965)

Remarks. We do not suggest that tilings for N in the table do, or do not, exist,
only that they are not ruled out by the simple considerations of area and boundary
tiling.

The prime numbers 37, 71, and 193 are not ruled out immediately, and two of
those are congruent to 3 mod 4. Hence the possibility of N prime for this kind of
tiling is not ruled out by the area equation and boundary-tiling conditions; but at
least the cases 7, 11, 19 are eliminated, which is required for a proof that there are
no N -tilings of any triangle for those values of N .

Actually, we are able to rule out N = 37; see Theorem 12.11 below. But the
argument is special to N = 37, and does not appear to have anything to do with
the primality of 37.

Proof. Let the positive integer N be given, and suppose there is an N -tiling of
some isosceles ABC by a tile (α, β, 2π/3). By Theorem 12.5, the tile is rational, so
we may suppose its sides are integers (a, b, c) with no common divisor. According
to Lemma 12.9, 2b + a divides N (so a and b are at most N), and Nb/(2b+ a) is
a square, say m2. Then, since the tile has a 2π/3 angle, c is determined by the



TILINGS OF AN ISOSCELES TRIANGLE 55

equation c2 = a2 + b2 + ab. If c is not an integer, then we do not consider (a, b, c)
further. Also if (a, b, c) is not a triangle, because the sum of two of its sides is less
than the third, we do not consider it further. Table 4 was computed by running
this algorithm for N ≤ 200. There are no entries for N < 33. That completes the
proof of the theorem.

We note that it would be a waste of time to compute the length of the base
Y and reject (a, b, c) in case Y is not an integer, because Y always has to be an
integer m(a+2b), by Lemma 12.9. Similarly, it would be a waste of time to look for
possible boundary tilings in the hope of rejecting some tiles, since by Lemma 12.9,
with m = X/3 we always have X = mc and Y = ma+ 2mb.

Theorem 12.11. There is no 37-tiling of an isosceles triangle with base angles α,
using a tile with γ = 2π/3.

Proof. By Theorem 12.10, the tile would have to be (a, b, c) = (5, 16, 19). Then
the area equation can be used to show that (X,Y ) = (76, 148). That makes the

altitude of ABC equal to 10
√
3 = 17.32. If there is a tiling, there must be a four

tiles at B, three of which have their β angles at B, and the other its α angle there.
Number those tiles 1 to 4 starting from AB and ending at BC. Renaming A and
C if necessary, we may assume that the α angle at B belongs to Tile 1 or Tile 2, so
Tile 3 and Tile 4 have their β angle at B. Those two tiles each have a c edge. The
case when Tile 4 has its c edge in the interior is shown in Fig. 20. In that position,

Figure 20. The tile is inside ABC, but just barely.

b
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b
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b
B

b

b

a tile barely fits into triangle ABC, and its eastern b edge cannot be matched by
another tile’s b edge, for that tile would not be inside ABC. Nor can tiles be laid
there with a edges; so this case is impossible. Therefore Tile 4 has its c edge on
BC, and shares its a edge with Tile 3. See Fig. 21.

Figure 21. No 37-tiling: Tile 4 with its c edge on the boundary.
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b

C

b
B

bb

b

b

Tile 3 cannot have its c edge on the west, as a c edge emanating from B at
that angle would extend past AC. (Its y-coordinate, with AC on the x-axis, would
be −0.866.) Therefore it has its c edge on the east, next to the a edge of Tile 4,
leaving an impossible situation, as a b or c edge will not fit inside ABC on the east
of Tile 3, nor will any number of a edges. That contradiction completes the proof.



56 MICHAEL BEESON

Remark. The next case of prime N to consider would be N = 71. It does not
seem fruitful to continue this game by hand; and in this paper, we abstain from
the attempt to establish non-existence results by computer search, because of the
difficulty of establishing the correctness of such results beyond a shadow of doubt.
It is true that we used a computer in Theorem 12.10, but only in the most trivial
way: a doubtful reader could easily replicate Table 4, perhaps even by hand.

12.6. Given N , find the possible tiles and ABC.

Theorem 12.12. Given N , we can efficiently compute a finite set ∆ of (a, b, c,X),
such that if there is an N -tiling of some isosceles triangle ABC with base angles
α by a tile with γ = 2π/3, then the tile is (a, b, c) and the side of ABC is X, for
some (a, b, c) in ∆.

Remark. Then by backtracking search, applied to each tile (a, b, c) and isosceles
triangle ABC with base angles α and sideX with (a, b, c,X) in ∆, we can determine
(in principle) if any N -tiling of any isosceles ABC exists. But we do not undertake
that in this paper; see the previous remark.

Proof. Let N be given. The algorithm given in the proof of Theorem 12.10 deter-
mines the possible tiles (a, b, c), in such a way that N/(2b+ 1) is a square, say m2.
Then X = mc must be the side of triangle ABC, if there is any N -tiling of isosceles
ABC by (a, b, c), and Y = m(2b+ a) is the base, by Lemma 12.9. That completes
the proof of the theorem.

13. Open problems

The methods and results of this paper leave us still unable to answer some
interesting questions. Here we list several. In the following, as elsewhere in this
paper, “isosceles” means “isosceles and not equilateral.”

(i) What is the smallest N such that some isosceles triangle with base angles
α can be N -tiled by a tile of the form γ = 2α? The smallest such tiling so far
explicitly constructed has 1125 tiles, but for all we know there is a 45-tiling. In
fact, we do not even know the smallest N such that some isosceles triangle can be
tiled by the tile with sides (4, 5, 6) (which is the tile used in the 1125-tiling).

(ii) Is it possible to N -tile some isosceles triangle with N a prime number, when
the tile has γ = 2π/3? If it is possible, N has to be at least 71. (For right-angled
tiles, it is possible when N is congruent to 1 mod 4, but not when N is congruent
to 3 mod 4; when γ = 2α it is never possible.)

(iii) Find easily checkable necessary and sufficient conditions on N for the exis-
tence of N -tilings of some isosceles ABC with γ = 2α or γ = 2π/3. Or, determine
the existence or non-existence of such tilings, one N at a time, using exhaustive
computer search. You can use Table 4 for your initial test data.

14. Conclusions

We have studied the possible tilings of an isosceles (and not equilateral) triangle
ABC by a tile that is a right triangle, or by a tile of the form (α, β, 2α) where the
base angles of ABC are equal to α. In the case of a tile (α, β, 2α), we derived a
necessary condition from the area equation, and we made use of directed graphs
inspired by Laczkovich to prove that the tile is necessarily rational.
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We analyzed the case of a right-angled tile thoroughly enough to give a complete
characterization of the possible values of N for which some isosceles ABC can be
N -tiled. Namely, Theorem 7.8 says N is twice a square or twice an even sum of
squares, except of course for the right isosceles triangle, which can be quadratically
N -tiled for any square N , including odd squares.

In the case of a tile with γ = 2α, we gave a necessary condition, using the area
equation and the law of cosines for the tile. That this necessary condition is not
trivial is shown by our proof that N cannot be prime. N = 45 is the least number
for which we do not know whether a tiling exists, and 1125 is the smallest N for
which we are certain that there does exist a tiling.

Finally, in the case of a tile with γ = 2π/3, we gave a necessary condition and
an algorithm to check it. There are no such tilings for N < 33. There is one for
N = 75140. Between those two values of N , there are many values of N satisfying
our necessary conditions, for which we do not know whether tilings exist.

In all the possible cases of Laczkovich’s tables, we have been able to show (either
in this paper or in unpublished work) that given N , there is a finite set ∆ of tiles
(a, b, c) and triangles ABC such that either there is no N -tiling falling under that
line of the table, or one of the finite set permits an N -tiling. Hence, there is (in
principle) an algorithm, albeit inefficient, for determining if there is an N -tiling.
The inefficiency arises from the exponentially large number of ways of trying to
place N tiles of a specific shape into a specific ABC.

See the previous section for a list of open problems.

15. Appendix: Tilings found by Bryce Herdt

In 2024, Bryce Herdt found several new tilings with tiles (4, 5, 6) (for which
γ = 2α) and (3, 5, 7) (for which γ = 2π/3). These tilings dramatically lowered
the N for the “smallest known tiling”, both of isosceles triangles and of equilateral
triangles. Here we exhibit Herdt’s tilings.

Consider Fig. 11. The calculations after that figure give the number of tiles
required on each edge in that figure. All those numbers are divisible by 6, except
m = 869. Therefore, if we shrink the diagram by a (linear) factor of 6, we can still
tile all the triangles in the figure with (4, 5, 6), and the yellow parallelogram will
be 869 by 480 (since it was 576 · 5, after shrinking it is 576 · 5/6 = 480. That 869
by 480 parallelogram cannot be tiled with tiles all in the same orientation. But, as
Herdt pointed out to me (in 2024), often a parallelogram can be divided into two
smaller parallelograms, which can be tiled with tiles in different orientations. Fig. 22
illustrates the technique. In the case at hand, 869 = 425+444 = 85b+74c, while 480
is divisible by b and c (5 and 6). The final value of N will be 6028020/62 = 167445.
That is, unfortunately, still too large to draw in a space smaller than several meters.

Figure 22. Decomposing a parallelogram with top pc+ qb and side bc
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Starting from a different dissection of the triangle into triangles and parallelo-
grams, Herdt was able to construct the 1125-tiling shown in Fig. 23. Observe how
the parallelogram-dissection technique has been applied twice, in both the lower
left and the lower right corners of the tiling.

Figure 23. Herdt’s 1125-tiling by (4, 5, 6)

Dissecting ABC into similar triangles and parallelograms in a different way,
Herdt was able to reduce N still further, to 720, as shown in Fig. 24.

Figure 24. Herdt’s 720-tiling by (4, 5, 6)

Herdt also found new tilings with the tile (3, 5, 7), which has γ = 2π/3. He
began by finding a 1215-tiling of an equilateral triangle of side 135; this was also
done by his technique of decomposing parallelograms, starting with a known 10935-
tiling. Then he flanked that equilateral triangle by two triangles similar to (3, 5, 7),
producing the tiling shown in Fig. 25. Here N = 1215 + 2 · 272 = 2673. This is
presently the smallest known tiling of an isosceles triangle by a tile with γ = 2π/3.
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Figure 25. Herdt’s 2673-tiling by (3, 5, 7). Here γ = 2π/3.
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