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9.2 Böhme and Tomi’s structure theorem . . . . . . . . . . . . . . . 96
9.3 Tomi’s Finiteness Theorem . . . . . . . . . . . . . . . . . . . . . 97



Chapter 1

Introduction

These lectures contain some of the fundamental results needed to read papers on
minimal surfaces. I have attempted to make them as self-contained as possible,
rather than just a list of references to books containing these results. The title
doesn’t mention the word “Introduction”, although the background assumed
here is only calculus and the most elementary parts of the theory of functions of
a complex variable. The necessary differential geometry and theory of harmonic
functions is introduced and proved. However, a true introduction to minimal
surfaces would involve more pictures of examples, and discussion of other results
not presented here. For such books, see the list of references. These lectures
have a different purpose: to supply proofs that don’t constantly refer you to
some other place for the details. At present that aim has not been completely
achieved; for example Lichtenstein’s theorem is not completely proved here.

The first chapters accompanied lectures given at San José in November 2001.
Later chapters were added in July, 2007, including the unpublished material
from [2]. The bibliography lists a few reference books on the subject. There are
many more, which explore different aspects of the theory of minimal surfaces.

1.1 Notation and Basic Concepts

The open unit disk is D; the closed unit disk is D̄; the unit circle is S1.

Cn means possessing n continuous derivatives. C0 means continuous.

Surfaces of disk type are given by maps u : D̄ 7→ R3. We will suppose they
are at least C3 in D and C1 on the boundary. Partial derivatives will be denoted
by subscripts ux and uy. A surface is regular at a point (x, y) in D if the tangent
plane is well-defined there, i.e. ux and uy have nonzero cross product. Surfaces
are required to be regular except at isolated points. A “regular point” of u is
a point where u is regular. Another way of expressing regularity is that the
Jacobian matrix ∇u = 〈ux, uy〉 has maximal rank two.

A Jordan curve is a continuous one-one map Γ from S1 intoR3. A reparametriza-
tion of Γ is another Jordan curve of the form Γ ◦ φ, where φ is a one-one map
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6 CHAPTER 1. INTRODUCTION

of S1 into S1.
A surface u is said to be bounded by Γ in case u restricted to S1 is a

reparametrization of Γ.
Plateau’s Problem is this: Given a Jordan curve Γ, find a surface of least

area bounded by Γ.
The space of all vectors in R3 which are tangent to the surface u at a regular

point (x, y) is a vector space Tp, called the tangent space. A basis for the space
is formed by ux and uy.

The unit normal N = N(x, y) at p is given by

N =
ux × uy
|ux × uy|

We claim that Nx and Ny are tangent vectors. Proof : N · N = 1. Dif-
ferentiating, we have N · Nx = 0 and N · Ny = 0, so Nx and Ny are tangent
vectors.

1.2 Weingarten map and fundamental forms

In this section, we fix a point (x, y) at which u is regular, i.e. ux × uy does not
vanish. We have assumed that non-regular points of a surface are isolated, by
definition.

The Weingarten map S = S(x, y) is a linear map of Tp into itself, defined as
follows: If v = v1ux + v2uy then

Sv = −v1Nx − v2Ny = −viNi

where the repeated subscript implies summation, and vi means vi, but consid-
ered as a column vector (“contravariant”). (We always sum one raised index
times one lowered index.) The letter S is used because this is also known as
the “shape operator”. In this section we write ui for the derivative of u with
respect to xi, risking confusion with the components of u, but avoiding double
subscripts as in uxi

.

Lemma 1 The Weingarten map is self-adjoint. That means Sv · w = v · Sw.
Proof : Differentiate N · ui = 0 with respect to xj . We get

Nj · ui +N · uij = 0.

Therefore
Ni · uj = Nj · ui

since both are equal to N · uij . Hence
Sv · w = −Niv

i · ujwj

= −Ni · ujviwj

= −ui ·Njv
iwj

= −uivi ·Njw
j

= v · Sw
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That completes the proof of the lemma.
Thus we can define the following three symmetric bilinear forms:

I(v, w) := v · w
II(v, w) := Sv · w
III(v, w) := Sv · Sw

These are called the first fundamental form, second fundamental form, and third
fundamental form of u.

There are several systems of notation for the coefficients of the fundamental
forms. We have

gij := ui · uj
bij := −Ni · uj
cij := Ni ·Nj

Thus the bij are the entries in the matrix of the shape operator; that is why
they are defined with a minus sign. Since N · uj = 0, by differentiating we have
Ni · uj +N · uij = 0, so

bij = uij ·N
In some books this is taken as the definition of bij , and then the fact that the
bij are the coefficients of the shape operator is a lemma, instead of the other
way around as here.

Remember bij = bji = N · uij , and of course gij = gji.
The older (nineteenth-century) notation uses E,F,G, L,M, and N, defined

by

G :=

[

g11 g12
g21 g22

]

=

[

E F
F G

]

B :=

[

b11 b12
b21 b22

]

=

[

L M

M N

]

Hopefully, when you see this notation (in old books), you won’t confuse N with
the unit normal. Here we have used a different font to make the distinction. We
have

W =
√
g =

√

EG− F 2 =
√

det(gij)

We define gij to be the coefficients of the inverse of G, so

[

g11 g12

g21 g22

]

=
1

W 2

[

G − F
−F E

]

The Weingarten equations tell how to compute Nx and Ny in terms of ux
and uy:

Ni = −bjiuj



8 CHAPTER 1. INTRODUCTION

where bji = bikg
kj , and as usual repeated indices imply summation. To find this

formula for the bji , first write, with unknown coefficients aji , Ni = ajiuj . Now
take the dot product with uk:

Ni · uk = ajiuj · uk

That is,

−bik = ajigjk

Now we can solve for the aji by using the inverse matrix of G:

ajigjkg
kp = aji δ

p
j

= api
= −bikgkp

This is the formula for the coefficients in the Weingarten equations.

1.3 Mean Curvature and Gauss Curvature

The geometric meaning of the second fundamental form can best be seen by
finding an orthonormal basis in which the Weingarten map S is diagonal. Let
κ1 and κ2 be the eigenvalues of the matrix of S. Since S is self-adjoint, standard
linear algebra tells us that it can be diagonalized, and that the eigenvalues are
the minimum and maximum of the Rayleigh quotient II(v, v)/I(v, v). Let p and
q form a basis in which S is diagonal. If κ1 6= κ2 then p and q are automatically
orthogonal, since κ1p · q = Sp · q = p · Sq = κ2p · q. If κ1 = κ2, however, then
any orthogonal unit vectors p and q will do.1

Thinking geometrically instead of algebraically, we write ∇pN = κ1p instead
of the equivalent S(p) = κ1p. The values κ1 and κ2 are called the principal
curvatures of the surface u at the point (x, y). We will next explain the reason
for this terminology, but we must first review the basic facts about space curves.

A continuous, locally one-to-one map from an interval to R3 is called a
space curve, or just a curve. A reparametrization of such a curve is of the form
η(t) = γ(φ(t)) for some monotonic function φ. (The interval of definition of
the reparametrized curve may be different.) If γ is a C2 space curve, it has
an arc length parametrization in which the parameter t equals the arc length
∫ t

0 |γt(ξ)|2 dξ. Let T (t) be the unit tangent to γ(t) in such a parametrization.
Then the curvature of γ is defined to be |Tt|.

Now to explain the connection between curvature and the Weingarten map
(or shape operator). Consider planes passing through P = u(x, y) whose normal
at P lies in the tangent space, i.e. planes which contain the unit normalN . Each

1This proof is non-constructive, and the consequence is that it does not show that p and
q can be chosen to depend continuously on the point in the parameter domain, near a point
where κ1 = κ2.
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such plane intersects the surface u (technically, the range of u) in a curve. If
the plane’s normal is cos θp + sin θq then the curvature of the curve turns out
to be (as a calculation shows)

κ(θ) = cos2 θκ1 + sin2 θκ2.

Averaging over all angles θ between 0 and 2π we find that the average curvature
of such curves is (κ1 + κ2)/2. Accordingly this quantity is called the mean
curvature of u at (x, y). It is always denoted by H :

H =
κ1 + κ2

2
.

The Gauss curvature K is defined to be κ1κ2. Note that H and K are the
two elementary symmetric functions of κ1 and κ2.

We define W := |ux × uy|. We have

W =
√

|ux|2|uy|2 − |ux · uy|2.

The area element is Wdxdy and the area is given by

A[u] =

∫

D

W dxdy.

The formulas in this section apply to any surface at any regular point. They
are basic to the subject of differential geometry, rather than being specific to
minimal surfaces. They are necessary to connect the variation of area with
curvature, which is basic to the theory of minimal surfaces.

Recall that the principal curvatures κ1 and κ2 are the eigenvalues of S. In
the eigenvalue equation Sv = κv, write v = viui, and w = wjuj, and write out
the equation Sv · w = κv · w as follows:

Sv = bijv
j by definition of bij

Sv · w = −bijvjwi

= bijv
iwj since bij = bji

= κv · w
= κgijv

iwj

Since this is true for all w = (w1, w2), we have

bijv
i = κgijv

i.

Thus the eigenvalue equation is

Bv = κGv

(reading v = (v1, v2) as a column vector). Thus, κ1 and κ2 are the roots of

det(B − κG) =

[

b11 − κg11 b12 − κg12
b21 − κg21 b22 − κg22

]

= det(gij)κ
2 − (b11g22 + b22g11 − b12g21 − b21g12)κ+ det(bij)

= det(gij)
[

κ2 − (κ1 + κ2)κ+ κ1κ2
]
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Comparing coefficients of the powers of κ, we obtain

K = κ1κ2 =
detB

detG
= detG−1B = det bji

2H = κ1 + κ2 = bijg
ij

Since gij = gji, this last expression is equal to trace(G−1B), and can also be
written as b11 + b22, so K and 2H are respectively the determinant and trace of
the matrix bji = gikbkj . Since we already worked out the Weingarten equations

for bji and the formula for the coefficients of G−1, we are finished. The final
results are

K = det gikbkj

2H = gijbij

Expressing these equations in nineteenth-century notation we have

2H =
LG+ NE − 2MF

2W 2

K =
LN−M

2

W 2

The Gauss map is the unit normal, considered as a map from D to the
sphere S2. The determinant of the Jacobian of this map is K, so the area
element is K dxdy. The “Gaussian area” of a surface is

∫

KWdxdy, the area
of its “Gaussian image” on the sphere, counting multiplicities. The Gauss map
plays an important role in the theory of minimal surfaces.

1.4 The definition of minimal surface

Surfaces as well as Jordan curves can be reparametrized; if ϕ is a C3 diffeomor-
phism of D we define u ◦ ϕ to be a reparametrization of the surface u. It is an
exercise in calculus to show that A[u ◦ ϕ] = A[u].

A critical point of the functional A is a surface u such that the Frechet
derivative DA[u] is zero. In less fancy language, this means the following. Let
ϕ be any function from D̄ to R, vanishing on S1, C3 in D and C1 in the
closed unit disk D̄. Consider ut = u + tϕN . This is called a normal variation.
The parameter t is written as a superscript because we we use subscripts for
differentiation. The first variation of area in direction ϕ is defined to be

DA[u](ϕ) = (d/dt)A[ut]|t=0.

Then u is a critical point of A if and only if DA[u](ϕ) = 0 for all ϕ satisfying
the conditions mentioned. The terminology “stationary point” is also used to
mean the same as “critical point”.2

2To use the Frechet derivative we technically need to specify a function space, and prove
that the area functional is Frechet-differentiable on that space. We have not done that here,
but the reader worried about it can just use the words “first variation of area” instead of
“Frechet derivative” for DA[u]. Because we are about to derive a simple formula for this first
variation, the exact function space we use does not matter much.
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A surface of least area bounded by Γ would be a critical point of A, but not
necessarily conversely. There could be relative minima of area which are not
absolute minima of area. There can also be “unstable” critical points of area
which are not even relative minima.

We now come to the first theorem in the subject of minimal surfaces.

Theorem 1 The surface u is a critical point of A if and only if its mean cur-
vature H is identically zero.

Proof. The proof depends on the following formula for the first variation of area:

DA[u](ϕ) = 2

∫

D

HWϕdxdy

Once we have established this formula, the result follows from the so-called “fun-
damental lemma of the calculus of variations, which says that if f is continuous
and

∫

D
f(x, y)ϕ(x, y) dx dy = 0 for all ϕ vanishing on S1 and C3 in D, then

f(x, y) is identically zero. This lemma is itself easy to prove: if f is nonzero at
(x, y) in D, say f(x, y) > 0, then by continuity there is a neighborhood of (x, y)
in which f is positive; and we can choose ϕ to be positive in that region and
vanish outside it (it takes some argument to do this in a C3 way, but it isn’t
deep), but this leads immediately to a contradiction. So the proof boils down
to proving the stated formula for the first variation.

Let ϕ vanish on S1 and be C3 in D̄. Define

ũ = u+ tϕN.

Then

A[ũ] =

∫

D

√

ẼG̃− F̃ 2 dxdy

and we have, neglecting terms which are O(t2),

Ẽ = ũ2x

= (ux + tϕxN + tϕNx)
2

= u2x + 2tϕNxux

= u2x + 2tϕb11

Similarly

G̃ = ũ2y

= u2y + 2tϕb22

Then

ẼG̃ = EG+ tϕ[u2xb22 + u2yb11]

= EG+ tϕ[g11b22 + g22b11]
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We have

F̃ = ũx · ũy
= (ux + tϕxN + tϕNx) · (uy + tϕyN + tϕNy)

= F + tϕ(Nxuy +Nyux)

= F + tϕ(b12 + b21)

F̃ 2 = F 2 + 2tϕ[g12b12 + g21b21]

Thus

ẼG̃− F̃ 2 = EG− F 2 + 2tϕ[g11b22 + g22b11 − g12b12 + g21b21]

= EG− F 2 + 2tϕW 2gijbij

in view of the formula for the gij . But now we recognize the formula for the
mean curvature which we calculated using the Weingarten equations! Namely,
2H = gijbij . Thus

ẼG̃− F̃ 2 = EG− F 2 + 4tϕW 2H

We have thus proved, remembering W 2 = EG− F 2, that

A[ũ] =

∫

D

√

W 2(1 + 4tϕH) dx dy +O(t2)

=

∫

D

W [1 + tϕH ] dx dy +O(t2)

=

∫

D

W dxdy + 2t

∫

D

HW dxdy +O(t2)

It follows that

DA[u](ϕ) =

∫

D

ϕ2HW dxdy

That was the formula for the first variation stated above; now that we have
derived it, the proof is complete.

Definition 1 u is called a minimal surface if it has zero mean curvature.

1.5 Non-parametric minimal surfaces

The surfaces we have defined are sometimes called parametric surfaces, because
they are given by a vector function u of parameters x, y in D. By contrast, a sur-
face given by a scalar function Z = f(x, y) is said to be in non-parametric form.
Of course, every surface in non-parametric form can be given parametrically by
the vector function (x, y, f(x, y)), but not conversely.3

3When dealing with parametric surfaces, we use lower-case variables in the parameter
domain, e.g. z = x + iy, and upper-case variables for the coordinates X,Y , and Z in R3.
When dealing with non-parametric surfaces, we usually use lower-case x and y in place of X
and Y , and either z or Z for the third coordinate.
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We now consider surfaces given by z = f(x, y) where (x, y) ranges over some
open set Ω in the plane, usually bounded by a Jordan curve. One can calculate
the mean curvature of such a surface, using the explicit formulas for H for
parametric surfaces, and the parametrization (x, y, f(x, y)). One finds

H =
(1 + f2

y )fxx − 2fxfyfxy + (1 + f2
x)fyy

W 2

where
W 2 = 1 + f2

x + f2
y .

Therefore, the equation for the surface to be minimal is

(1 + f2
y )fxx − 2fxfyfxy + (1 + f2

x)fyy = 0.

This is the non-parametric minimal surface equation. It is nonlinear and elliptic
(for those who know something about differential equations).

Alternately, one can derive this equation by considering the first variation
of area among non-parametric surfaces. We have AΩ =

∫

W dxdy. Considering
the variation in the direction ϕ, where ϕ vanishes on the boundary ∂Ω and is
C3 in Ω, and setting DA[f ](ϕ) = 0, we find after a calculation that

div

(∇f
W

)

= 0

which is another way to write the minimal surface equation.

1.6 Examples of minimal surfaces

Plane. The “trivial” minimal surface is a plane.

Catenoid. This is a surface obtained by rotating a catenoid around the z-axis:

r = α cosh

(

Z

α

)

Taking the parameter x to be Z/α, and y to be the polar angle often written as
θ, it can be parametrized by





α coshx cos y
−α coshx sin y
αx





with −∞ < x <∞ and 0 ≤ y < 2π.

Helicoid. This can be written in the form Z = αθ, where θ is a polar angle in
the XY -plane. Taking y = θ and r = sinhx, we have the parametrization





α sinhx sin y
α sinhx cos y
αy
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A portion of the helicoid can be written in non-parametric form as Z =
αcosh−1(rα), provided the domain Ω does not include the origin, where the
boundary values are not continuous and the gradient is not bounded.

Scherk’s (first) surface.

Z = ln
cos y

cosx

is defined on the square of side π centered at the origin, and on all “black
squares” of the infinite checkerboard containing that square as one of its black
squares. It is only defined on those squares since cos y and cosx must have the
same sign.

Enneper’s surface. We give this surface using polar coordinates in the parameter
domain, which can be any disk about the origin.

u(r, θ) =





r cos θ − 1
3r

3 cos 3θ
−r sin θ − 1

3r
3 sin 3θ

r2 cos 2θ





1.7 Calculus review

In this section we remind the reader of some results in two-dimensional vector
calculus. The reader is assumed to have studied vector calculus, which usually
includes both two and three dimensional calculus, but there is a gap between
completing the course and having all the formulas at your fingertips without
having to think about them. Here we concentrate on the two-dimensional for-
mulas.

Using subscript notation for differentiation we have

∇u = (ux, uy)

∇(u, v) = (ux, vy)

△u = uxx + uyy

= ∇2u when u is a scalar function

These operators can be applied either to a scalar function u or a vector function
u. When u is a scalar, ∇u is called the gradient of u, sometimes written grad
u. When u is a vector, ∇u is called the divergence of u, sometimes written div
u. Whether u is a vector or scalar, △u is called the Laplacian of u.

When u is a vector, we do not have △u= ∇2u. Indeed if u = (p, q) we have
△u = (pxx + pyy, qxx + qyy) while ∇2u = (pxx, qyy). In three dimensions we
have △u = ∇2u−∇× (∇× u), but this equation, the cause of many difficulties
in vector calculus, is not used in the theory of minimal surfaces, so we will not
even trouble to explain the meaning of ∇× u.

We assume that the reader knows what “continuous” and “differentiable”
mean. The unit circle S1 is {〈x, y〉 : x2 + y2 = 1}. Its interior is the unit disk
D. The closed unit disk D̄ is {〈x, y〉 : x2 + y2 ≤ 1}. A function is said to be
(of class) Ck on a set Ω if it has first, second, and up to k-th derivatives on
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Ω, and all those derivatives are continuous. Thus C1 means that the function
is differentiable and the derivative is continuous. In case the set is not open,
being differentiable at a boundary point does not imply that the function is
even defined off the set. For example, |x| is differentiable on [0, 1], but not on
[−1, 1]. As another example:

√
x is C1 in (0, 1) but not in [0, 1].

A Jordan curve is a continuous, one-to-one image of S1. A famous theorem
called the Jordan curve theorem says that a Jordan curve lying in a plane
divides its complement into two open sets, one bounded (the “interior”) and
one unbounded (the “exterior”). A plane domain is the interior of a C1 Jordan
curve.

One form of Green’s theorem says that if F is any vector function defined
in a plane domain Ω bounded by a C1 Jordan curve C, then

∫

C

F · n ds =
∫

Ω

∇F dA (1.1)

where the integral on the right is a two-dimensional integral, and on the left,
n is the outward normal to the boundary curve C. Sometimes one uses two
integral signs to indicate an area integral, probably because when one wishes
to evaluate such an integral, it is reduced to two one-dimensional integrations;
but we shall usually just use one integral sign, since the dA and the subscript
on the integral already contain the dimension information.

Applying this version of Green’s theorem to the vector function ∇u, when
u is a scalar function, we find

∫

C

∇u · n ds =
∫

Ω

△u dA

The integrand on the left, ∇u · n, is the outward normal derivative of u, often
written uν . With that notation, Green’s theorem takes the form

∫

C

uν ds =

∫

Ω

△u dA (1.2)

In the special case that the domain Ω is the unit disk D, we obtain

∫

S1

ur ds =

∫

D

△u dA (1.3)

There is a nice formula for the Laplacian of a product (derived using the chain
rule):

△(uv) = v△u+ 2∇u∇v + u△v
Applying (1.2) we have

∫

C

(uv)ν ds =

∫

Ω

△(uv)

∫

C

uvν + vuν ds =

∫

Ω

u△v + 2∇u∇v + v△u dA
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In fact this easily-remembered formula combines two copies of another form of
Green’s theorem:

∫

C

uvν ds =

∫

Ω

u△v +∇u∇v dA (1.4)

Mathematicians often refer to applications of Green’s theorem as “integra-
tion by parts”.

Green’s theorem for vector functions. Formula (1.4) is also valid for vector
functions u and v, if ∇u∇v is properly interpreted. Say u = (u1, u2, u3) and
v = (v1, v2, v3). Applying (1.4) to the components and adding, we get the
desired formula, provided that

∇u∇v =

3
∑

i=1

∇ui∇vi

It would be incorrect to interpret ∇u∇v any other way. Technically there is no
other way to interpret it, as there is no definition of a vector ∇u when u is a
vector.



Chapter 2

Harmonic Functions

Recall the definition of the Laplacian operator: △u := uxx + uyy. A function
is called harmonic if △u = 0. This lecture is devoted to deriving some basic
facts about harmonic functions, as these are indispensable tools in the study of
minimal surfaces. The real and imaginary parts of a complex-analytic function
are harmonic, since if f(z) = u + iv then the Cauchy-Riemann equations are
ux = vy and uy = −vx. Hence uxx + vyy = uyx − uxy = 0.

2.1 Complex differentials

It is often convenient to use complex differentials defined as follows, where z =
x+ iy:

∂

∂z
=

1

2

(

∂

∂x
− i

∂

∂y

)

∂

∂z̄
=

1

2

(

∂

∂x
+ i

∂

∂y

)

Any real-analytic of x and y can be written as a function of z and z̄ by replacing
x by 1

2 (z+z̄) and y by (z−z̄)/(2i) in a power series for the function. This extends
the function to a function of two complex variables. On the two-dimensional
subspace of C2 defined by requiring the variable z̄ to be the complex conjugate
of z, the extended function agrees with the original function.

We often write differentiation using a subscript; for example, uz instead of
∂u
∂z .

These complex differentials simplify many calculations. For example: The
Cauchy-Riemann equations for f are just fz̄ = 0. A function is analytic if it
depends only on z, not on z̄. We have

∂2u

∂z∂z̄
=

1

4
△u

so a function u is harmonic if and only if uzz̄ = 0.

17
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Here is our first application of complex differentials:

Lemma 2 If u is harmonic, then there exists a conjugate harmonic function v
such that f(z) = u+iv is complex-analytic. The function uz is complex analytic
and fz = 2uz.

Proof. By hypothesis △u = uzz̄ = 0, so uz satisfies the Cauchy-Riemann
equations and hence is complex-analytic. Integrating it with respect to z we
define f(z) = 2

∫

uz dz, choosing the constant of integration so that f(z) agrees
with u(z) at some point z0. Then f is analytic. The real part of f is u since

Re

∫

uz dz = 2 Re

∫

1

2
(ux − i uy)(dx+ i dy)

=

∫

ux dx+ uy dy

=

∫

du

= u

The imaginary part of f is v.
When working with complex differentials, one must remember to treat z̄

and z as independent variables while differentiating. Only after finishing the
differentiations can we return to the submanifold of C2 where z̄ is the complex
conjugate of z. What if we want to apply complex differentials to functions that
are only assumed to be C2 rather than real-analytic? Is this legitimate? When
one asks this question one is usually told that the use of complex differentials
is just a formal device, abbreviating more complex expressions evaluating real
differentials. Of course this is correct for simple applications, such as the ones
above. But I have never seen a theorem about the use of complex differentials
formulated and proved. Of course the expression ∂/∂z can be replaced by
∂/∂x− i∂/∂y, but we usually also replace x by z− z̄ and y by (1/i)(z+ z̄). This
seems to assume that the formulas in which we make these replacements still
make sense for complex arguments, which is not true in general. So we must
be careful when using complex differentials that one of these two justifications
applies.

The following relations between complex differentials and polar coordinates
are often useful.

z = reiθ

dz

z
=

dr

r
+ i dθ

dz = eiθ dr + ireiθ dθ

dθ =
dz

iz
when integrating on S1

dz = ieiθdθ when integrating on S1
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We have rz =
√
zz̄z = z̄/(2r) = e−iθ/2 and θz is calculated as follows:

iθ = log(z/r)

= log z − log r

iθz = 1/z − rz/r

= 1/z − z̄/(2r2)

= 1/z − 1/(2z)

= 1/(2z)

θz = −i/(2z)

= − ie
−iθ

2r

Similarly rz̄ = eiθ/2 and θz̄ = i(log r)z̄ = irz̄/r = ieiθ/(2r).
Converting complex derivatives to polar coordinates is done as follows:

uz = urrz + uθθz

=
1

2
ure

−iθ − ie−iθ

2r
uθ

uz̄ = ur
z

2r
− uθθz̄

=
1

2
ure

iθ +
ieiθ

2r
uθ

We illustrate the use of these techniques by calculating △u in polar coordinates:

1

4
△u = uzz̄

=

(

ur
z̄

2r
− uθ

i

2z

)

z̄

= urz̄
z̄

2r
+ ur

(

z̄

2r

)

z̄

− uθz̄
i

2z

= urz̄
z̄

2r
+ ur

2r − 2z̄rz̄
4r2

− uθz̄
i

2z

= urz̄
z̄

2r
+ ur

2r − 2re−iθeiθ/2

4r2
− uθz̄

i

2z

= urz̄
z̄

2r
+ ur

2r − r

4r2
− uθz̄

i

2z

= urz̄
z̄

2r
+
ur
4r

− uθz̄
i

2z

=

(

1

2
urre

iθ − ieiθ

2r
urθ

)

z̄

2r
+

1

4r
ur − uθz̄

i

2z

=
1

4
urr +

ieiθ z̄

4r2
urθ +

1

4r
ur −

i

2z

(

1

2
uθre

iθ − ieiθ

2r
uθθ

)

=
1

4
urr +

1

4r
ur +

1

4r2
uθθ
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Note the miraculous cancelation of the urθ terms. Multiplying by 4 we obtain
our final result,

△u = urr +
1

r
ur +

1

r2
uθθ.

2.2 The Poisson integral

The boundary-value problem for the Laplacian is this: given continuous bound-
ary values f on S1, find a continuous function u : D̄ 7→ R such that u restricted
to S1 is f and u is harmonic in the interior.

The solution of this boundary-value problem is given by Poisson’s integral,

u(z) = Ψ[f ] =

∫ 2π

0

f(eiϕ)P (z, ϕ) dϕ

where P (z, ϕ) is the Poisson kernel, given as follows, with ζ = eiϕ and z = reiθ:

P (z, ϕ) =
1

2π
Re

ζ + z

ζ − z

=
1

2π
Re

1 + rei(θ−ϕ)

1− rei(θ−ϕ)

Multiplying the integrand’s numerator and denominator by the complex conju-
gate of the numerator and then simplifying, we obtain the following two forms
of the Poisson kernel:

P (z, ϕ) =
1

2π

1− r2

1− 2r cos(θ − ϕ) + r2

=
1

2π

1− r2

|ei cos(θ−ϕ) − r|2

While the Poisson formula is reminiscent of Cauchy’s formula for analytic func-
tions, it cannot be proved by simply resolving Cauchy’s formula into real and
imaginary parts. It can be proved in several ways, each of which casts light on
the situation. First, we observe that P (z, ϕ) (as a function of z) is harmonic
in the open disk D, since it is the real part of an analytic function. Hence if
we can differentiate under the integral sign in the definition of Ψ[f ], then u is
harmonic; that will be justified (for z in the open disk D) if f is bounded, for
example. Hence it only remains to show that Ψ[f ] does take on the boundary
values f . The following classical result is due to Schwartz:

Theorem 2 (Continuity of Poisson’s integral) Let f be a continuous func-
tion on S1, and let u be defined by the Poisson integral Ψ[ϕ] in the open disk
D, and let u(z) = f(z) on S1. Then u is continuous in the closed unit disk.

Proof. It suffices to establish the continuity by radial limits, i.e.

lim
r→1

u(reiθ) = f(eiθ)
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since if this is known, then we have

|u(reiϕ)− f(eiθ)| ≤ |u(reiϕ)− f(eiϕ)|+ |f(eiϕ)− f(eiθ)|

Given ǫ > 0, the first term can be made less than ǫ/2 by taking r near 1, if
we have radial-limit continuity, and the second term can be made less than ǫ/2
by the continuity of f . We proceed now to prove the radial-limit continuity.
Change the variable of integration in the Poisson integral from ϕ to ϕ+ θ; since
the integrand is periodic, we can leave the limits of integration unchanged.
Using the last form of the Poisson kernel derived above, we have

u(reiθ) =
1

2π

∫ π

−π

1− r2

|eiϕ − r|2 f(e
i(θ+ϕ)) dϕ

From the Poisson formula with constant boundary values 1, we have

1

2π

∫ π

−π

1− r2

|eiϕ − r|2 dϕ = 1.

Technically we haven’t yet established the validity of the Poisson formula even
for constant boundary values, so this formula should be independently derived.
That can be done by Cauchy’s residue theorem using the first form of the Poisson
kernel given above. Here are the details: The preceding integral is equal to

1

2π

∫ π

−π

Re
ζ + z

ζ − z
dϕ =

1

2π
Re

∫ π

−π

ζ + z

ζ − z
dϕ

=
1

2π
Re

∫

S1

(

ζ + z

ζ − z

)

dζ

iζ
since ζ = eiϕ

=
1

2π
Im

∫

S1

(ζ + z)

ζ(ζ − z)
dζ

=
1

4π
Im (2πi(1 + 1)) by Cauchy’s residue theorem

= 1 as claimed.

Hence

u(reiθ)− f(θ) =
1

2π

∫ π

−π

1− r2

|eiϕ − r|2 f(θϕ)[f(θ + φ) − f(θ)] dϕ.

Fix an ǫ > 0. Since f is continuous, there exists δ > 0 such that |f(φ)−f(θ)| < ǫ
when |φ − θ| < δ. Now we will estimate the boundary integral in three pieces:
one is the integral from −δ to δ, and the other two are from −π to −δ and from
δ to π. Thus

u(reiθ)− f(θ) = I1 + I2 + I3

where

I2 =
1

2π

∫ δ

−δ

1− r2

|2iϕ − r|2 f(θϕ)[f(θ + φ)− f(θ)] dϕ.
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and I1 and I3 differ only in the limits of integration. We have

I2 ≤ ǫ
1

2π

∫ δ

−δ

1− r2

|2iϕ − r|2 dϕ

≤ ǫ
1

2π

∫ π

−π

1− r2

|2iϕ − r|2 dϕ since the integrand is positive

≤ ǫ

Now to estimate I1 and I3. Let M be the maximum of |f | on S1, and observe
that for |φ| ≥ δ we have

|eiφ − r| = | cos(φ) + i sin(φ)− r|
≥ sin δ

since if |φ| ≥ π/2 then cos(φ) is negative (so the expression is at least |r and
otherwise sinφ ≥ sin δ.

I1 ≤ 1

2π
2M(1− r2)

∫ −δ

−π

1

|2iϕ − r|2 dϕ

≤ 1

2π
2M(1− r2)

∫ −δ

−π

∫ δ

−π

1

sin2 δ
dϕ

≤ 2M(1− r)

sin2 δ
.

Similarly I3 is bounded by the same quantity. Putting the three estimates
together we have

u(reiθ)− f(θ) ≤ ǫ+
4M

sin2 δ
(1− r)

and taking the limit as r → 1 we obtain the desired result.

2.3 The maximum principle

Theorem 3 (Maximum principle) A non-constant harmonic function can-
not have an interior maximum or minimum.

Proof. By the Poisson representation, a harmonic function’s value at a point is
the average of its values on any circle about that point.

The proof of the following useful theorem illustrates the typical use of the
Poisson representation and the maximum principle.

Theorem 4 Suppose a harmonic function u is bounded in a punctured disk.
Then the singularity is removable, i.e. there is a function harmonic in the
entire unit disk that agrees with u on the punctured disk.



2.4. POISSON’S FORMULA IN THE UPPER HALF-PLANE 23

Remark. The function log(1/r) is harmonic in the punctured disk, so the bound-
edness hypothesis is not superfluous.

Proof. Without loss of generality we can assume that the disk in question is
the unit disk D. Let P be the punctured disk D − {0}. Let f be the harmonic
extension of the boundary values of u; let r = |z|. For each ǫ > 0, define

φǫ(z) = u(z)− f(z) + ǫ log
(1

r

)

.

Then φǫ is harmonic in the punctured disk. As r → 1 we have φǫ → 0, by
Theorem 2. Because u is bounded, φǫ → ∞ as z → 0. By the maximum
principle, φǫ(z) ≥ −1/m in the punctured disk, for each m; hence φǫ(z) ≥ 0.
Now let ǫ→ 0; we find u(z)− f(z) ≥ 0 in the punctured disk. Now define

ψǫ(z) = u(z)− f(z)− ǫ log
(1

r

)

and repeat the argument with ψǫ in place of φǫ, and +1/m in place of −1/m.
We find u(z)− f(z) ≤ 0 in the punctured disk. Combining the two results we
have u(z) = f(z) in the punctured disk. That completes the proof.
Remark. Another interesting theorem (which we do not prove here) about the
boundary behavior of a harmonic function is this: if ϕ has a step discontinuity,
then its harmonic extension behaves like a helicoid asymptotically near the
discontinuity, i.e. it has radial limits along rays approaching the boundary
point.

2.4 Poisson’s formula in the upper half-plane

We can express the Poisson formula over the upper half plane H+, instead
of over the disk. That can be useful when we want to study the boundary
behavior of a minimal surface; then the boundary is parametrized along the
real axis instead of a circle. The only book in which I have seen this discussed
is [1], p. 145, where it is done for n dimensions instead of just n = 2. Here we
take a simpler, complex-variables approach.

Lemma 3 Let U be a function harmonic in the open upper half plane, contin-
uous in the closed upper half plane, and bounded at infinity. Let

K(x, z) = Im
1

x− z

Then for Im (z) > 0 we have

U(z) =
1

π

∫ ∞

−∞
U(x)K(x, z) dx.

Moreover if U is C0,µ on the real axis for some µ > 0, then the formula is valid
for real z too.
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Remark. Note that the constant in front of the integral is 1/π, not 1/2π. Axler’s
formula (op. cit.) is

K(x, z) = c2
y

|x− p|2 + q2

where z = p+ iq, and c2 is given (p. 144) as 2/nV (Bn) with n = 2, which works
out to 1/π, making our answer and Axler’s agree.

Proof. Let V (z) be the conjugate harmonic function of U , and let F (z) =
U(z) + iV (z), so F is complex analytic where U is harmonic. We first establish
the theorem in case F (z) = F (z̄). Then we have, for z in the upper half plane,
and R larger than |z|,

F (z) =
1

2πi

∫ R

−R

F (x)

x− z
dx+

1

2πi

∫ π

0

F (Reiθ)

Reiθ − z
Rieiθ dθ

by Cauchy’s integral formula. Since z̄ is in the lower half plane, we have

0 =
1

2πi

∫ R

−R

F (x)

x− z̄
dx+

1

2πi

∫ π

0

F (Reiθ)

Reiθ − z̄
Rieiθ dθ

Subtracting the two equations we get

F (z) =
1

2πi

∫ R

−R

F (x)

(

1

x− z
− 1

x− z̄

)

dx

+
1

2πi

∫ π

0

F (Reiθ)

Reiθ − z
Rieiθ dθ − 1

2πi

∫ π

0

F (Reiθ)

Reiθ − z̄
Rieiθ dθ

We will show in a moment that the θ integrals disappear in the limit as R → ∞.
That leaves us with

F (z) =
1

2πi

∫ ∞

−∞
(U(x) + iV (x))2i Im

1

x− z
dx

Taking real parts we have

U(z) =
1

2π

∫ ∞

−∞
U(x)K(x, z) dx

as claimed. Now we return to show that the θ integrals disappear as R → ∞.
We have

∫ π

0

F (Reiθ)

Reiθ − z
Rieiθ dθ −

∫ π

0

F (Rei(θ)

Reiθ − z̄
Rieiθ dθ

=

∫ π

0

F (Reiθ)

(

1

Reiθ − z
− 1

Reiθ − z̄

)

Rieiθ dθ

=

∫ π

0

F (Reiθ)Rieiθ
(

z − z̄

R2e2iθ − 2Reiθ Re (z) + zz̄

)

dθ
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= O(1/R)

∫ π

0

F (Reiθ)ieiθ dθ

= O(1/R)

∫ π

0

ieiθ dθ since F is bounded

= O(1/R)

as claimed. That completes the proof under the assumption F (z) = F (z̄).
Now suppose that U is harmonic in some neighborhood of 0, as well as in

the upper half plane. Then F (z) =
∑∞

n=0 anz
n in some neighborhood of the

origin, and in case all the an are real, we have F (z̄) = F̄ (z), which then holds
in the upper half plane by real-analytic continuation. So the theorem applies
in this case. More generally we have F (z) =

∑

(an + ibn)z
n and if we define

G(z) =
∑

anz
n and H(z) =

∑

bnz
n then F = G + iH and the theorem holds

for G and for H separately, and hence for F :

F (z) = G(z) + iH(z)

=
1

2πi

∫ ∞

−∞

G(x) dx

x− z
dx+

i

2πi

∫ ∞

−∞

H(x) dx

x− z
dx

=
1

2πi

∫ ∞

−∞

F (x) dx

x− z
dx

Finally we must eliminate the assumption that U is harmonic in a neigh-
borhood of zero. Let Un(z) = U(z + 1/n). Then each Un is harmonic in a
neighborhood of zero, so the theorem applies to it:

Un(z) =
1

2π

∫ ∞

−∞
Un(x)K(x, z) dx.

Since the Un converge to U by the continuity of U , we can pass the limit under
the integral sign by the bounded convergence theorem. That completes the
proof of the lemma.
Remark. This is essentially the first proof of the Poisson formula from [21],
transplanted from the disk to the upper half plane. In the disk, the complex
conjugate has to be replaced by the “reflection” of a point in the unit circle,
which is less intuitive.

The following lemma expresses the complex derivative Fz in terms of the
boundary values of a harmonic function. In particular the normal derivative Fy

is thus expressed in terms of the boundary values.

Lemma 4 Let F be harmonic in the open upper half-plane, continuous in the
closed upper half plane, C2 on the real line, and bounded at infinity. Then for
Im (z) > 0 we have

Fz(z) =
−1

2πi

∫ ∞

−∞

F (x)

(x− z)2
dx

=
1

2πi

∫ ∞

−∞

Fx(x)

x− z
dx
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Proof. By Lemma 3 (applied separately to the real and imaginary parts of F )
we have

F (z) =
1

2π

∫ ∞

−∞
Im

(

1

x− z

)

F (x) dx

=
1

2π

∫ ∞

−∞
Re

( −i
x− z

)

F (x) dx

Differentiating with respect to z we have (for z in the upper half plane)

Fz(z) =
1

2π

d

dz

∫ ∞

−∞

( −i
x− z

)

F (x) dx

Since Im (z) > 0, we can push the derivative through the integral sign. Then

Fz(z) =
1

2π

∫ ∞

−∞

d

dz

( −i
x− z

)

F (x) dx

=
−1

2πi

∫ ∞

−∞

F (x)

(x− z)2
dx

proving the first formula of the lemma. The second formula of the lemma is
obtained by integration by parts, as follows:

Fz(z) =
−1

2πi
lim

R→∞

∫ R

−R

F (x)

(x− z)2
dx

= lim
R→∞

∫ R

−R

Fx(x)

x− z
dx− 1

2πi
lim

R→∞

(

F (R)

R− z
− F (−R)

−R− z

)

=
1

2πi

∫ ∞

−∞

Fx(x)

x− z
dx

The second limit term vanishes since F is bounded at infinity, by hypothesis.

2.5 Poisson formula for the half-plane, reprise

Since the unit disk and the upper half plane are conformally equivalent, one
could either use the above proof, plus a linear fractional transformation, to
prove the Poisson formula for the disk, or one could go the other way, and
derive the Poisson formula for the half-plane from the Poisson formula for the
disk. This is a good exercise, and since the spirit of these lectures is to carry
out all the details, we will give this proof too.

Linear fractional transformations are conformal maps of the form

z 7→ az + b

cz + d
.

They take lines or circles into lines or circles. (Another good exercise.) Hence if
we want a linear fractional transformation that takes the unit disk to the upper
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half plane, we choose a, b, c, and d so that i goes to ∞, −i goes to 0, and 1
goes to 1. Then the unit circle will go to the real line. The transformation in
question is

w =
iz − 1

−z + i
.

It takes the disk onto the upper half plane, not the lower half plane, since 0 goes
to the interior point i of the upper half plane. One can also calculate directly
to show that this map takes S1 onto the real line:

Im
iz − 1

−z + i
= Im

(iz − 1)(−z̄ − i)

(−z + i)(−z̄ − i)

=
1

| − z + i|2 Im (−izz̄ + z̄ + z + i)

=
1

| − z + i|2 Im (−izz̄ + i) since z + z̄ is real

= 0 for z on S1, since then zz̄ = 1.

The inverse of this transformation is z = (iw+1)/(w+ i). (To invert a linear
fractional transformation, we invert the matrix of its coefficients.) Let w be in
the upper half plane and let F : R → R be bounded. Let z = (iw + 1)/(w + i)
be in the unit disk and let f(z) = F (w) = f((iz− 1)/(−z+ i)) and let u be the
harmonic extension of f in the unit disk. Then the harmonic extension U of F
into the upper half plane is given by U(w) = u(z). By the Poisson formula we
have, with ζ = eiϕ,

u(z) =
1

2π

∫ 2π

0

u(ζ)Re
ζ + z

ζ − z
dϕ

=
1

2π
Re

∫

S1

u(ζ)
ζ + z

ζ − z

dζ

iζ

In the integral we shall make the substitution ζ = (iξ + 1)/(ξ + i) to transform
the variable ζ, which ranges over S1, to ξ ranging over the real axis. We have

dζ =
i(ξ + i)− (iξ + 1)

(ξ + i)2
dξ

=
−2 dξ

(ξ + i)2

dζ

iζ
=

−2 dξ
(ξ+i)2

i(iξ+1)
ξ+i

=
2 dξ

(ξ2 + 1)

Substituting z = (iw + 1)/(w + i) as well as making the given substitution for
ζ we have

U(w) = u(z)
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=
1

2π
Re

∫ ∞

∞
U(ξ)

iξ+1
ξ+i + iw+1

w+i

iξ+1
ξ+i − iw+1

w+i

2 dξ

(ξ2 + 1)

Simplifying the first compound fraction we have

U(w) =
1

2π
Re

∫ ∞

∞
U(ξ)

ξw + 1

i(ξ − w)

2 dξ

(ξ2 + 1)

=
1

2π
Re

∫ ∞

∞
U(ξ)

2

i

(

1

ξ − w
− ξ

ξ2 + 1

)

dξ

=
1

2π
Re

∫ ∞

∞
U(ξ)

2

i

1

ξ − w
dξ − 1

2π
Re

∫ ∞

∞
U(ξ)

ξ

ξ2 + 1
dξ

The second integral is zero, since it is equal to the limit as R → ∞ of the contour
integral of the analytic function (U+iV )w/(w2+1) around the boundary of the
upper half-disk of radius R (where V is the harmonic conjugate of U). Hence

U(w) =
1

2π
Re

∫ ∞

∞
U(ξ)

2

i

1

ξ − w
dξ

=
1

2π
Im

∫ ∞

∞
U(ξ)

2

ξ − w
dξ

=
1

π

∫ ∞

∞
U(ξ) Im

1

ξ − w
dξ

That is the correct form for the Poisson kernel on the upper half-plane, as
derived in the lemma above, and now re-derived from the Poisson kernel on the
disk by the use of a linear fractional transformation.

2.6 Harmonic functions and Dirichlet’s integral

Another consequence of the Poisson representation is

Theorem 5 [Harnack’s theorem] Suppose the sequence of harmonic functions
un converges uniformly in the closed unit disk D to a limit u. Then u is har-
monic and the derivatives of un converge uniformly in compact subdomains to
the derivatives of u.

Proof. First, for simplicity, assume that the limit function u is continuous.

un(z) =
1

2π

∫ 2π

0

un(e
iθ)Re

ζ + z

ζ − z
dϕ

where ζ = eiϕ and z = reiθ. Passing the limit through the integral sign, which
is justified since u is continuous. we obtain

u(z) =
1

2π

∫ 2π

0

u(eiθ)Re
ζ + z

ζ − z
dϕ
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so u is harmonic. Differentiating the first equation, and using the fact that for
analytic F , we have Fz = (d/dz)Re F , we obtain

d

dz
un(z) =

1

2π

∫ 2π

0

un(e
iθ)

d

dz

ζ + z

ζ − z
dϕ

=
1

2π

∫ 2π

0

un(e
iθ)

2ζ

(ζ − z)2
dϕ

Since un converges uniformly on the boundary to u, we can take the limit under
the integral sign, obtaining

lim
d

dz
un(z) =

1

2π

∫ 2π

0

u(eiθ)
2ζ

(ζ − z)2
dϕ

=
du

dz

Now, if the limit function u is not assumed to be continuous on the boundary,
we restrict the un and u to the disk of radius R. Then u is continuous on the
boundary (the circle of radius R) and hence u is harmonic and the derivatives
of un converge to those of u on the disk of radius R. That completes the proof.

Since the derivatives of a harmonic function are themselves harmonic, Har-
nack’s theorem applies as well to the higher derivatives, not just the first deriva-
tives.

The solution u = Ψ[ϕ] is known as the harmonic extension of the boundary
values ϕ. We now consider the map Ψ as a map from one function space to
another. We have just observed that Ψ maps C0(S1) into C0(D̄), and it can be
shown that Ψ is continuous. In general Ψ does not map Cn(S1) into Cn(D̄).
We “lose one derivative”. If we use the Lipschitz-condition spaces Cn,α, we find
better behavior: Ψ does map Cn,α continuously into Cn,α. This is the theorem
of Korn and Privalov. You can find a proof in [15], page 17. But if we stick to
Cn spaces, we need one higher derivative on the boundary: if we want to know
that ∇φ is small, for example, we would need to estimate fθθ.

Definition 2 Let f : D → R. Dirichlet’s integral is given by

E[f ] =
1

2

∫

D

|∇f |2 dx dy

=
1

2

∫

D

f2
x + f2

y dx dy

Lemma 5 [Semicontinuity of E] Suppose the sequence of harmonic functions
un converges (uniformly in compact subdomains of the unit disk D) to a limit
u. Then

E[u] ≤ lim inf E[un].

Proof. By Harnack’s theorem, ∇un converges on compact subsets to ∇u. If we
integrate |∇un|2 over the disk of radius R < 1, we can take the limit under the
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integral sign. Let ER[u] denote (half of) this integral. Then

lim
n→∞

ER[un] = ER[u].

Fix ǫ > 0. We must show that for n sufficiently large we have E[un] ≥ E[u]− ǫ.
Pick R so large that ER[u] > E[u]− ǫ/2. Pick k so large that for n ≥ k we have
|ER[un]− ER[u]| < ǫ/2. Then

E[un]− E[u] = E[un]− ER[un] + ER[un]− ER[u] + ER[u]− E[u]

Since E[un]− ER[un] ≥ 0 we have

E[un]− E[u] ≥ ER[un]− ER[u] + ER[u]− E[u]

The right hand side has absolute value bounded by ǫ:

|ER[un]− ER[u] + ER[u]− E[u]| ≤ |ER[un]− ER[u]|+ |ER[u]− E[u]|
≤ ǫ/2 + ǫ/2 = ǫ

Hence

E[un]− E[u] ≥ −ǫ

as required. That completes the proof.

Theorem 6 [Harmonic functions minimize Dirichlet’s integral] Let f be in the
Sobolev space W 1,2 of the closed unit disk, continuous except possibly at finitely
many boundary points, and bounded. Let u be harmonic in the open unit disk
with the same boundary values as f . Then E[u] ≤ E[f ]. Suppose that E[f ] is a
minimum among functions from D̄ to R with the same boundary values. Then
f is harmonic.

Proof. Let Let φ = f − u so f = u + φ with u harmonic. Suppose for the
moment that f is C2 in the closed disk, so that Green’s theorem is applicable
where we need it below. Then calculate:

E[f ]− E[u] =
1

2

∫

D

∇(u + φ)∇(u + φ)− |∇u|2 dx dy

=

∫

D

∇u∇φ+
1

2
|∇u|2 dx dy

=

∫ 2π

0

φur dθ +

∫

D

φ△u +
1

2
|∇φ|2 dx dy by Green’s theorem

=
1

2

∫

D

|∇φ|2 dx dy since φ = 0 on the boundary and △u = 0

≥ 0

On the other hand, since we have assumed E[f ] is a minimum, we have E[f ]−
E[u] ≤ 0. Hence

∫

D
|∇φ|2 dx dy = 0. Since the integrand is non-negative,
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we have ∇φ = 0 almost everywhere, so φ is constant. But since φ is zero
on the boundary, and continuous at all but finitely many boundary points, φ is
identically zero. That completes the proof in case Green’s theorem is applicable,
in particular in case f is C2.

To prove the theorem for more general f , let un be a sequence of harmonic
polynomials converging to u, defined by the truncated Fourier series of u, and
let φn = f − un. Repeat the above calculation, using un instead of u. Then
Green’s theorem is applicable to

∫

D ∇u∇φ, since u is C2. (It doesn’t matter that
φ is not C2 since we don’t need derivatives of φ in this application of Green’s
theorem.) We conclude that E[f ] − E[un] ≥ 0. That is, E[un] ≤ E[f ] Taking
the limit as n → ∞, we find lim inf E[un] ≤ E[f ]. Applying the semicontinuity
of E (proved in the previous lemma) we have E[u] ≤ E[f ] as desired. That
completes the proof.
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Chapter 3

Harmonic Surfaces

3.1 Isothermal coordinates

If ux · uy = 0 and |u2x| = |u2y| then we say u is given in isothermal coordinates.
These are also called “conformal coordinates”. There is a general theorem that
any C1 regular surface has an isothermal parametrization. But, we need the
existence of isothermal parameters for a minimal surface, which is allowed to
have isolated non-regular points. Luckily, there is an explicit construction of
(local) isothermal parameters for minimal surfaces. This theorem is attributed
to Riemann and Beltrami in Rado’s book.

Theorem 7 (Isothermal parameters) A sufficiently small portion of a C2

minimal surface admits an isothermal parametrization.

Proof. In a sufficiently small neighborhood, we can orient the axes so that
the surface can be written in non-parametric form, Z = f(x, y). We write X
for the vector (x, y, Z). (Since z = x + iy we use upper-case Z for the third
coordinate.) Then f satisfies the non-parametric minimal surface equation. We
claim that N×dX is a complete differential. That means that for some (vector)
function ω, we have dω = N × dX . From calculus we know that Pdx +Qdy is
a complete differential if and only if Py = Qx. Here we have dX = (dx, dy, dZ)
and dZ = fxdx+ fydy, and with W 2 = 1 + f2

x + f2
y we have

N =
1

W





−fx
−fy
1





N × dX =
1

W





−fy dZ − dy
dx+ fx dZ
−fx dy + fy dx





=
1

W





−fy(fx dx+ fy dy)− dy
dx+ fx(fx dx + fy dy)
−fx dx+ fy dy
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=
1

W





−fyfx dx− (1 + f2
y )dy

(1 + f2
x) dx+ fxfydy

−fx dx + fy dy





= dx





−fxfy/W
(1 + f2

x)/W
−fx/W



+ dy





−(1 + f2
y )/W

fxfy
fy





Now we apply the cross-wise differentiation test. Let

T = (1 + f2
y )fxx − 2fxfyfxy + (1 + f2

x)fyy

so that T = 0 if and only if the surface is minimal. After a few lines of compu-
tation we find





((fxfy)/W )y − (−(1 + f2
y )/W )x

(1 + f2
x)/W )y − (fxfy/W )x

(fy/W )y − (−fx/W )x



 =
T

W





−fx
−fy
1





=
T

W
N

Hence N × dX is a complete differential if and only if T = 0, which holds if and
only if the surface is minimal. Here we only need one direction: since we have
assumed u is minimal, N × dX is a complete differential. Therefore for some
function ω we have dω = N × dX . Introduce α = x, β = ω1(x, y), the first
component of ω. Then as computed above, we have

dβ = − 1

W
(fyfxdx+ (1 + f2

y )dy) (3.1)

Since βy = (1 + f2
y )/W > 0, the map ϕ taking (x, y) 7→ (α, β) is a local

diffeomorphism ϕ. It is C2 since X is C2. Let ψ be the inverse of ϕ, given by

x = α, y = h(α, β)

for some C2 function h. Since Dψ(α, β) = [Dϕ(x, y)]−1, we have

(

1 0
yα yβ

)

=

(

1 0
βx βy

)−1

=

(

1 0
−βx/βy 1/βy

)

In (3.1) we have calculated the entries on the right hand side. Putting in these
values we have

yα = − fyfx
1 + f2

y

yβ =
W

1 + f2
y
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We claim that α and β are local isothermal parameters. We have to show that
Xα ·Xβ = 0 and X2

α = X2
β . We have

Xα = Xxxα +Xyyα

= (1, 0, fx)xα + (0, 1, fy)yα

= (1, 0, fx)− (0, 1, fy)
fyfx
1 + f2

y

Xβ = Xxxβ +Xyyβ

= (0, 1, fy)yβ since xβ = 0

= (0, 1, fy)
W

1 + f2
y

Xα ·Xβ = fxfy
W

1 + f2
y

− (1 + f2
y )

fyfx
1 + f2

y

W

1 + f2
y

= 0

X2
β =

W 2

1 + f2
y

=
1 + f2

x + f2
y

1 + f2
y

X2
α = (1 + f2

x) +
(fyfx)

2

1 + f2
y

− 2(fyfx)
2

1 + f2
y

= (1 + f2
x)−

(fyfx)
2

1 + f2
y

=
(1 + f2

x)(1 + f2
y )− (fxfy)

2

1 + f2
y

=
1 + f2

x + f2
y

1 + f2
y

= X2
β

Thus we have shown Xα ·Xβ = 0 and X2
α = X2

β . That completes the proof.

3.2 Uniformization

The main theorem in this section is the existence of global isothermal coordi-
nates for minimal surfaces. The proof will only be sketched. For details see [7],
chapters 2 and 5.

Theorem 8 If u is a minimal surface then there exists a reparametrization ũ
of u which is in isothermal coordinates.

Proof Sketch. We have already shown the existence of local isothermal coordi-
nates. We can therefore find a triangulation of the surface u and local isother-
mal coordinates defined in each triangle of the triangulation. The problem is to
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“uniformize” these coordinates. The method involves the existence of a Green’s
function, or “dipole potential”, on the surface. One uses the local coordinates to
define the meaning of “harmonic”; namely, a function defined on the surface is
harmonic if it is harmonic when expressed as a function of the local isothermal
coordinates. Now we can define the concept of a Green’s function: it is a func-
tion G(z, ζ) which for fixed ζ on the boundary is harmonic on the surface as a
function of z and is zero on the boundary. We will not explain the proof that G
exists. Once it is known to exist, then fix a point ζ and let g(z) = G(z, ζ), and
g∗ the harmonic conjugate of g, and define F (z) = g(z) + ig∗(z). Then F maps
the surface conformally onto the upper half plane. Since the upper half plane is
conformally equivalent to the unit disk, the surface can be mapped conformally
onto the unit disk, which is what we were trying to prove.

3.3 Minimal surfaces as harmonic conformal sur-

faces

Since the 1930’s, it has been customary to study minimal surfaces as harmonic
isothermal surfaces. Here is the basic theorem that justifies this practice.

Theorem 9 A surface in isothermal parameters is minimal if and only if it is
harmonic.

Proof. Suppose u is given in isothermal parameters. Then E = G = W and
F = 0, and the mean curvature H , which we proved is given by

H =
LG+ NE − 2MF

2W 2

reduces to

H =
L+ N

2W
.

Recall that L = uxx · N and N = uyy · N , where we have used N in a slightly
different font than N to minimize confusion, we have

△u ·N = 2WH.

The conformality conditions are u2x = u2y and uxuy = 0. Differentiating with
respect to x and y we find

uxuxx = uyuyx

uyuyy = uxuxy

uxxuy + uxuxy = 0

uyyux + uyuxy = 0

Therefore

△uux = 0

△uuy = 0.
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This means that △u is a normal vector. Since N is a unit vector, and we proved
that △u ·N = 2HW , it follows that

△u = 2HWN.

Hence H is identically zero if and only if △u is identically zero, which is what
we had to prove.

Theorem 10 A harmonic surface is minimal if and only if it is in isothermal
parameters.

Proof. Suppose △u = 0. If u is also in isothermal parameters then u is minimal
by the previous theorem. Suppose then that u is minimal; we must show u is
in isothermal parameters. The proof of this will be postponed until the section
on Dirichlet’s integral below.

Corollary 1 A harmonic surface u is minimal if and only if u2z = 0.

Proof. Suppose u is harmonic. Then uz is complex analytic. Consider u2z =
uz · uz. The real part is u2x − u2y and the imaginary part is 2ux · uy. Thus the
parameters are isothermal if and only if u2z = 0.

3.4 Some geometric corollaries

Here we draw some geometric consequences of the connection between minimal
surfaces and harmonic functions.

Theorem 11 A minimal surface lies in the convex hull of its boundary.

Proof. Let u be a minimal surface with boundary Γ. (The boundary is not
required to be a Jordan curve or to be smooth.) The convex hull of Γ is the
intersection of all the half-spaces containing Γ. Let H be such a half-space; we
must show u lies in H . Let P be the normal to the plane bounding H , so that
x · P ≥ 0 if and only if x is in H . Then u · P is a harmonic function, defined in
the parameter domain D of u and negative or zero on the boundary. If u does
not lie in H then u(x) > 0 for some x in D; hence the maximum of u in D is
positive. By the maximum principle for harmonic functions, the maximum is
taken on at some boundary point, contradicting the hypothesis that u · P ≤ 0
on the boundary.

Lemma 6 (Radó) Let u be a minimal surface bounded by a Jordan curve Γ,
and let P be a plane tangent to u at an interior point. Then plane P intersects
Γ in at least four points.

Proof. Let Q be a unit normal to plane P . Then f(z) = u(z) ·Q is a harmonic
function in the parameter domain D with ∇f = 0 at the points where P is
tangent to u(z). The lemma thus reduces to the following statement about
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harmonic functions: if f is harmonic in D and continuous in the closure D̄, and
f(0) = ∇f(0) = 0 then f has at least four boundary zeroes.

We first prove this fact under the assumption that f is not only harmonic
in D, but C2 in the closure D̄. Since f is harmonic, it is the real part of some
complex-analytic F . In the vicinity of every point z0 in the closure D̄ of the
parameter domain, we have F (z) = c(z−z0)n+O((z−z0)n+1 for some constant
c, and some integer n. By the Heine-Borel theorem, we can cover D̄ by a finite
number of such neighborhoods. In each neighborhood, the zero set of f is either
a Jordan arc, or a “star” that is diffeomorphic to the union of 2n Jordan arcs all
meeting at a point and disjoint except for that one point of intersection. Now
starting from a point z0 where u is tangent to P , we follow the zeroes of f .
There are four possible starting directions; in each direction, we continue along
the zero set of f , making an arbitrary choice at points were ∇f is zero. These
continued paths do not meet, by the maximum principle. Since there are only
finitely many neighborhoods and only finite branching in each neighborhood,
eventually each path must meet the boundary. That completes the proof under
the assumption that f is C2 up to the boundary.

If f is not C2 up to the boundary, but is at least continuous on D̄, then let
Dn be compact sets exhausting the parameter domain D as n goes to infinity;
for example, takeDn to be the set of points whose distance to the boundary is at
least 1/n. Then the argument above allows us to extend the four “level curves”
where f is zero from the starting point z0 to the boundary of Dn. They never
meet in D; but they might have infinite length and they might not converge to
a point as n increases. We have thus divided the open set D into four regions
D1, . . .D4, meeting at z0, separated by piecewise real-analytic arcs Ai (that is,
there are finitely many pieces of Ai on each compact subset of D) that never
meet and eventually leave each compact subset of D.

Suppose, for proof by contradiction, that there are 3 or fewer zeroes of f on
the boundary. Let P1, P2, and P3 be three points on ∂D including all boundary
zeroes of f . Since f is continuous on D̄, for each ǫ > 0 we can find δ > 0 such
that |f(z)| ≥ ǫ for all z within δ of the boundary except for those z within δ of
some Pi. Each of the four piecewise analytic arcs Ai thus has to approach one of
the Pi, since when n is large enough, the exterior of Dn is within ǫ of ∂D. Since
there are fewer than four of the Pi, two of the arcs Ai must converge to the
same Pj , which by re-indexing we may assume is P1. Possibly more than two of
the arcs Ai converge to P1; if so choose just two, which we may call A1 and A2.
Consider the set B bounded by A1, A2, and P1. The harmonic function f is zero
on the boundary but not identically zero on B. Since it is continuous on D̄ it is
also continuous on B̄. (We haven’t proved that the boundary of B is a Jordan
curve, but that does not matter.) A continuous function on the compact set B̄
must have a maximum and a minimum; by the maximum principle for harmonic
functions, these cannot be in the interior; hence the maximum and minimum of
f both occur on the boundary of B. But f vanishes on the boundary; hence f
is identically zero on B. But that contradicts the hypothesis that it has a zero
of order n at z0. That completes the proof.
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Lemma 7 [Monodromy] Let D and E be open sets bounded by Jordan curves
∂D and ∂E. Suppose the closure Ē is convex. Let f map D̄ continuously and
locally one-to-one into Ē, and suppose f maps ∂D one-to-one onto ∂E. Then
f is a homeomorphism from D to E.

Remark. Radó states this theorem without the hypothesis that Ē is convex, and
without proof, referring to an out-of-print topology textbook. I was not able
to find either a statement or proof of the theorem either in 1968 when I first
read Radó, or at this writing in December 2010, so I supplied the following one,
which works when Ē is convex; that case is sufficient for Radó’s applications.
Of course, we could appeal to the Riemann mapping theorem to know that the
interior of every Jordan curve is homeomorphic to a convex set (the unit disk);
that would remove the hypothesis of convexity, but we get the stated result
without the Riemann mapping theorem. Maybe one can prove more simply
that the interior of every Jordan curve is homeomorphic to a convex set, but
for applications to minimal surfaces, we need only the convex case.

Proof. The consequence of convexity that we use is that if p is an interior point
of E and q is a boundary point then there is a line segment connecting p and
q that lies in E except for its endpoint on the boundary. The definition of
convexity gives us a line segment L connecting p and q that lies in Ē; we must
show that L actually lies in E except for the boundary endpoint. Since p is an
interior point, there is a neighborhood U of p contained in E. Line segment L,
extended, divides U into two halves. Pick points r1 and r2 in these two halves,
and lying on the perpendicular K to L at p. Then by convexity, ri is connected
to Q by a line segment Li lying in Ē. Consider the triangular region bounded
by L1, L2, and K. Its sides lie in the interior of E. Since E is a Jordan region,
the entire interior of this triangle lies in E. (Here we use the Jordan curve
theorem.) Hence L lies in E, except for its endpoint at q.

The hypothesis tells us that f is a covering map; that is, if f(z) = p and
π is a path in E through p, then π can be “lifted” locally to a path ρ in D
through z, such that f(ρ(t)) = π(t) for some interval of t values containing 0,
where π(0) = p and ρ(0) = z. In particular f takes D onto E, not just into, as
a path from some point in the range of f to any other interior point of E can
be lifted.

We claim that paths can be lifted, not only in the interior, but up to the
boundary as well. Let π be a path in E with p = π(1) on the boundary and π(t)
in the interior for 0 ≤ t < 1, and let z be a point on the boundary of D with
f(z) = p, and let q = π(0). Let α be a path lifting π; then α(t) is defined at least
for 0 ≤ t < 1. The set {α(t) : 0 < t < 1} in D has at least one accumulation
point w in D̄, since D̄ is compact and the set in question is infinite. Let w
be any such accumulation point. By the continuity of f , f(w) is the limit of
a sequence of points π(tn) = f(α(tn), where tn → 1; but π(tn) converges to
π(1) = p. Hence f(w) = p. Since f takes interior points to interior points, w is
a point on the boundary of D. Since f is one-to-one on the boundary, we have
w = f−1(p). Since w was an arbitrary accumulation point of values of α(t) for
t < 1, there is exactly one such accumulation point. That implies that if we
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define α(1) = w, the function α is then continuous on [0, 1], and lifts the path
π all the way to the boundary. Moreover, the argument also shows that every
lifting of π terminates in the same boundary point w.

Fix a point p in E and a boundary point q of E. Then by convexity, there
is a linear path π from p to q in E, i.e. a path whose image in E is a line, and
which is linear as a function of its arc-length parameter t. Then for sufficiently
small angles θ, there is a linear path π(θ, t) (parametrized by t) emanating from
p making an angle θ to π at p. For each θ, there is a least t value e(θ) for which
π(θ, t) lies on ∂E; e(t) is the arc length of the path π(t) from p to the boundary.
The function e is continuous because ∂E is a Jordan curve. The path π(t, θ)
is continuous in t and θ, because it is just a line. Let α(θ, t) be a lifting of
π(θ, t), where α(θ, 0) = w is independent of θ. Then α(θ, e(θ) lies on ∂D and
so f(α(θ, e(θ))) lies on ∂E, and equals π(θ, e(θ)). Since f is one-to-one on the
boundary, its inverse function f−1 is defined (and continuous) on ∂E. Hence

α(θ, e(θ)) = f−1(π(θ, e(θ))

is continuous as a function of θ. Define

h(θ, t) := α(θ, t/e(t)).

Then h is defined on some rectangle [−b, b]× [0, 1], and is
(a) continuous in (θ, t) for t < 1,
(b) continuous in θ for each fixed t, and
(c) continuous in θ for t = 1.
Note that we have not proved h is continuous in the closed rectangle, and

that appears difficult to prove, but we are able to proceed without proving it.
Suppose f is not one-to-one. Then there are two distinct interior points z1

and z2 with f(z1) = f(z2) = p. Let π be a linear path from p to the boundary
of E, so p = π(0) and q = π(1), with q on ∂E. Then there are two liftings αi

of π with αi(0) = zi and, since f is one-to-one on the boundary and f(α1(1) =
f(α2(1)) = q, we have α1(1) = α2(1). Define w = α1(1) = α2(1). Since f is
locally one-to-one at interior points, the set of t < 1 for which α1(t) = α2(t)
is open; but by continuity it is also closed. Since it does not include t = 0, it
must be empty. Therefore we do not have α1(t) = α2(t) for any t < 1. On the
other hand, for t sufficiently near 1, both paths αi(t) enter the range of α(θ, t)
defined above. Hence, for t sufficiently near 1, there exist θ1 and θ2 such that
αi(t) = α(θi, t). We have θ1 6= θ2 since α1(t) 6= α2(t). Applying f to both sides
of the equation αi(t) = α(θi, t) we have

f(αi(t)) = f(α(θi(t))

On the left side, we have π(t) for i = 1 and i = 2. Hence the right-hand sides
are also equal, and we have

f(α(θ1(t)) = f(α(θ2(t))

But the left-hand side lies on the path π(θ1, ·), while the right-hand side lies
on the path π(θ2, ·). Since θ1 6= θ2, these two paths do not intersect. That
completes the proof.
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Theorem 12 (Radó) Let Γ be a Jordan curve whose projection on a plane
Q is a simply covered convex curve, i.e., the projection map is one-to-one on
Γ. Then any minimal surface bounded by Γ can be expressed in nonparametric
form, Z = f(X,Y ), where X and Y are coordinates in the plane Q.

Proof. Let u be a minimal surface bounded by Γ. The projection Γ∗ of Γ on the
XY plane is a convex Jordan curve: it is one-one since (as a map from S1 to the
XY -plane) it is the composition of two one-one maps, Γ and the projection, and
it is convex by hypothesis. Let P be a plane perpendicular to the XY plane;
then P meets Γ∗ in at most two points, because Γ∗ is convex; and since the
projection is one-one, P meets Γ in at most two points. Hence, by Lemma 6, P
is not tangent to u. That is, u has no vertical tangents. Now let w = u(z) be
a point on the surface, projecting onto w∗ = (X,Y ). By the inverse function
theorem, we can find a neighborhood U of (X,Y ) and a function f defined in
U parametrizing the surface in a neighborhood of (X,Y ). In particular there is
a neighborhood V of Z such that u(v) is a subset of f(U).

Let Dn be compact sets exhausting the parameter domain D as n goes to
infinity; for example, take Dn to be the set of points at least 1/n from the
boundary of D. Then by the Heine-Borel theorem, we can find a finite number
of neighborhoods Vi covering Dn, and a finite number of neighborhoods Ui in
the XY plane and functions fi(X,Y ) parametrizing u(Vi). If Vi and Vj overlap
then fi and fj agree on the overlap, even if the Vi and Vj correspond to different
n and hence a different application of Heine-Borel, since u(z) = fi(X,Y ) where
(X,Y ) = u(z)∗, and similarly u(z) = fj(X,Y ). Hence the union of the fi for
all n define a function f such that, if u(z) projects to (X,Y ), then f(X,Y ) =
u(z). It only remains to show that every point (X,Y ) in the interior of Γ∗ is
the projection of some u(z). The function (x, y) 7→ (X,Y ), or in other words
(1u, 2u), is continuous, locally one-to-one, and on D̄ and one-to-one on the
boundary. By Lemma 7, it is a homeomorphism from D to the interior of Γ∗.
Then every point (X,Y ) in the interior of Γ∗ arises uniquely as the projection
of u(z) for some z. That completes the proof.

Theorem 13 Let D be an open set in the plane bounded by a Jordan curve C.
Let ϕ be a continuous real-valued function defined on C. Then there is at most
one solution f of the nonparametric minimal surface equation over D taking
boundary values ϕ.

Proof sketch. Let f and g be two solutions of the nonparametric minimal surface
equation in D, continuous in D̄ and equal on the boundary. Let h = f − g.
Then h vanishes on the boundary. One can show that h satisfies a linear elliptic
differential equation. Since the maximum principle holds for elliptic differential
equations, the theorem follows.

Theorem 14 (Radó) Let Γ be a Jordan curve whose projection on a plane Q
is a simply covered convex curve, i.e., the projection map is one-to-one on Γ.
Then Γ bounds at most one minimal surface defined in the unit disk.
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Proof. By the previous theorem, any such minimal surface can be expressed in
the form Z = f(X,Y ). Then the uniqueness theorem for the non-parametric
minimal surface equation implies the stated result.

Remarks. These results of Radó and their proofs amply illustrate the way
in which many different branches of mathematics are used in minimal surface
theory. In this section we have used complex analysis, the theory of harmonic
functions, topology, and the theory of partial differential equations.

3.5 The Weierstrass representation

Start with a minimal surface u in harmonic isothermal parameters. Then uz
is complex analytic. That is, each of its three components is complex analytic.
The minimal surface equation says that u2z = 0. That means that the three
components of uz are complex analytic functions φi such that φ21 +φ22 +φ23 = 0,
and conversely, any such triple of analytic functions can be integrated with
respect to z to yield a minimal surface. This establishes an important and
fundamental connection between minimal surfaces and analytic function theory.

Enneper and Weierstrass independently observed that such triples of func-
tions can be written in terms of two analytic functions. Given such a triple, in
which none of the φi is identically zero, the equation φ21 + φ22 + φ23 = 0 implies

(φ1 − iφ2)(φ1 + iφ2) = −φ23
which implies that φ1 − iφ2 is not identically zero. Define

f(z) = φ1 − iφ2)

g(z) =
φ3
f(z)

Then neither f nor g is identically zero, and they are both analytic except
possibly at zeroes of φ3. It follows that

φ1 =
1

2
(f − fg2)

φ2 =
i

2
(f + fg2)

φ3 = fg

Conversely, if f and g are given analytic functions, then φi as defined by these
equations will satisfy φ21 + φ22 + φ23 = 0. We have proved:

Theorem 15 (Enneper-Weierstrass Representation) Let u be a minimal
surface. Define f(z) = 1uz − i2uz, and g(z) =

3uz/f(z). Then we have

u(z) = Re





1
2

∫

f − fg2 dz
i
2

∫

f + fg2 dz
∫

fg dz
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To put the matter equivalently, we have

uz =





1
2 (f − fg2)
i
2 (f + fg2

fg



 .

This is a wonderful theorem, because it enables us to produce an example of
a minimal surface from any pair of analytic functions f and g, and moreover to
draw pictures of them whenever we can actually compute the integrals involved.

It is also a wonderful theorem, because it enables us to study complicated
questions about minimal surfaces by writing the (unspecified) minimal surface
in Weierstrass representation and reasoning about f and g.

3.6 Branch points

Definition 3 The minimal surface u has a branch point at z if ux = uy = 0
at z.

That is, the branch points are the points of non-regularity of u. In case u is
harmonic, we can equally well describe the branch points as the places where
uz vanishes.

What do branch points imply about f and g in the Weierstrass representa-
tion? First note that f is always analytic, but g can be meromorphic. Since fg2

is also analytic, if g does have poles, they are matched by zeroes of f of at least
half the order of the zero of g. For the third component of uz to be zero, both f
and g must vanish, and for the first component also to be zero, fg2 must vanish
too. Therefore,the branch points of u are the simultaneous zeroes of f and fg2.

If the surface u has a branch point at z = a, we will have f(z) = c(z−a)m+
O((z − a)m+1) for some m. This number m is called the order of the branch
point (assuming c 6= 0). If the branch point occurs on the boundary, m will
have to be even for the boundary to be taken on monotonically.

We can simply put f(z) = zm and g(z) = z into the Weierstrass representa-
tion to produce examples of minimal surfaces with branch points.

If g(z − a) = czk + O(zk+1 (with c 6= 0), then k is called the index of the
branch point. We can also use the Weierstrass representation to draw minimal
surfaces with any desired index.

Branch points have been important in almost all work on minimal surfaces
since the solution of Plateau’s problem seventy years ago. In particular, my
work in 2000-2001 depends on detailed analysis of one-parameter families of
surfaces, one member of which has a branch point.
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Chapter 4

Dirichlet’s Integral and

Plateau’s Problem

4.1 The Dirichlet Integral

Dirichlet’s integral can be considered for a surface as well as for a scalar function.

Definition 4 Dirichlet’s integral is given by

E[u] =
1

2

∫

D

|∇u|2 dx dy

=
1

2

∫

D

u2x + u2y dx dy

The letter E stands for “energy”. We do not use D for “Dirichlet” because D
is needed for Frechet derivatives.

It is sometimes useful to express E[u] as an integral over S1:

Lemma 8

E[u] =
1

2

∫

S1

uurdθ.

Proof.

E[u] =
1

2

∫

D

∇u · ∇u dx dy

=
1

2

∫

D

u△u+∇u · ∇u dx dy since △u = 0

=
1

4

∫

D

△(u2) dx dy

=
1

4

∫

S1

(u2)rdθ

=
1

2

∫

S1

uurdθ

45



46 CHAPTER 4. DIRICHLET’S INTEGRAL AND PLATEAU’S PROBLEM

The first thing to calculate is the Frechet derivative of E, that is, the first
variation. There are several interesting spaces in which we might try to calculate
this derivative. We first consider the effect of varying the parametrization. The
following theorem shows that, among all parametrizations of the same surface,
those parametrizations that minimize E are in isothermal parameters. This
theorem justifies restricting attention to harmonic surfaces, since if we find
a harmonic surface minimizing E, then it must be in isothermal parameters,
and hence minimal; and no other (possibly not harmonic) parametrization can
further decrease E.

We set

x̃ = x+ tλ(x, y)

ỹ = y + tµ(x, y)

ũ(x, y) = u(x̃, ỹ)

where λ and µ are the real and imaginary parts of k = λ + iµ. The following
formula is valid without restricting λ and µ so that (λ, µ) is tangent to the
parameter domain at the boundary.

Theorem 16 (First variation of Dirichlet’s integral) The Frechet deriva-
tive of E[u] in the direction k = λ+ iµ is given by

DE[u](k) =

∫

D

(u2x − u2y)(λx − µy) + 2uxuy(λy + µx) dx dy

Proof. We calculate

E[ũ] =

∫

D

(ũ2x + ũ2y) dx dy

=

∫

D

(uxx̃x + uy ỹx)
2 + (uxx̃y + uy ỹy)

2 dx dy

=

∫

D

[ux(1 + tλx) + uytµx]
2 + [uxtλy + uy(1 + tµy)]

2 dx dy

Differentiating with respect to t and then setting t = 0 we find the formula
given in the theorem.

Now we restrict attention to Ck,α surfaces u with the same boundary Γ.
Then the functions λ and µ must be such that (λ, µ) is tangential to D on ∂D.
In fact, as the following proof shows, it is enough if DE[u] = 0 when λ and µ
actually vanish on ∂D.

Corollary 2 DE[u] = 0 if and only if u is in isothermal parameters.

Proof. (from [7], p. 112) Suppose DE[u] = 0. Let g be any Cn function from
D̄ to R, with ∇g vanishing on S1. and let φ be a solution of Poisson’s equation
△φ = g in D̄. Define λ = φy and µ = φx. Then λ and µ solve the differential
equations

λx − µy = 0

λy + µx = g(x, y)
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and vanish on the boundary. It follows from the theorem that
∫

D

(u2x − u2y)g(x, y) dx dy = 0.

Since g was arbitrary, it follows from the fundamental lemma of the calculus of
variations that u2x = u2y. Similarly, we can solve the differential equations

λx − µy = f(x, y)

λy + µx = 0

by taking △φ = f and λ = φx, µ = −φy. Then by the theorem we have
∫

uxuyf(x, y) dx dy =

for all f . Hence by the fundamental lemma of the calculus of variations we have
uxuy = 0. Thus u is in isothermal parameters.

4.2 Dirichlet’s integral and area

Dirichlet’s integral is much nicer to work with than area, since it doesn’t have
the ugly square root:

E[u] =
1

2

∫

D

u2x + u2y dx dy

A[u] =

∫

D

√

u2xu
2
y − (uxuy)2 dx dy

On the other hand, area is invariant under reparametrizations of the surface,
while Dirichlet’s integral is not.

We have the inequality
A[u] ≤ E[u]

which follows from the algebraic inequality
√
a2b2 − c2 ≤ (a2 + b2)/2. Equality

holds in this algebraic inequality if and only if c = 0. Similarly, A[u] = E[u] if
and only if the surface u is in isothermal parameters. Indeed, we have

E[u]−A[u] =

∫

D

1

2
(u2x + u2y)−

√

u2xu
2
y − (uxuy)2 dx dy

Since the integrand is continuous and nonnegative, if the integral is zero, then
the integrand must be identically zero.

For the following theorem, we need Lichtenstein’s theorem, that any C2

surface has an isothermal parametrization. This is the only place in the subject
where we really need this theorem (which we have not proved).

Theorem 17 Suppose u minimizes E[u] among harmonic surfaces bounded by
Γ. Then u minimizes A[u] also, not only among harmonic surfaces but among
surfaces C2 in D and spanning Γ.
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Proof. First we claim that if u minimizes Dirichlet’s integral among harmonic
surfaces bounded by Γ, it also minimizes Dirichlet’s integral among C2 surfaces
bounded by Γ. To prove this, suppose that u minimizes Dirichlet’s integral
among harmonic surfaces bounded by Γ, and let w be a C2 surface bounded by
Γ. Let ϕ be the harmonic extension of w. Then by Theorem 6, E[ϕ] ≤ E[w].
Note that Theorem 6 is stated for scalar functions, but it applies to vector
functions as well since if u = (u1, u2, u3) then E[u] = E[u1]+E[u2]+E[u3]. By
the assumption that u minimizes Dirichlet’s integral among harmonic surfaces
bounded by Γ, we have E[u] ≤ E[ϕ]. Hence E[u] ≤ E[w] as desired.

Since u minimizes E[u], the first variation DE[u] is zero and hence u is in
isothermal coordinates. Hence A[u] = E[u]. Suppose u does not minimize area.
Let v be another surface bounded by Γ with A[v] < A[u] = E[u]. Let w be
an isothermal parametrizaton of v, so E[v] = A[v] < A[u] = E[u]; but this
contradicts the assumption that E[u] is a minimum.

Remark : In [7], p. 116, a proof is given which avoids Lichtenstein’s theorem, by
using a class of piecewise continuous surfaces that includes polyhedra, proving
that polyhedra have isothermal parametrizations, and then letting v be the limit
of polyhedra, and using the lower semicontinuity of E. This is also not quite
simple.

4.3 Plateau’s Problem

A surface u defined and continuous in the closed unit disk D̄ is said to span a
Jordan curve Γ, or to be bounded by Γ, if u restricted to ∂D is a reparametriza-
tion of Γ. That is, for some α mapping the unit circle monotonically to itself
we have u(z) = Γ(α(z)) for z on ∂D.

Plateau’s problem is this: Given a Jordan curve Γ, find a minimal surface
spanning Γ, preferably an absolute minimum of area among surfaces spanning
Γ, and preferably without branch points.

The basic idea of the solution to Plateau’s problem is to find a surface
minimizing Dirichlet’s integral in the class S of harmonic surfaces spanning a
given Jordan curve Γ. There are, however, many details. We give a sketch of
the proof.

The plan is to let d be the infimum of values E[u] for u in S, and then let
un be a sequence of surfaces in S with E[un] decreasing monotonically to d. If
we can arrange that S is a compact space, we can then pass to a convergent
subsequence, converging to a surface u. If we can show that E is continuous, or
even lower semicontinuous, we can conclude that E[u] = d, so u is an absolute
minimum of Dirichlet’s integral. Then in particular it is a critical point of E, so
it is in isothermal parameters. Being harmonic and isothermal, it is minimal.

With respect to this plan we note the following difficulties:

(1) It is not obvious that there is even one harmonic surface spanning Γ
whose Dirichlet integral is finite.

(2) It is not obvious why the space S should be compact.
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(3) The condition of spanning Γ is not closed under uniform convergence.
The limit surface u might be only weakly monotonic on S1, and might even
have “arcs of constancy”.

(4) Regularity will not be preserved in the limit. Even if all the un are
regular, the limit un might have branch points.

(5) The solution is certainly not unique as the problem is posed, and con-
vergence will not work right, because of the existence of the conformal group:
there is a three-parameter group of conformal transformations of D to D, and
one can always reparametrize a harmonic surface by a member of this group
without changing E[u].

These problems are solved as follows:

(1) We restrict to rectifiable curves, and show that in that case, there is
a harmonic surface with finite Dirichlet integral spanning Γ. Afterwards, we
approximate any Jordan curve by a convergent sequence of rectifiable curves,
solve Plateau’s problem for each of these, and find a convergent subsequence.

(2) The key to compactness is the Courant-Lebesgue lemma, which says that
the boundary values of functions in S with Dirichlet integral bounded byM are
equicontinuous.1

(3) The Courant-Lebesgue lemma solves this too.

(4) This was not solved until the seventies, and for boundary branch points,
has been solved only under the assumption that Γ is real-analytic.

(5) This is easily fixed by restricting S to surfaces satisfying a “three-point
condition”, in which three fixed points on S1 are required to correspond to three
fixed points on Γ.

In order to prove equicontinuity, we need a series of lemmas. Our argument
closely follows [7], pp. 102ff.

Lemma 9 Suppose u is a harmonic surface defined in an open set B, with
Dirichlet integral bounded by some number M . Let Cρ be a circle of radius ρ in
B, or the intersection of the circle with B if the circle does not lie entirely inside
B. For every positive δ there exists ρ (depending on u) such that δ ≤ ρ ≤

√
δ

and
∫

Cρ

u2s ds ≤
ǫ(δ)

ρ

where s is arc length on Cρ and

ǫ(δ) =
4M

ln(1/δ)

Let Lρ be the length of the image under u of Cρ. Then

L2
ρ ≤ 2πǫ(δ).

1Readers not familiar with the concept of equicontinuity and the related theorem of Arzelà-
Ascoli will find them both clearly explained in Wikipedia.



50 CHAPTER 4. DIRICHLET’S INTEGRAL AND PLATEAU’S PROBLEM

Proof. Since Cρ lies in B, u is C1 on Cρ, and we have

∫

√
δ

δ

∫

Cr

u2s ds ≤ 2E[u] ≤ 2M

Let

p(r) = r

∫

Cr

u2s ds

so the previous equation can be written

∫

√
δ

δ

p(r)

r
dr ≤ 2M

By the mean value theorem, for some ρ between δ and
√
δ we have

∫

√
δ

δ

p(r)

r
dr = p(ρ)

∫

√
δ

δ

1

r
dr

= p(ρ)(ln
√
δ − ln δ)

= p(ρ) ln
1√
δ

= p(ρ)
1

2
ln

1

δ

Using the definition of p(ρ) we have

∫

√
δ

δ

p(r)

r
dr =

(

ρ

∫

Cρ

u2s ds

)

1

2
ln

1

δ

and since the left hand side is ≤ 2M we have
(

ρ

∫

Cρ

u2s ds

)

1

2
ln

1

δ
≤ 2M

Dividing both sides by (ρ/2) ln(1/δ) we obtain
∫

Cρ

u2s ds ≤
1

ρ

4M

ln(1/δ)
=
ǫ(δ)

ρ
.

That proves the first claim of the lemma.
To prove the second claim, we have

L(ρ) =

∫

Cρ

√

u2s ds

Schwarz’s inequality says that (
∫

fg ds)2 ≤
∫

|f |2 ds
∫

|g|2 ds. Applying this

with f =
√

u2s and g = 1 we have

L(ρ)2 =

∫

Cρ

u2s ds

∫

Cρ

ds
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≤ 2πρ

∫

Cρ

u2s ds (equality holds if Cρ is inside B)

≤ 2πǫ(δ)

as claimed. That completes the proof of the lemma.

Lemma 10 Let Γ be a Jordan curve. For any positive σ, there exists τ > 0
such that, if P and Q are two points on Γ not more than τ apart, then the
diameter of one of the two arcs of Γ determined by P and Q does not exceed σ.

Proof. For proof by contradiction, suppose there is a σ > 0 such that τ cannot
be found. In particular τ = 1/n for n = 1, 2, . . . does not work; so there exist
points Pn and Qn on Γ, not more than 1/n apart such that one of the two arcs
from Pn to Qn on Γ has diameter at least σ. Choose a convergent subsequence
of the Pn and a convergent subsequence of the corresponding Qn; renumbering
we may assume Pn and Qn both converge to a point P , while the diameter of
both arcs from Pn to Qn remain more than σ. Because Γ is one to one, the
pre-images sn and tn of Pn and Qn must converge to the same point t (such
that P = Γ(t)). Let Rn = Γ(rn) be a point with rn between tn and sn and Rn

at least σ/2 away from P . (If Rn cannot be found for all n, we are done.) But
rn also converges to t, so Γ(rn) converges to Γ(t) = P , contradiction.2

Lemma 11 (Courant-Lebesgue) Let Γ be a Jordan curve andM a real num-
ber such that Γ bounds some harmonic surface (defined in the unit disk) whose
Dirichlet integral is less than M . Let S be the set of surfaces continuous in the
closed unit disk, harmonic in the open unit disk, bounded by Γ, and satisfying
a three-point condition, whose Dirichlet integrals are less than or equal to M .
Then S, equipped with the C0 metric, is compact.

Remark. These “surfaces” are not required to satisfy ux × uy 6= 0; that is, they
are just harmonic maps from the disk to R3.

Proof. We first prove that S is equicontinuous. We first show that it suffices
to prove that the boundary values of members of S are equicontinuous on S1.
Indeed, if |f(x) − g(x)| < ǫ on the boundary, then |f(x) − g(x)| < ǫ in the
closed unit disk, since otherwise the harmonic vector f(x)− g(x) would have an
interior maximum or minimum, contradicting the maximum principle.3

Given σ > 0, let τ be as in the previous lemma. Then choose δ > 0 so that,
with ǫ(δ) as in Lemma 9, we have

2πǫ(δ) ≤ τ2.

2I do not know whether this lemma can be proved constructively, i.e. whether τ can be
constructed from moduli of uniform continuity for Γ and Γ−1. It doesn’t much matter, since
the main proof below is not constructive, because there is no algorithm for picking a convergent
subsequence of an arbitrary sequence in a compact space. There is no known algorithm that
is guaranteed to find a solution of Plateau’s problem for a given boundary curve Γ.

3The maximum principle applies to harmonic vector functions as well as to scalar functions,
since if the vector function u is identically zero on the boundary, then each component ui is
identically zero on the boundary, so by the scalar maximum principle each ui is identically
zero on the interior, so u is identical on the interior.
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Then, for any point p on the unit circle, there exists ρ between δ and
√
δ such

that L2
ρ ≤ 2πǫ(δ). The circle of radius ρ cuts out two arcs from the unit circle.

For δ sufficiently small, the larger of these two arcs must contain two of the
three points in the three point condition; hence the image of the smaller arc on
the unit circle is the smaller arc of Γ. Therefore, for points p and q on the unit
circle with |p − q| < δ, we have |u(p) − u(q)| < σ. That is the equicontinuity
condition we had to prove.

Now to prove compactness, assume that un is a sequence of members of S.
By the theorem of Arzelà-Ascoli, there is a subsequence converging in the C0

norm. Re-indexing, we may suppose that un converges to a continuous function
u. By Harnack’s Theorem (Theorem (5) the limit function is also harmonic,
and by the lower semicontinuity of Dirichlet’s integral, proved in Lemma 5, we
have E[u] ≤ lim infE(un) ≤M , so u belongs to S. That completes the proof of
the lemma.

Lemma 12 Let Γ be a rectifiable Jordan curve. Then Γ bounds some harmonic
surface with finite Dirichlet integral.

Theorem 18 (Douglas-Rado) Let Γ be a rectifiable Jordan curve. Then Γ
bounds a harmonic surface (possibly with branch points) furnishing an abso-
lute minimum of Dirichlet’s integral and an absolute minimum of area among
harmonic surfaces bounded by Γ.

Remarks. As we proved above, u then also minimizes area among surfaces C2

in the (interior of the) unit disk, and bounded by Γ. The solution surface is
only proved to exist by contradiction; the proof does not provide an algorithm
to compute a solution.

Proof. By the previous lemma, Γ bounds some harmonic surface of finite Dirich-
let integral; let M be larger than that Dirichlet integral and let S be the class
of harmonic surfaces defined in the unit disk, bounded by Γ, and with Dirichlet
integral ≤ M . By the Courant-Lebesgue Lemma, S is compact. Let m be the
infimum of all numbers E[u] for u in S. Let un be a sequence of members of
S such that E(un) is a decreasing sequence converging to m. By compactness
there exists a convergent subsequence of the un; re-indexing, we may assume
that un converges to a harmonic surface u bounded by Γ. By the lower semi-
continuity of Dirichlet’s integral we have E[u] ≤ m. But m is the infimum of
numbers E[u] for u in S, so we also have m ≤ E[u]. Hence E[u] = m. That
proves that u furnishes an absolute minimum of E in the class S, and hence also
in the class of all harmonic surfaces bounded by Γ. Therefore the first variation
of E[u] is zero; hence u is in isothermal parameters; hence u is a minimal sur-
face. Since u is in isothermal parameters, we have A(u) = E(u). But for any
harmonic surface v bounded by Γ, we have A(v) ≥ E(v) ≥ E(u) = A(u). Hence
u also furnishes an absolute minimum of area in this class.

There is, however, one more complication. We have to worry that perhaps
the limit surface u is not one to one on the boundary, which is required by the
definition of “bounded by Γ”. That is proved as follows. Since u is a limit of
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surfaces bounded by Γ, the worst that can happen is that some interval on the
unit circle is mapped to the same point P . Then the harmonic vector u(z)− P
is identically zero on an arc of the unit circle. By Schwarz reflection it can be
extended to a harmonic function defined and harmonic in some neighborhood of
an arc of S1, i.e. defined a bit outside the unit disk. Then xr as well as xθ exist
on the boundary. Since u is in isothermal coordinates we have u2r = (1/r2)u2θ.
But since u is constant on a boundary arc, uθ is identically zero there; hence
ur is also identically zero and hence uz is identically zero, and u is constant,
contradiction. That completes the proof.

Remark. As we proved above, u also minimizes area among surfaces C2 in the
(interior of the) unit disk, and bounded by Γ.
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Chapter 5

The Second Variation of

Area

5.1 The second variation of area defined

Let u be any surface defined on some plane domain Ω. We assume that u is C3

in the interior and at all but a finite number of “exceptional” boundary points,
and that the unit normal N extends in a C1 fashion to the boundary, even at
the exceptional points. 1 We do not assume that u is harmonic. The unit
normal N is defined in the interior and at all but a finite number of boundary
points. In [14] and [17], it is assumed that u is regular when calculating the
second variation of area. (Here “regular” means that g = det gij is never zero,
i.e. u2xu

2
y − uxuy 6= 0.) We want to allow for the case when u is a branched

minimal surface, or possibly even a harmonic surface that is not regular. What
we assume instead of regularity is that the coefficients of the first, second, and
third fundamental forms of u are bounded in Ω. That will follow, for example,
if ux, uy, Nx, and Ny are bounded, as they certainly are for a branched minimal
surface.

The second variation of area is a bilinear functional D2A[u] operating on two
functions φ and ψ in the same “tangent space” that we used when calculating
the first variation of area. Given φ and ψ, we construct a two-parameter family

ũ(s, t) = u+ tφN + sψN

and consider the area A[ũ] as a function of t and s. A calculation, similar to
the one we shall make below, shows that the second derivatives of A[ũ] with
respect to t and s are intrinsic, in the sense that they only depend on the
tangent vectors φ = ut · N and ψ = us · N (the derivatives are evaluated at
t = s = 0). Because of the intrinsic nature of these second derivatives, we can

1This condition holds, for example, if u is a minimal surface bounded by a polygonal
boundary curve.
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define D2A[u] as a bilinear form operating on tangent vectors φ and ψ. This
form can be diagonalized. If it is positive definite, the minimal surface u is
called stable. In that case, u is a relative minimum of area in the C0 topology.
However, u might be a relative minimum without being stable, if D2A[u] has a
non-trivial kernel; and of course D2A[u] will have a kernel when A[u] is not a
relative minimum. We write D2A[u](φ) = D2A[u](φ, φ); the kernel consists of
those φ for which D2A[u](φ) = 0.

We consider variations of the form

ũ = u+ tφN.

These are called “normal variations” because they are in the direction of the
unit normal. One can more generally consider variations with a tangential
component, and shall do so at the end of this lecture.

The question arises as to what kind of function φ can be. In order to use the
fundamental lemma of the calculus of variations, C3 is enough. But we need to
check that our formulas are valid for more general φ. For example, one case of
interest to us is when φ = max(0, ψ ◦ N) for some smooth function ψ on the
unit sphere. In fact, our calculations will work if φ is in the Sobolev space of
functions in W 1,2(Ω) with generalized boundary values 0 on ∂Ω.2

We assume that φ is piecewise C3 in the closed unit disk. That means that
the unit disk can be decomposed into a finite number of domains, separated by
a finite number of closed C1 arcs meeting at a finite number of points, such that
φ is C3 on each domain. That will cover the example, since the zero set of ψ ◦N
is C1 by the implicit function theorem, since N is C1 up to the boundary.

The calculation given in Lecture 1 shows that

ẼG̃− F̃ 2 = EG− F 2 + 2tφW 2H

at every point where φ is C1, that is, except on a finite number of C1 arcs.
Hence the integration of this expression can still be performed, yielding the
standard formula for the first variation,

DA[u](φ) =

∫

D

φHW dxdy

now established for piecewise C1 normal variations.
We write gij , bij , and cij for the coefficients of the first, second, and third

fundamental forms I, II, and III (see Lecture 1). H and K are the mean and
Gauss curvature (also defined in Lecture 1).

Lemma 13 cij − 2Hbij +Kgij = 0. This equation is sometimes written as an
equation between bilinear forms on the tangent space: III − 2HII +KI = 0.

2For readers not familiar with the Sobolev spaces: W 1,2(Ω) is the space of real-valued
functions φ on Ω such that φ and its first derivatives are square-integrable on Ω. In general
W k,p is the space of functions whose derivatives up to the k-th order have integrable p-th
powers. Note that [14] uses H instead of W .
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Proof. The principal curvatures κ1 and κ2 are the eigenvalues of the Weingarten
map. The mean curvature H = 1

2 (κ1 + κ2) and the Gauss curvature K = κ1κ2
are the elementary symmetric functions of κ1 and κ2. Therefore κ1 and κ2 are
roots of the polynomial

(x− κ1)(x − κ2) = x2 − 2Hx+K.

According to the Cayley-Hamilton theorem, the Weingarten map S satisfies this
same polynomial:

S2 − 2HS +Kid = 0

where id is the identity map on the tangent space. Applying this operator
equation to ui and then taking the inner product of the result with uj we
obtain

0 = S(S(ui))uj − 2HS(ui)uj +Kuiuj

= S(ui)S(uj)− 2HS(ui)uj +Kuiuj since S is self-adjoint

= cij − 2Hbij +Kgij

That completes the proof of the lemma.

5.2 The second variation of area for a normal

variation

This calculation is a fundamental result, vital for many results in minimal sur-
face theory. It is taken up in [17], section 102, page 95, where the general case
of a variation with both normal and tangential components is considered. How-
ever, only the result is given–Nitsche says, “By a direct but lengthy calculation
(which we omit owing to lack of space)”. This in a book of more than 560 pages.
More details can be found in [14], pp. 83-84, but it is still a bit difficult to follow
at equation (14). The following calculation proceeds along Hildebrandt’s lines,
but fills in more details.

We write u1 for ux and u2 for uy. Then

ũ = u+ tφN

ũi = ui + tφiN + tφNi where u is C1

This variation is only linear in t; we will show below that for u a minimal surface,
we get the same answer even if we include terms of order t2 or higher. For now,
let us complete the calculation for a linear variation. Hence, at points where φ
is C1 and which are not the exceptional points on the boundary,

g̃ij = ũiũj

= (ui + t(φiN + φNi))(uj + t(φjN + φNj))

= gij − 2tφbij + t2(φiφj + φ2NiNj)

g̃ij = gij − 2tφbij + t2(φiφj + φ2cij) (5.1)
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We write g for det gij = g11g22 − g212 =W 2. Recall from Lecture 1 that

2Hg = 2HW 2 = bijg
ij = b11g22 + b22g11 − 2b12g12.

Kg = b = det bij = b11b22 − b212.

Now we calculate det g̃ij . We have

det g̃ij = g̃11g̃22 − g̃212

= (g11 − 2tφb11 + t2(φ2x + φ2c11))(g22 − 2tφb22 + t2(φ2y + φ2c22))

−(g12 − 2tφb12 + t2(φxφy + φ2c12))
2

= g − 2tφ(b11g22 + b22g11 − 2b12g12)

+t2(φ2xg22 + φ2yg11 − 2φxφyg12)

+t2φ2(4b11b22 − 4b212 + g11c22 + g22c11 − 2g12c12) + t3F(z) + t4G(z)

= g − 4tφHg + t2φiφjg
ij + t2φ2(4Kg + gijcij) + t3F(z) + t4G(z)

where the higher-order terms are given by

F(z) = 2φb11(φ
2
y + φ2c22) + 2φb22(φ

2
x + φ2c11)− 4φb12(φxφy + φ2c12)

G(z) = (φ2x + φ2c11)(φ
2
y + φ2c22) + (φxφy + φ2c12)

2

By the lemma, cij = 2Hbij−Kgij , so gijcij = 2Hgijbij−Kgijgij = 4H2g−2Kg,
where we used gijgij = 2g in the last step. Hence

det g̃ij = g − 4tφHg + t2φ2i g
ij + t2φ2(4Kg + 4H2g − 2Kg) +O(t3)

= g − 4tφHg + t2φiφjg
ij + t2φ2(4H2g + 2Kg) + t3F(z) + t4G(z)

The term φiφjg
ij can be written in terms of the “first Beltrami operator” as

g|∇uφ|2. Our final result for det g̃ij is thus

det g̃ij = g{1− 4tφH + t2[|∇uφ|2 + φ2(4H2 + 2K)]}+ t3F(z) + t4G(z)

We have
√
1 + x = 1 +

x

2
− x2

8
+ . . .

for small x, and hence

√

1 + tα+ t2β = 1 +
α

2
t+

(

β

2
− α2

8

)

t2 +O(t3)

Now, for the first time, we assume that the surface u is regular in the closure
of Ω. Then g̃ is bounded below, so we can factor out

√
g and still get an error

term that is O(t3), with the implicit constant independent of z. (The constant
depends on the lower bound for g̃). We have

√

det g̃ij =
√
g[1− 2tφH + t2{1

2
|∇uφ|2 +Kφ2 + 2H2φ2 − 2H2φ2}] +O(t3)

=
√
g[1− 2tHφ+ t2{1

2
|∇uφ|2 +Kφ2}] +O(t3) (5.2)
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Note the miraculous cancellation of the H terms in the t2 part! This means
that we will get the same formula for the second variation of area, whether u is
minimal or not.

The formula for area is

A(ũ) =

∫

Ω

√

det g̃ij dx dy

We want to integrate (5.2). F and G are defined in terms of the first, second,
and third fundamental forms of u. Since we have assumed that the three fun-
damental forms are bounded, F and G are also bounded. Since the constant
in the O(t3) term is independent of z, we can integrate that term and still get
O(t3). The second variation of area in the direction φ is thus given by the t2

term:

D2A[u](φ) =
d2

dt2
A[ũ]

=

∫

Ω

{|∇uφ|2 + 2Kφ2}√g dx dy

=

∫

Ω

{|∇uφ|2 + 2Kφ2} dA

=

∫

Ω

{|∇φ|2 + 2KWφ2} dx dy

The last two lines express the second variation as an integral on the surface,
and then as an integral on the parameter domain. As Hildebrandt et. al. point
out (p. 84 of [14]), D2A[u] can be considered as a functional defined on the
Sobolev space of functions φ in H1,2(Ω) with (generalized) boundary values 0
on ∂Ω. This formula is valid whether u is harmonic or not, and whether u is
minimal or not, but only for linear variations. We show in the next section that
the formula holds for any variation, linear or not, when u is minimal.

5.3 The second variation of area is intrinsic

The second variation of some functional F on some function space is said to be
intrinsic if, whenever u is a critical point of F , and ũ is a one-parameter family
of members of the function space, depending on a parameter t, such that when
t is zero, ũ = u, then the second derivative ∂2F (ũ)/∂t2 depends only on the
“tangent vector” ut (and not on the higher derivatives of u with respect to t).
In other words, it depends only on the linear part of the variation.

Lemma 14 The second variation of area is intrinsic on the space of C2,α sur-
faces bounded by a given Jordan curve.

Proof. We return to the beginning of the calculation in the preceding section,
where we assumed ũ depends only linearly on u, and replace it with a more
general variation. We will re-do the first few lines of the calculation and show
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that only the linear part of the variation matters. Note that for this result
we assume u is minimal, which was not assumed in the previous section. The
variation is assumed to be real-analytic in t.

ũ = u+ tφN + t2ψN +O(t3)

ũi = ui + tφiN + tφNi + t2ψiN + t2ψNi +O(t3)

Hence, at points where φ is C1 and which are not the exceptional points on the
boundary, and neglecting terms O(t3), we have

g̃ij = ũiũj

= (ui + t(φiN + φNi) + t2(ψiN + ψNi)) · (5.3)

(uj + t(φjN + φNj) + t2(ψjN + ψNj))

= gij − 2tφbij + t2(φiφj + φ2NiNj)− 2t2ψbij

= gij − 2tφbij + t2(φiφj + φ2cij)− 2t2ψbij

= gij − 2t(φ+ tψ)bij + t2(φiφj + φ2cij)

Comparing this result to (5.1), we see that the last term is the same as before,
and the new part is the tψ part of the second term. That is, the φbij has been
replaced by (φ + tψ)bij . This change propagates through the computation in
the previous section so that the −2tHφ term in (5.2) becomes −2tH(φ + tψ).
Specifically

√

det g̃ij =
√
g[1− 2tH(φ+ tψ) + t2{1

2
|∇uφ|2 +Kφ2}] +O(t3)]

Now, when u is minimal, we have H identically zero, so the extra term disap-
pears, and we get the same answer for the second variation as before. If u is
not minimal, then the extra term does contribute an additional t2 term to the
area; but here we are assuming u is minimal. That completes the proof of the
lemma.

5.4 Non-normal variations

Here we consider harmonic variations k mapping the unit disk into R3 and
tangential on the boundary, i.e. k(eiθ) is tangent to Γ at u(eiθ). The main
result is that first and second variations depend only on the normal component.

Theorem 19 Let u be a harmonic surface defined in the unit disk and bounded
by a Jordan curve Γ. Let N be the unit normal.

(i) Suppose HW is integrable on the unit disk. Then the area functional A
is Frechet-differentiable at u, and DA[u](k) = DA[u](k ·N)

(ii) If u is a minimal surface, the second Frechet derivative D2A[u] is a
well-defined bilinear form. Then we have

D2A[u](h, k] = D2A[u][h ·N, k ·N ];

that is, the second variation depends only on the normal component.
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Proof. Ad (i). Let u be harmonic with HW integrable. Let ut be any C1

one-parameter family of Ck,β harmonic surfaces with u0 = u. Write the partial
derivative u0t in the form A + φN . Represent A on the boundary in the form
A1e+A2n, where e is a unit vector tangent to Γ and n is a unit vector e×N .
Then a straightforward calculation, imitating our earlier calculation for normal
variations, shows that

DA[u](u0t ) = −
∫

D

HWφdxdy +

∫

Γ

A2 ds

where ds is the element of arc length along the boundary. In the case of tan-
gential variations we have A2 = 0, so the first variation depends only on the
normal component φ.

Ad (ii). To calculate the second variation, we consider a two-parameter
family ust with u00 = u, and compute

∂2A[ust]

∂s∂t
.

Let h = u00t and k = u00s , and φ = h ·N , and ψ = k ·N . Then

D2A[ut](h, k) =
∂2A[ust]

∂s∂t

=

∫

D

ψ(−△φ+ 2KWφ) dx dy

These computations are not (yet) supplied here; see [17], p. 94, for another
case of stating the result without including the computations–at least I am in
good company.
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Chapter 6

Eigenvalues and the Gauss

Map

6.1 The Gauss map of a minimal surface

KW is the Jacobian of the Gauss map N , considered as a map from D to the
Riemann sphere S2. This map is conformal when u is a minimal surface (in
harmonic isothermal form). The easiest way to see this is to consider the com-
position of the Gauss map with stereographic projection. We have an explicit
formula for stereographic projection, and we can then work out an explicit for-
mula for the stereographic projection of N . This turns out to be nothing but the
function g in the Weierstrass representation of u. That is, if S is stereographic
projection from S2 to R2, then S ◦N is a meromorphic map from D to R2, with
poles where N points in the positive Z-direction. Here are the details:

Theorem 20 Let u be a minimal surface, N the unit normal to u, and f and g
the functions in the Weierstrass representation of u. Then g is the stereographic
projection of N , and hence N is conformal.

Proof. We calculate the basic differential-geometric quantities of u in terms of
f and g in the Weierstrass representation of u. First, the tangent vectors ux
and uy determine f = uz = ux − iuy. Then

W 2 = |ux|2 = |uy|2

=
1

2
|uz|2

=
1

8

∣

∣

∣

∣

∣

∣





f(1− g2)
if(1 + g2)
2fg





∣

∣

∣

∣

∣

∣

2

=
1

8
[f f̄(1− g2)(1 − ḡ2) + f f̄(1 + g2)(1 + ḡ)2 + 4f f̄gḡ]
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=
1

8
|f |2[1 + |g|4 + 1 + |g|4 + 4|g|2]

=
1

4
|f |2[1 + |g|4 + 2|g|2]

W 2 =

[ |f(1 + |g|2)
2

]2

Next we calculate N . We calculate

ux × uy =
|f |2(1 + |g|2)

4





2Re g
2 Im g
|g|2 − 1





It follows that

|ux × uy| = W 2

and hence

N =
ux × uy
|ux × uy|

=
1

|g|2 + 1





2Re g
2 Im g
|g|2 − 1





Stereographic projection S maps the sphere S2 to the plane.1 The map is
defined by

S((x1, x2, x3)) =
x1 + ix2
1− x3

.

The equation for the inverse of stereographic projection is

S−1(z) =
1

|z|2 + 1





2Re z
2 Im z
|z|2 − 1





Thus g is the stereographic projection of N .

6.2 Eigenvalue problems

This section reviews the basic facts about eigenvalues and eigenfunctions. Two
classical references are [11], Chapters 10 and 11, and [8], Chapter V, especially
pp. 297 ff.

1Geometrically, we picture the sphere (or radius 1) lying with its north pole on the Z-axis,
and its equator is the unit circle in the XY plane. The image S((x1, x2, x3)) is the point
where the line joining the north pole to (x1, x2, x3) meets the XY plane. It is also possible
to visualize a sphere of radius 1/2 with its south pole at origin, and its center at (0, 0, 1/2).
The equations are the same.
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We consider the problem

△φ+ λf(x, y)φ = 0

where f(x, y) is a given function, nonnegative in D̄, and positive except at
isolated points, and φ is to map D̄ into R3, vanish on the boundary, and satisfy
the given equation in D. Values λ for which a nonzero solution φ can be found
are called eigenvalues.

A suitable set of functions φ defined on D̄ and vanishing on S1 can be turned
into a Hilbert space with the inner product

〈φ, ψ〉 =
∫

D

∇φ(x, y)∇ψ(x, y) dx dy

The Rayleigh quotient is defined by

R[φ] =

∫

D
|∇φ|2 dx dy

∫

D fφ
2 dx dy

The infimum of R[φ] over all φ exists and is the least eigenvalue λmin.
There exist infinitely many eigenvalues, and the corresponding eigenfunc-

tions form an orthonormal basis for the Hilbert space mentioned. The least
eigenvalue has only a one-dimensional eigenspace. That is, it is non-degenerate
(an eigenvalue is called degenerate if the corresponding eigenspace is of dimen-
sion greater than one). Each of these eigenfunctions is smooth in the interior
of the domain–at least as smooth as f(x, y) is. Moreover, their zero sets are a
union of piecewise smooth arcs; the gradient is zero only at isolated points. In
[8] there are pictures of these arcs for several examples.

One can also consider eigenvalue problems over other plane domains than
the disk. One can also consider eigenvalue problems on a surface. If Ω is a plane
domain, or a domain on a surface, we let λmin(Ω) be the least eigenvalue of the
equation △φ− f(x, y)φ = 0 in Ω, φ = 0 on ∂Ω.

Theorem 21 (Monotonicity of the least eigenvalue) . If Ω1 ⊂ Ω2, we
have

λmin(Ω1) > λmin(Ω2).

Proof. The least eigenvalue is given by the infimum of the Rayleigh quotient.
But competitors for the Rayleigh quotient can be allowed to be continuous but
only piecewise differentiable, so the least eigenfunction of the smaller domain Ω1,
extended to be zero outside Ω1, is eligible to count in the infimum of Rayleigh
quotients for λmin(Ω2). Hence λ(Ω1) ≤ λ(Ω2). But if Ω1 is strictly contained in
Ω2, then this function is not smooth in the interior of Ω2, contradiction.

Theorem 22 (Properties of the least eigenfunction) The least eigenfunc-
tion, i.e. the eigenfunction corresponding to the least eigenvalue, has only one
sign.
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Proof. Let φ be the least eigenfunction. Define ψ = |φ|. Then the Rayleigh
quotient R[ψ] has the same value as R[φ]. If φ does not have one sign, then the
zeroes of φ include an arc, and along that arc ψ is not smooth, since ∇φ only
has isolated zeroes. Hence we can round off ψ slightly, decreasing the Rayleigh
quotient. Hence R[φ] = R[ψ] is not a minimum, contradiction.

Lemma 15 (Hopf boundary-point lemma) Let φ be any solution of △φ+
λf(x, y)φ = 0 which is nonnegative in a neighborhood of a boundary point p.
Then the normal derivative φnu is not zero at p.

Proof. See [10], p. 519 (or any other good textbook on PDE). This is a property
of second-order linear elliptic equations, and the proof takes us too far afield.

Corollary 3 If φ is the first eigenfunction then φr does not vanish on S1.

6.3 Eigenvalues and the Gauss Map

The connection of these classical results to minimal surfaces arises when we take
the function f(x, y) to be −KW , where K is the Gaussian curvature κ1κ2, and
W is the area element det gij =

√
EF −G2. Since for minimal surfaces we have

κ2 = −κ1, the Gaussian curvature K is always negative, or at least not positive,
so −KW is nonnegative. It might be zero at branch points (where W is zero),
and it might be zero at umbilic points, where K is zero.

KW is the Jacobian of the Gauss map N . Therefore, in case the Gauss map
is one-to-one, the eigenvalue problem △φ − λKWφ = 0 in D is equivalent to
the eigenvalue problem for the Laplace-Beltrami operator on the sphere:

△φ+ λφ = 0

on the spherical domain N(D). In general the Gauss map is not one-to-one,
so the eigenvalue problem corresponds to a “multiply-covered” domain on the
sphere, intuitively. This can be made precise but it is not worth the trouble;
one may use the intuition, but formally one just works with △φ−λKWφ in D.

6.4 The eigenvalue problem associated with D2A[u]

Theorem 23 Let u be a minimal surface (not necessarily in harmonic isother-
mal form). Then the kernel of D2A[u] is exactly the space of solutions of the
eigenvalue problem

△φ− 2KWφ = 0.

In particular D2A[u] has a nontrivial kernel if and only if 2 is an eigenvalue of
△φ− λKWφ = 0.

Associated with a conformal map N defined on a region Ω in the plane and
taking values in the Riemann sphere, there is a natural eigenvalue problem:
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∆φ− 1

2
λ|∇N |2φ = 0 in Ω

φ = 0 on ∂Ω

The Jacobian of N is 1
2 |∇N |2. In case N is the Gauss map of a minimal surface,

the Jacobian is also −KW , so 1
2 |∇N |2 = −KW and the eigenvalue equation

becomes
∆φ+ λKWφ = 0

As is discussed above, if φ is in the kernel of D2A(u), then φ is an eigenfunction
of this equation for λ = 2. But for purposes of this section, N can be any map
from the disk to the Riemann sphere.2

We denote the least eigenvalue λ of this problem by λN,Ω, or simply by
λΩ when N is clear from the context. Sometimes we use the notation λmin.
Sometimes, for a minimal surface u, we speak of the “least eigenvalue of u”
rather than the “least eigenvalue of the second variation of u” or “the least
eigenvalue of the eigenvalue problem associated with the second variation of u.”

The least eigenvalue is well-known to be equal to the infimum of the Rayleigh
quotient

R[φ] =

∫ ∫

Ω |∇φ|2 dx dy
∫ ∫

Ω
1
2 |∇N |2φ2 dx dy .

When we speak of the least eigenvalue λΩ of a region Ω on the Riemann sphere,
we mean the following: Let ∆ be the stereographic projection of Ω and N the
inverse of stereographic projection. Then λΩ := λN,∆. The eigenvalue problem
∆φ− 1

2λ|∇N |2φ on ∆ is equivalent to the problem ∆φ = λφ on Ω, where now
∆ is the Laplace-Beltrami operator on the sphere. If Ω contains the north pole,
we should use stereographic projection from some point not contained in Ω. We
do not need to discuss the case when Ω is the entire sphere.

Example. We compute the least eigenvalue when N(Ω) is a hemisphere. In
this case the eigenfunction in the lower hemisphere is minus the Z-component
of N . For example with Ω equal to the unit disk and g(z) = z, we have N(z)
the inverse of stereographic projection. With |z| = r and z = x+ iy we have

N(z) =
1

1 + r2





2x
2y
r2 − 1



 .

The eigenfunction φ is given, with |z| = r, by

φ(z) =
1− r2

1 + r2
.

2Some readers may be familiar with another form of the eigenvalue equation for which
the critical eigenvalue is zero rather than 2, or with this form but with a factor of 2 inserted
so that the critical eigenvalue is 1 instead of 2; both forms are discussed in [17], p. 103, cf.
equations (62) and (62′).
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A few lines of elementary computations (or a couple of commands to a computer
algebra program) show that

△φ = φrr +
1

r
φr

=
8(r2 − 1)

(1 + r2)3

and

|∇N |2 = N2
x +N2

y =
8r

(1 + r2)2

|∇N |2φ =
8(1− r2)

(1 + r2)3

Hence, ∆φ− |∇N |2φ = 0, which means the eigenvalue of a hemisphere is 2.

Lemma 16 Let Ω be a connected open set on the sphere with least eigenvalue
λΩ. Suppose ∆ is a region (open set) in the plane and Ω ⊆ N(∆) and N(∂∆)∩
Ω = φ. Suppose that boundary of Ω is C2 and the boundary of ∆ is piecewise
C2 with the pieces meeting at positive angles. Then λN,∆ ≤ λΩ, and strict
inequality holds if N−1∂Ω contains an interior point of ∆.

Remark. Regarding the assumptions on the boundaries, the proof requires that
the least eigenvalue be the minimum of the Rayleigh quotient, and that the
gradient of the least eigenfunction of Ω not vanish at any boundary point. The
hypotheses given imply these conditions but still allow ∆ to be a half-disk. See
[12].
Proof. Let φ be the least eigenfunction of Ω and define ψ on ∆ by setting
ψ(z) = φ(N(z)) if N(z) ∈ Ω else ψ(z) = 0. Then ψ is admissible in the
Rayleigh quotient for ∆, since φ is zero outside Ω and N(∂∆) ∩ Ω = φ. The
Rayleigh quotient in question is

∫ ∫

∆
|∇ψ|2dx dy

∫ ∫

∆
1
2 |∇N |2ψ2

(The factor 1/2 was explained above.) Since Ω ⊆ N(∆), on the support of ψ,
N is a covering map (i.e., locally a homeomorphism), except at the points of
ramification of N , which are isolated. Since Ω is connected and N(∂∆)∩Ω = φ,
the number of sheets over (cardinality of the pre-image of) N of each non-
ramification point is the same. Hence each of the two integrals in the (numerator
and denominator of the) Rayleigh quotient is the number of sheets times the
corresponding integral on the Riemann sphere, with φ in place of ψ. That is,
the Rayleigh quotient for ψ on ∆ equals the Rayleigh quotient for φ on Ω, which
is λΩ. Since λ∆ is the minimum of such Rayleigh quotients, λ∆ ≤ λΩ. Now
suppose there is an interior point p of ∆ in N−1(∂Ω). By Hopf’s lemma, ∇φ is
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never zero at a point on ∂Ω where the boundary is C2. By analyticity, ∇N is
zero only at isolated points; so there is a point q near p which is still on N−1(∂Ω)
at which ∇N is not zero and ∇ψ is not zero. Hence near q, the set N−1(∂Ω) is a
smooth arc, and ∇ψ is zero on one side of it and bounded away from zero on the
other side. Hence we can “smooth out the edge” near q to obtain a function ψ′

which is admissible for the Rayleigh quotient and has smaller Rayleigh quotient
than ψ. Hence λ∆ < λΩ. This completes the proof of the lemma.

Remark. The lemma shows that if the Gaussian image of a minimal surface
defined in ∆ contains a hemisphere, then the eigenvalue λN,∆ is less than 2.

6.5 The Gauss-Bonnet theorem

The total curvature of a surface is by definition
∫

D
KW dxdy. This is the area

(counting multiplicities) of the “spherical image” of the surface, that is, the
range of the unit normal N .

The geodesic curvature of the boundary κg is the component of the curvature
vector of the boundary in the direction tangent to the surface. In more detail:
at each point of the Jordan curve Γ, there is a unit tangent T = Γs, where s is
arc length along Γ. The rate of change Ts is the curvature vector of Γ, which is
normal to T , and can be broken into a component in the direction of the surface
normal N , and a component orthogonal to that (hence tangent to the surface),
whose magnitude is defined as the geodesic curvature, κg, of Γ (relative to the
specific surface u bounded by Γ).

The total curvature of a Jordan curve Γ is the integral of the magnitude of
the curvature vector around the curve. The magnitude of the curvature vector
is usually written κ. (Curiously, there is no standard notation for the curvature
vector itself.) Thus, the total curvature is

∫

Γ
κds. This quantity depends only

on Γ, not on some surface bounded by Γ. Of course the geodesic curvature for
any surface u bounded by Γ is bounded above by the total curvature of Γ.

These quantities are connected by the Gauss-Bonnet theorem, stated below.
The proof of that theorem requires a pretty formula for the geodesic curva-
ture, which we give in the next lemma. We assume u is given in isothermal
coordinates. (Use Lichtenstein’s theorem if necessary, or if u is minimal, use
uniformization.)

Lemma 17 (Minding’s formula) The geodesic curvature of a surface defined
in the unit disk, in isothermal coordinates, is given by

κg
√
W = (log

√
W )r.

Proof. This formula is proved in [14], p. 33. The proof is a straightforward
calculation, but it involves the Christoffel symbols, which we did not introduce
in Lecture 1.

Theorem 24 (Gauss-Bonnet) If u is a regular surface of class C2 bounded
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by a C3 Jordan curve Γ then
∫

D

KW dxdy +

∫ 2π

0

κg(θ)
√
Wdθ = 2π

This can equally well be written as
∫

u

K dA+

∫

Γ

κgds = 2π

Remarks. In case u is a minimal surface, KW is negative. In case u lies in a
plane, K is zero and the equation is obvious. In case u is a spherical cap, the
geodesic curvature integrates to less than 2π, but K is positive.
Proof. In isothermal coordinates, the Gauss curvature has a simple and remark-
able formula:

−KW = △ log
√
W.

This is a special case of Gauss’s Theorema Egregium, which expresses the Gauss
curvature K in terms of the first fundamental form gij , in spite of the fact that
it was defined using the second fundamental form. In particular, if we write out
△ log

√
W in terms of derivatives, we find:

△ log
√
W = (log

√
W )xx + (log

√
W )yy

=
∂

∂x

(
√
W )x√
W

+
∂

∂y

(
√
W )y√
W

which is the Theorema Egregium for the case of isothermal coordinates. See for
example [14], formula (27), page 30; and the proof of the Theorema Egregium
can be found on the preceding pages.

Proceeding to the proof of the Gauss-Bonnet theorem, we integrate this
formula for −KW :

−
∫

KW dxdy =

∫

△ log
√
W dxdy

=

∫ 2π

0

(log
√
W )r dθ by Green’s theorem

=

∫ 2π

0

κg
√
W − 1 dθ by Minding’s formula

=

∫ 2π

0

κg
√
W dθ − 2π

which proves the theorem.

6.6 The Gauss-Bonnet theorem for branched min-

imal surfaces

There is a beautiful extension of the Gauss-Bonnet theorem to branched minimal
surfaces. The formula can be thought of this way: Each interior branch point of
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order m, and each boundary branch point of order 2m, counts as 2mπ of total
curvature. In other words, if the surface is perturbed so as to “split” or “break”
the branch point, there will necessarily be a lot of curvature created.

Theorem 25 If u is a branched minimal surface defined and C2 in the closure
of a simply-connected domain, and M is the sum of the orders of the interior
branch points plus half the orders of the boundary branch points, then the

∫

D

KW dxdy − 2Mπ +

∫ 2π

0

κg(θ)
√
Wdθ = 2π

Remark. If u spans a Jordan curve, then the boundary branch points must be
of even order. However, this is not an assumption of the theorem; boundary
branch points of odd order are also allowed, even if the boundary cannot be
taken on monotonically in that case.
Remark. The theorem can also be generalized to surfaces defined in multiply-
connected domains (see [15] p. 121) and to surfaces with piecewise C1 bound-
aries, for example polygonal boundaries (see [14], p. 37).
Proof. One cuts the branch points out of the domain, preserving the simply-
connectedness of the domain, by first connecting each branch point to the bound-
ary (by a set of non-intersecting arcs, one per branch point) and then “fattening”
each arc a tiny bit. If we think of the domain as an island and its exterior as the
sea, we are running a river from the sea to each interior branch point, which is
the source of that river. At the branch point, we make a small circle around the
branch point, so the river connects to a “pond” containing the branch point.
Now the Gauss-Bonnet theorem applies to the (regular) surface defined in the
island minus the rivers. The contributions to the geodesic curvature along the
banks of the rivers very nearly cancel out, and do cancel out when we take
the limit as the river width goes to zero, since the inward normals are in op-
posite directions on opposite banks. Near each interior branch point there is
an almost-closed circle; this maps to almost m + 1 circles on the surface and
hence contributes (m + 1)2π to the geodesic curvature. At the river mouths,
however, there are two ninety-degree turns in the opposite direction, and where
the river joins the “pond” containing the branch point, there are two more
ninety-degree turns, so the net contribution from each interior branch point is
(m+1)2π−2π = 2mπ. Similarly, at a boundary branch point of order 2m there
is a semicircle that contributes (2m + 1)π, and two ninety-degree turns in the
opposite direction, so the net contribution is (2m+1)π− π = 2mπ. Taking the
limit as the river width goes to zero, the proof is completed.

6.7 Laplacian of the Gauss map of a minimal

surface

Theorem 26 Let u be a minimal surface. Then the Laplacian of its unit normal
is given by the following formula: △N = 2KWN
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Proof. To prove this elegantly, we make use of the general fact that the Laplace-
Beltrami operator of any surface S, applied to the position vector of S, is exactly
twice the mean curvature of S. Apply this fact to the Riemann sphere, whose
position vector h(w) coincides with its unit normal. Thus △h = −2h. Next,
note that the map from the disk D to the Riemann sphere induced by the
Gauss map of u is a conformal map with Jacobian −KW . Under a conformal
map, the Laplace-Beltrami operator changes to the Laplace-Beltrami operator
on the range surface, multiplied by the Jacobian of the mapping. Hence △N =
2KWN , and the theorem is proved.



Chapter 7

Second Variation of

Dirichlet’s Integral

7.1 Tangent vectors and the weak inner product

Consider the space of all Ck,β surfaces bounded by a Jordan curve Γ in the
non-monotonic sense, i.e. we do not require that the surface take the boundary
monotonically. The first variation of Dirichlet’s integral is easily computed from
the formula E(u) = (1/π)

∫

uur dθ. When we write a subscript r by a function
of θ, it means the partial derivative of the harmonic extension, evaluated at
r = 1. The first variation is given by the formula

DE(u)[k] =
1

π

∫

kur dθ.

Here k is a “tangent vector” to u in the manifold of harmonic surfaces; that is,
a function from S1 to Rn such that k(θ) is tangent to Γ at u(eiθ, for each θ, and
k is Ck,β . It follows from the fundamental lemma of the calculus of variations
that the minimal surface equation can be written as uθur = 0 on S1.

In case u has no boundary branch points, every tangent vector has the form
λuθ for some scalar function λ. If u has boundary branch points, this is not
so. In that case the tangent vectors may be nonzero at the boundary branch
point. Let Γ be given in arc-length parametrization; suppose u = Γ ◦ h. Then
all tangent vectors have the form λΓθ ◦ h for some scalar function λ.

There is an inner product on the space of tangent vectors to a given minimal
surface u, namely that defined by (h, k) =

∫

hrk dθ. Tromba calls this the
“weak inner product”; we use the terms “orthogonal” and “weak orthogonal”
interchangeably. Note that the space of tangent vectors is not complete under
the metric induced by this inner product. (It is “weak” because the topology
induced by this norm is weaker than the norm inherited from Ck,β(S1, Rn).)

If we extend h and k to the disk by harmonic extension, then (h, k) =

73
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∫

D
∇h∇k dx dy, since

∫

D

△(hk) =

∫

D

h△k + 2∇h∇k + k△h dx dy
∫

(hk)r dθ =

∫

D

2∇h∇k dx dy
∫

hrk + krh dθ =

∫

D

2∇h∇k dx dy

and
∫

hrk dθ =
∫

krh dθ. Alternately one can apply Green’s theorem directly
to observe that both (h, k) and (k, h) are equal to

∫

D ∇h∇k dx dy.

7.2 The conformal group

The conformal group of the disk (the group of conformal transformations of the
disk) acts on the space of harmonic surfaces by composition (i.e. by reparametriza-
tion), and preserves the property of being a minimal surface. One calculates that
the tangent directions to u introducted by this action, which we call the con-
formal directions, are of the form λuθ, where λ has the form a+ b cos θ+ c sin θ.
Each minimal surface is part of a three-parameter family of minimal surfaces
differing only by the action of the conformal group. Therefore we wish to impose
some restriction on the class of harmonic surfaces considered, so that only one
member of each such family will be allowed. The traditional way to do this has
been to impose a “three-point condition”, requiring that three given points on
S1 be transformed to three given boundary points. Another way, more suited
to the global-analytic approach of [23], is to restrict attention to the family
E of harmonic surfaces defined in [23]. The definition of E depends on a fixed
minimal surface u, and it is defined to be a co-dimension 3 submanifold of the
space of harmonic surfaces bounded by Γ (in the non-monotonic sense) such
that the three conformal directions at u are orthogonal to the tangent space of
E at u. For our purposes, it is not important exactly how the conformal group
action is disposed of–it is only necessary to realize the necessity of doing so.

We sometimes have to work with a one-parameter family of minimal or har-
monic surfaces; we denote the dependence on the parameter t using a superscript
ut, since there is little chance of confusing that t with an exponent. Sometimes
the superscript t is omitted, as in ut, which means the partial derivative of ut

with respect to t. We call such a family non-trivial if ut = tah for some positive
number a and some tangent vector h (depending on t) such that h is not a
conformal direction when t = 0.

It should be noted that a > 0 is allowed; that is, ut can vanish when t = 0.
When we use the tools of global analysis to prove the existence of one-parameter
families under certain conditions, those families are real-analytic in t; so if a > 0,
we can reparametrize using a ta as the new parameter; but the new family is only
C1, since it is real-analytic in a rational power of t rather than in t. The families
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constructed by global analysis have the property that, when so reparametrized,
their tangent vectors are nowhere conformal. In fact, if the surfaces ut are not
all conformal reparametrizations of the same surface, then we can “project” each
ut onto its sole representative in E , obtaining as a result a non-trivial family,
each member of which is a conformal reparametrization of the corresponding
surface in the original family.

7.3 Calculation of the second variation of E

In this section we calculate the second variation of E without using methods
from complex analysis. In the next section we calculate it more efficiently using
complex analysis. The serious student should study both sections. The proof
using complex analysis turns out not really to be shorter, but it generalizes more
easily to calculations of the higher variations, and also seems somewhat more
beautiful.

Theorem 27 (Tromba) The second variation of Dirichlet’s integral is given
by

D2E[u](h, k) =

∫

k(hr − h̃θ) dθ

where k = λuθ and h̃ = ηur. The tangent vector k to the minimal surface u
belongs to Ker D2E[u] if and only if any of the following three forms of the
“kernel equation” hold:

uθkr + urkθ

kzuz = 0

or equivalently, with k̃ = λur,

uθ(kr − k̃θ) = 0

Proof. Let k = λuθ and h = ηuθ be two tangent vectors to the minimal surface
u. Then

D2E[u](h, k) =
∂2E[ũ]

∂s∂t

where ũ is defined by
ũ(θ) = u(θ + tλ+ sη).

Define

f11 = λ2uθθ

f22 = η2uθθ

f12 = ληuθθ

Expand ũ to second order in s and t:

ũ = u+ kt+ hs+
1

2
f11t2 +

1

2
f22s2 + f12st+ . . .
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Differentiating, we have

ũx = ux + kxt+ hxs+
1

2
f11
x t2 +

1

2
f22
x s2 + f12

x st+ . . .

ũy = uy + kyt+ hys+
1

2
f11
y t2 +

1

2
f22
y s2 + f12

y st+ . . .

Thus

ũ2x = ux2 + tkxux + shxux + st(f12
x ux + kxhx) + t2(k2x +

1

2
uxf

11
x ) + s2(h2x +

1

2
uxf

22
x ) + . . . .

Adding this with the corresponding expression for u2y, we get

|∇ũ|2 = ũ2x + ũ2y

= |∇u|2 + t∇k∇u+ s∇h∇u+ 2st(∇f12 +∇k∇h)
+t2(|∇k|2 +∇u∇f11) + s2(|∇h|2 +∇u∇f22) + . . .

Integrating this expression, on the left side we get 2E[ũ] =
∫

D
|∇ũ|2 dx dy.

Looking at the st term on the right, we find

∂2E[ũ]

∂s∂t
=

∫

D

∇f12∇u+∇k∇h dx dy

Applying Green’s theorem, we have

∫ 2π

0

f12ur + khr dθ =

∫ 2π

0

ληuruθθ + khr dθ.

Integrating the first term by parts, we get

∂2E[ũ]

∂s∂t
=

∫ 2π

0

(−ληur)θuθ + khr dθ

=

∫ 2π

0

−k(ηur)θ − λθηuruθ + khr dθ

=

∫ 2π

0

−k(ηur)θ + khr dθ since uruθ = 0. (7.1)

=

∫ 2π

0

k(hr − h̃θ) dθ

That is the third formula of the theorem. If the integrand vanishes for all
k = λuθ, the fundamental lemma of the calculus of variations yields

uθ(hr − h̃θ) = 0.

Replacing the letter h by k, we have

uθ(kr − k̃θ) = 0,
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which is the formula given in the theorem.
Now to prove the second formula of the theorem. From (7.1) we have

D2E[u](h, k) =

∫ 2π

0

−k(ηur)θ + khr dθ

Integrating the first term by parts, we have

D2E[u](h, k) =

∫ 2π

0

kθηur + khr dθ

=

∫ 2π

0

kθur + krh dθ

=

∫ 2π

0

η(kθur + kruθ) dθ

Applying the fundamental lemma of the calculus of variations, we see that h is
in the kernel if and only if kθur + kruθ vanishes identically; but we have proved
this is equivalent to the second formula of the theorem. That completes the
proof of the second formula.

Now to prove the first formula of the theorem. Note that (on S1)

z2uzkz = (ur − iuθ)(kr − ikθ).

This will have zero imaginary part if Im ((ur− iuθ)(kr − ikθ) is identically zero;
that is, if uθkr +urkθ is identically zero. But that is the second formula. Hence
the kernel equation takes the form

Im z2uzkz = 0.

Let f(z) = z2uzkz . Then f is holomorphic on the disk and takes the whole disk
onto the real axis. Therefore f is a constant function, f(z) = c for some real c.
Integrating around S1 we get 2πc, but by Cauchy’s theorem the integral around
S1 is zero. Hence z2uzkz is identically zero. Hence ukkz =. That completes the
proof of the theorem.

7.4 Second variation of E and complex analysis

We now give another calculation of D2E[u], using complex analysis. We recall
some basic formulas and facts; here u and f are (real or complex) functions
of z = x + iy. Usually, but not necessarily always, u is real-valued and f is
complex-valued.

uz :=
1

2
(ux − iuy)

uz̄ :=
1

2
(ux + iuy)
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∆u = uxx + uyy = 4uzz̄

f is complex analytic if and only if fz̄ = 0

If u is a harmonic function, then uz = du/dz = 1
2 (ux − iuy) is complex

analytic, since its derivative with respect to z̄ is uzz̄ = 4∆u, which is zero since
u is harmonic.

To work with polar coordinates we note

zuz =
1

2
(ur − iuθ)

and for integrals around the unit circle, where z = eiθ, we have

dz = ieiθdθ = izdθ.

The minimal surface equation (for a harmonic surface u) takes the form

u2z = 0

because

4u2z = (ux − iuy)
2

= u2x − u2y − 2i(uxuy)

which is zero if and only if u2x = u2y and uxuy = 0, i.e. u is a conformal mapping.
Dirichlet’s energy E(u) is defined as (where B is the unit disk):

E(u) :=
1

2

∫

B

|∇u|2 dx dy

Integrating by parts we have

=
1

2

∫

S1

uur dθ

We consider variations u(t) such that ut = φuθ on S1 when t = 0. Here
φ : S1 → R. Define k := ut = φuθ. Then k is a harmonic vector tangent to
u(S1) at the point u(eiθ). For short k is a “tangent vector.” If Γ is the Jordan
curve u(S1) then the variation u(t) may or may not, when restricted to S1, be
a reparametrization of Γ. If it is, say u(t, eiθ) = Γ(γ(t, θ)), then

ut = Γ′(γ(t, θ))γt(t, θ)

uθ = Γ′(γ(t, θ))γθ(t, θ)

and hence ut = kuθ for

k =
γt
γθ
.

This k depends on t.
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The tangent vector k must lie in some nice class, such as C2,α(S1), but then
φ may have singularities at the boundary branch points of u (if any).

We differentiate the equation 4E(u) =
∫

uur dθ with respect to t. Since
ut = k, we get

4Et(u) =

∫

kur + ukr dθ

In general for integrals over S1, we have
∫

fgr dθ =

∫

frg dθ.

Hence

2Et(u) =

∫

kur + urk dθ

= 2

∫

φuθur dθ

We can write this as

DE(u)[k] =

∫

φuθur dθ

We have thus proved directly that the first variation of E is zero just when u is
conformal.

The equation for the first variation can be written in complex form, as
follows. We have

4u2z = (ur − iuθ)
2

= u2r − u2θ + 2iuruθ

Since dθ = dz/i we have

4

∫

φ zu2z dz

=

∫

φ(ur − iuθ)
2 dz

z

=

∫

φi(ur − iuθ)
2 dθ

=

∫

φ2uruθ + i(u2r − u2θ) dθ

Taking real parts we have

DE(u)[k] = 2Re

∫

φ zu2z dz (7.2)

Next we compute the second variation D2E(u)[k, h]. For this we assume u
depends on two parameters t and s, where ut = k and us = h are two tangent
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vectors, with k = φuθ and h = ψuθ. Differentiating (7.2) with respect to s, we
have

d

ds
DE(u)[k] = 2Re

∫

φz
∂

∂s
u2z dz

= 4Re

∫

φzuzuzs dz

d

ds
DE(u)[k] = 4Re

∫

φzuzhz dz (7.3)

Setting s = 0 we have

D2E(u)[k, h] = 4Re

∫

φzuzhz dz (7.4)

Writing dz = iz dθ we have

D2E(u)[k, h] = 4

∫

φ Im (z2uzhz) dθ

We can re-prove the kernel equation by applying the fundamental lemma of the
calculus of variations: this expression vanishes for all φ if and only if Im z2uzhz
is identically zero. Then

(ur − iuθ)(hr − ihθ) = 0

which in turn implies the kernel equation in the form

uθhr + urhθ = 0.

7.5 Forced Jacobi fields

Consider the kernel equation kθ(kr − k̃θ) = 0. One way in which this could
be satisfied is if kr − k̃θ = 0; vectors k satisfying this condition and not in-
duced by the conformal group are called “forced Jacobi fields” or “forced Jacobi
directions”. Tromba proved that they do not occur in the absence of branch
points, and that in the presence of branch points there are two for each interior
branch point (counting multiplicities) and one for each boundary branch point,
so that the space of forced Jacobi fields is finite dimensional. (There can be at
most finitely many branch points, even if the boundary is not real-analytic, as
long as the total curvature of the surface is finite, thanks to the Gauss-Bonnet
formula for branched minimal surfaces.) The forced Jacobi directions are just
the directions k such that the function K = k+ ik̃ is complex analytic, i.e. such
that k̃ is the conjugate harmonic function of k.

Another important characterization of the forced Jacobi fields is this: they
are exactly the tangent vectors of the form

k = Re (iωz uz)
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where iωz is a function meromorphic in the parameter domain, and having a
pole of order at most m at each branch point of order m. Any function ω with
suitable behavior on the boundary, and poles of the right orders at the branch
poitns, will produce a tangent vector by this equation. The reason for writing
the equation with ωz instead of with ω is that in case the parameter domain is
the unit disk, the appropriate boundary condition is that ω be real on S1. In
case the parameter domain is the upper half plane, the condition is that iωz
be real on the x-axis. The Appendix of [6] contains Tromba’s treatment of the
forced Jacobi fields.

Lemma 18 (Tromba [23]) Suppose u is a minimal surface, and k is a tangent
vector belong to KerD2E[u] whose harmonic extension is everywhere tangent to
u. Then k is a forced Jacobi direction or a direction induced by the conformal
group.

Proof. Since k is everywhere tangent to u we have k = αux + βuy for some
functions α and β defined in the disk. Define ω = −i(α − βi). Then k =
Re (iωuz). We must show ωz̄ = 0, so ω is meromorphic, and also we must show
that ω is analytic except for poles at the branch points of order at most the
order of the branch point. Calculate:

k = Re (iωuz)

= iωuz − iω̄ūz

= iωuz − iω̄ūz̄

kz = iωzuz + iωuzz − iω̄z − iω̄ūz̄z

= iωzuz + iωuzz − iω̄z since uzz̄ = 0

Now take the dot product with uz. On the left we get zero, since kzuz = 0 is
the kernel equation and k is in the kernel of D2E[u] by hypothesis.

0 = iωzu
2
z + iωuzzuz − iω̄zuz

= −iω̄zuz since u2z = 0 and uzuzz = (u2z)z = 0

But ω̄z is the complex conjugate of ωz̄. Hence ωz̄uz̄ = 0. That is,

(αx − βy)ux + (αy + βx)uy = 0.

This is a vector equation; since uxuy = 0, taking the dot products with ux
and uy respectively shows that αux = βy and αy = −βuz, i.e. ωz̄ = 0 as
desired. Then K = iωuz is analytic except perhaps at the branch points, and
k = Re (K) except at the branch points. Since k is harmonic in the unit disk,
K is analytic in the unit disk. Hence ω is meromorphic and has poles only at
the branch points and of order not greater than the order of the branch point.
That completes the proof of Tromba’s lemma.



82 CHAPTER 7. SECOND VARIATION OF DIRICHLET’S INTEGRAL



Chapter 8

Dirichlet’s Integral and

Area

8.1 From the kernel of D2
E to the kernel of D2

A

Theorem 28 Suppose that the minimal surface u has no (interior or boundary)
branch points, and a Cn boundary. If D2A[u] is positive definite on normal
variations, then D2E[u] is positive definite (on the space E , i.e. in directions
not induced by the conformal group).

Proof. For tangent vectors k to u, let F (k) be the normal component of the
harmonic extension of k; thus F (k) = k ·N . According to the result given at the
end of Chapter 4, we have D2A[u](h, k) = D2A[u](F (h), F (k)]. Fix a tangent
vector k, and let ũ(θ) = u(θ + tλ, so that ũt = k when t = 0, where k = λuθ.
In view of the general inequality E(u) ≥ A(u), and the fact that u is a critical
point of both E and A, we have

d2E[u]

dt2
|t=0 ≥ d2A(u)

dt2
|t=0.

Writing φ for F (k), we have

D2E[u](k, k) ≥ D2A[u](φ, φ).

By hypothesis, the right-hand side is positive for all non-zero φ. HenceD2E[u](k, k) >
0 unless φ is identically zero, i.e. unless k is tangential. Then, by Tromba’s
lemma, k is a forced Jacobi or conformal direction. But by hypothesis, u has
no branch points, so k is not a forced Jacobi direction. Hence it is a conformal
direction. That completes the proof.

Note that the previous theorem works in Rn. Our next theorem is only for
R3:

Theorem 29 Let u be a minimal surface in R3 with Cn boundary, and unit
normal N . Let k be in KerD2E[u]. Then φ = k ·N belongs to KerD2A[u].

83
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Corollary 4 If KerD2A[u] has no kernel among normal variations, KerD2E[u]
contains only the conformal and forced Jacobi directions.

Proof. The Corollary follows immediately from the theorem and Tromba’s
lemma. We now prove the theorem. Suppose k is in KerD2E[u]; we shall
show φ = k ·N satisfies △φ− 2KWφ = 0. We have

△φ = (△k) ·N + 2∇k∇N + k△N.

The first term vanishes because k is harmonic. We claim the second term
vanishes also. To prove this, fix a point z in the unit disk, and choose coordinates
a and b in a neighborhood of z that diagonalize the first fundamental form at
z, so that Na = κ1ua and Nb = κ2ub, where κ1 and κ2 are the principal
curvatures of u at z. (Note: if these equations hold in a whole neighborhood,
then a and b are called “local curvature coordinates”; it costs some trouble to
prove they exist, and we do not need them; we need the first fundamental form
to be diagonalized at one point only, which is easy by taking a and b to be a
certain linear combination of x and y.) Because u is a minimal surface, we have
κ1 = −κ2. Thus

∇k∇N = κ1(kaua − kbub) = κ1 Re (e2iνkzuz)

where ν is the angle between the positive x-direction and the positive a-direction
(so ν is a function of z). Since k is assumed to be in KerD2E[u], we have
kzuz = 0. Hence the term ∇k∇N vanishes, and we have proved △φ = k ·N .

The proof of the theorem is thus reduced to proving △N = 2KWN . But
this is Theorem 26. That completes the proof.

8.2 From the kernel of D2
A to the kernel of D2

E

In the previous section we proved that every tangent vector in the kernel ofD2E,
except for the forced Jacobi and conformal vectors, has its normal component
in the kernel of D2A. In this section we address the converse question, whether
every normal variation in the kernel of D2A arises in this way, as k ·N for some
harmonic tangent vector k. This is answered positively in part (i) of the theorem
below; k is found by solving a certain differential equation given in part (v).
Part(ii) addresses the question of the uniqueness of k. Part (iv) characterizes
the kernel of the map F : k 7→ k · N ; in “Tromba’s lemma” we identified the
kernel of F restricted to KerD2E[u], but that left open the question whether
it might have additional kernel not in D2E[u].

The following theorem was printed in [2], which was not a journal publica-
tion. Parts (i) and (v) were obtained independently by Schüffler in his disser-
tation [20], at least for the case when there are no boundary branch points. A
requirement for the German Ph. D. is original publication, and the editor to
whom I submitted [3] gave me a choice: omit this theorem, or delay publication
until after Schüffler’s. I chose to omit it, and never subsequently published the
result, but it seems logically to belong in this chapter.
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Theorem 30 Let u be a minimal surface in R3 with real-analytic Jordan bound-
ary, not lying in a plane. Let N be the unit normal to u. D is the unit disk.

(i) Let φ be a nontrivial solution of △φ − 2KWφ = 0 in D, φ = 0 on the
boundary S1. Then there exists a tangent vector k to u such that φ = k ·N and
k is in KerD2E[u].

(ii) Any two vectors k as in part (i) differ by a forced Jacobi or conformal
direction.

(iii)DimKerD2E[u] = 3 +M + DimKerD2A[u], where M is the number
of forced Jacobi fields, namely M is the sum of the orders of boundary branch
points plus twice the orders of the interior branch points.

(iv) If k · N is identically zero for some tangent vector k, then k is forced
Jacobi or conformal.

(v) All solutions k of the problem in part (i) may be characterized as follows:
They are k = Re (huz)+φN , where h is a complex valued, real analytic function
in D̄ minus the branch points of u, satisfying the following system of two partial
differential equations in the two unknowns Reh, Imh:

hz̄ = G in D minus the branch points

Re (z̄h) = 0 on S1

where G = φ
∂2u

∂z̄2
· N
W

(vi) On S1, we have k = λuθ, where λ = −iz̄h is real on S1 and h is as
above.

Proof. Let G be as defined in part (v), and suppose h satisfies the equation
given there. Define

k = Re (huz) + φN.

We shall prove that △k = 0, that kzuz = 0, and that k(θ) is tangent to the
boundary of u at u(θ), except possibly at the boundary branch points. (The
exception applies to all three equations.) We first check the boundary condition,
which can as well be expressed in the form k · N = 0 and k · ur = 0; we shall
derive this from the boundary condition Re (z̄h) = 0 satisfied by h. First, we
automatically have k ·N on the boundary, since ux ·N = uy ·N = 0 and φ = 0
on the boundary. We now compute on S1:

k · ur = Re (huz) · Re (zuz)

= (Re (h)ux + Im (h)uy)(xux + yuy)

= (xRe (h) + y Im (h))W

= W Re (z̄h)

= 0 on S1 by hypothesis

Here is a second, more direct, proof that on S1, k is a multiple of uθ, that also
yields the result stated in (vi) of the theorem: k = Re (huz) = Im (ihuz) =
Im (iz̄hzuz). But on S

1, iz̄h is real since Re (z̄h) = 0. Hence k = iz̄h Im (zuz) =
−iz̄huθ, a real multiple of uθ.
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Next we prove kz · uz = 0. As usual, we may omit explicit mention of the
dot product when two vectors are written side by side. We compute kzuz = 0
as follows.

2k = 2Re (huz) + 2φN

= huz + h̄uz + 2φN.

Differentiating with respect to z, and using the fact that (uz)z = 0 (since uz is
holomorphic), we find

2kz = hzuz + huzz + h̄zuz + 2(φN)z .

Since hz̄ = G = φuz̄z̄N/W , we have h̄z = Ḡ, so

2kz = hzuz + huzz + Ḡuz + 2(φN)z (8.1)

We have ū = u since u is real. Therefore

uz̄z̄ = ūz̄z̄

= uzz

Taking complex conjugates we have

uz̄z̄ = uzz (8.2)

From the definition of G

ḠW = φNuz̄z̄

= φNuzz by (8.2)

Putting this result in for Ḡ in (8.1) we have

2kz = hzuz + huzz + φ(N · uzz)uz/W + 2(φN)z (8.3)

Take the dot product with uz. We find

kzuz = hzu
2
z + huzzuz + φ(N · uzz)uzuz/W + (φN)zuz

Since u2z = 0 (that is the minimal surface equation) and consequently uzzuz = 0,
the first two terms vanish, and in the third term we have uzuz =W . Hence

kzuz = φNuzz + (φN)zuz

= φNuzz + φzNuz + φNzuz

= φNuzz + φNzuz since Nuz = 0

= φ(uzN)z

= 0 since uzN = 0

We have proved kzuz = 0.
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Next we prove △k = 0. It will suffice to prove △k ·N and △k · uz are zero.
The latter of these is easily proved: Differentiate kzuz = 0 with respect to z̄.
Since uzz̄ = 0, we find △k · uz = 0. We now set out to prove △k ·N = 0.

Differentiate (8.1) with respect to z̄. We find

2△k = (△h)uz + hz̄uzz + (△h̄)uz + h̄zuz̄z̄ + 2△(φN) (8.4)

Take the dot product with N . We find

△k ·N = Re (hz̄uzz ·N) +△(φN) ·N.

Substituting hz̄ = φuz̄z̄ ·N/W , we have

△k ·N = |uzzN |2φ/W +△(φN) ·N. (8.5)

Now △(φN) = N△φ+ φ△N + φxNx + φyNy, and since Nx ·N = Ny ·N = 0,
we have

△(φN) ·N = △φ+ φ△N ·N.
By Theorem 26, we have △N = 2KWN . By hypothesis we have △φ = 2KWφ.
Hence △(φN) ·N = 4KWφ, and equation (8.5) becomes

△k ·N = |uzz ·N |2φ/W + 4KWφ (8.6)

We now claim
|uzz ·N |2 = −4KW 2 (8.7)

Once (8.7) is proved, (8.6) immediately implies that △k ·N = 0.
To establish (8.7), it will be convenient to use again coordinates a and b

such that at the fixed point z, we have Na = κ1ua and Nb = κ2ub. In these
coordinates we have

∂

∂a

(

ua√
W

·N
)

= −κ1
√
W and

∂

∂b

(

ub√
W

·N
)

= 0 (8.8)

Let ν be the angle between the positive x-direction and the positive a-direction.
Then

∂

∂z
= e−iν

( ∂

∂a
− i

∂

∂b
) (8.9)

From (8.8) we obtain

uaa ·N = κ1W and uab ·N = 0 (8.10)

A straightforward calculation using (8.9) and (8.10) shows

uzz ·N = −2e−i2νκ1W (8.11)

which establishes (8.7), and completes the proof that △k = 0.
We have now proved that if h satisfies the equation in part (v) of the theorem,

then k is harmonic (except possibly at the singularites of h), is tangent to the
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boundary (except possibly at the boundary singularities of h), and satisfies the
kernel equation of D2E[u], again with possible exceptions at the singularities of
h. In order to show that the singularities of h do not pose a serious problem,
we define

H(z) =
n
∏

i=1

(z − zi)
m
i (8.12)

where the zi are the branch points of u, and mi is the order of the branch point
zi. The equation hz̄ = G is then equivalent to (hH)z̄ = HG. The right-hand
side HG is real-analytic, since

HG = (Hφ/W )(uz̄z̄ ·N)

=
φ|H |2
W

∂

∂z̄

(

uz̄
H̄

)

·N

in view of uz̄ ·N = 0; and the functions |H |2/W and uz̄/H are real-analytic.
In order to prove part (i) of the theorem, we now have only to solve the

Riemann-Hilbert system

(hH)z̄ = HG in D̄ (8.13)

Re (z̄H̄hH) = 0 on S1 (8.14)

and verify that the solution is analytic up to the boundary. (We write the
solution as hH to conform with the notation of the theorem.) There are two
minor problems in solving this system. First, if there are boundary branch
points, H can vanish on the boundary, and Riemann-Hilbert systems are usually
considered only with a non-vanishing function in the place occuped by z̄H̄ in
(8.14). Secondly, the boundary regularity. The first difficulty is removed by
writing (8.14) in the form

Re (z̄σ̄hH) = 0 where σ = H/|H | (8.15)

We then must prove

H

|H | is real-analytic on S1 (8.16)

It suffices to verify that H/|H | is real-analytic at the zi, which are the zeroes of
the denominator. By a rotation, we may assume without loss of generality that
zi = 1. Now let θ be as usual (instead of as above) so that eiθ parametrizes
S1. With z = eiθ and mi = 2m (remember boundary branch points have even
order), we have

H/|H | =
z2m(1 +O(θ)

r2m(1 +O(θ))

=
z2m

zmz̄m
(1 +O(θ))
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=
(1− eiθ)2m

(1 − eiθ)m(1− e−iθ)m
(1 +O(θ))

=
(1 − eiθ)m

(1 − e−iθ)m
(1 +O(θ))

=

(

e−iθ/22i sin(θ/2)

eiθ/22i sin(θ/2)

)m

(1 +O(θ))

= eimθ(1 +O(θ))

which is a real-analytic function of θ. Thus (8.8) is proved.

We shall now construct directly a solution of the Riemann-Hilbert pfoblem
(8.13), (8.15), rather than appeal to a reference at once. By first reducing the
problem to the existence of a suitable complex-analytic function, we reduce the
boundary regularity problem to a simple application of the reflection principle.

Lemma 19 Let α be a complex-valued function, real-analytic and never zero on
S1. Let σ be a real-valued, real-analytic function on S1. Let N be the “character-
istic” of α; that is, the (algebraic) number of counterclockwise revolutions of the
vector (Re α, Im α) as S1 is traversed once counterclockwise. Then there exists
a complex-analytic function ω, analytic in D̄, satisfying the boundary condition
Re (ᾱω) = σ on S1, provided that N ≥ 0.

Remark. The family of all solutions ω forms a manifold of dimension 2N + 1.

Proof of lemma. This lemma (including the Remark) is almost a special case of
the theorem on p. 236 of [13]. The only difference is that the solutions ω whose
existence is there asserted are only guaranteed to be continuous in D̄ and C1

in D. Of course, the interior analyticity of solutions of the Cauchy-Riemann
equations is classical; but it remains for us to prove the boundary analyticity.
As is usual with boundary regularity theorems, we can prove a local boundary
regularity theorem. Namely, if ω is analytic in a neighborhood V ∩ D of a
point z0 on S1, and satisfies Re (ᾱω) = σ on S1 ∩ V , where D is the unit
disk and V is a small disk about z0, then ω is analytic in W ∩ D̄ for some
disk W about z0. To prove this, we first show that σ and ᾱ can be extended
to complex-analytic functions defined in some neighborhood W of z0. To do
this, let F be a conformal tranformation from D to the upper half plane, with
F (z0) = 0. Then σF−1 is real-analytic on the x-axis, say σF−1(x) =

∑

anx
n.

Then
∑

anz
n defines a complex-analytic extension of σF−1, and

∑

an(F (z))
n

defines a complex-analytic extension of σ. Similarly for ᾱ. We denote these
extensions by the same letters as the original functions. Now Re (ᾱω − σ) = 0
on S1∩W . Since ᾱω−σ is complex-analytic in D∩W , we can apply the Schwarz
reflection principle. Hence ᾱω− σ is analytic up to the boundary. Since α does
not vanish on S1, ω is also analytic up to the boundary. That completes the
proof of the lemma.

We now return to the proof of the theorem. By
∫ z

0 G(z, z̄) dz̄ we mean Vz/H ,
where H is as above, a complex-analytic function such that HG is real-analytic,
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and V is a function such that △V = HG, for example,

V (z, z̄) =

∫

D

1

|z − ξ| H(ξ)G(ξ1, ξ2) dξ1 dξ2 where ξ = ξ1 + ξ2

Thus
∫ z

0
G(z, z̄) dz̄ is some function whose derivative with respect to z̄ is G.

We shall show that, in order to produce a tangent vector k as required in
part (i) of the theorem, it suffices to find a function A such that

Re (z̄A) = −Re

(

z̄

∫ z̄

0

G(z, z̄) dz̄

)

on S1 (8.17)

and A is meromorphic in D̄ with HA analytic in D̄. Here H is as defined in
(8.12). For suppose we have an A as in (8.17). Then we define

h(z, z̄) =

∫ z

0

G(z, z̄) dz̄ +A(z). (8.18)

Then hz̄ = G and

Re (z̄h) = Re

(

z̄

∫ z̄

0

G(z, z̄) dz̄

)

+ Re (z̄A) = 0 on S1

by the boundary conditions on A. Define k = Re (huz) + φN . As we have
proved, △k = 0 and kzuz = 0, away from the singularities of h. By (8.17)
and the analyticity of GH , hH is real-analytic in D̄. Now, in the vicinity of
the branch point zi, we have |huz| ≤ |h|crm for some constant c, and |hH | =
|h|rm(1 +O(r)), so |h|rm = |hH |(1 + O(r)) ≤ C|hH | in some neighborhood of
zi. Hence |huz| ≤ C|hH |. It follows that k is bounded in the vicinity of zi.
According to Theorem 4, if a function is harmonic and bounded in a punctured
disk, then the singularity is removable; hence k extends to a harmonic (vector-
valued) function defined in D̄. That completes the reduction of part (i) of the
theorem to the problem of finding an A as in (8.17).

Since B(z, z̄) = H(z)z̄
∫ z̄

0 G(z, z̄) dz̄ is real-analytic in D̄, the problem of
finding A as in (8.17) is a special case of the following problem:

Let B be real-analytic in D̄. Find a function A meromorphic in D̄
such that HA is complex-analytic and Re (z̄A) = Re (B/H) on S1.

We now show how to solve this problem. Define α = zH/|H |. The characteristic
of α (defined in Lemma 19) is easily computed to be 1 plus the sum of the mi

for zi in D plus half the sum of the mi for zi on S
1. Note that this number is

N such that 2N + 1 = M + 3, where M is the number of forced Jacobi fields.
By (8.16), α is real-analytic and non-vanishing on S1. Now apply Lemma 19
with σ = Re (zᾱB) on S1. The result is an analytic function ω such that
Re (ᾱω) = Re (zᾱB) on S1. Now define A = ω/H . Then A is meromorphic
and AH is analytic. We now verify that A satisfies the boundary condition in
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(8.18). Compute

Re (z̄A) = Re (z̄ω/H)

= Re

(

z̄H̄ω

|H |2
)

= Re

(

ᾱω

|H |

)

= Re

(

zᾱB

|H |

)

= Re

(

H̄B

|H |2
)

= Re (B/H)

= Re

(

z̄

∫ z̄

0

G(z, z̄) dz̄

)

which is the value required in (8.18). This completes the proof of part (i) of the
theorem.

Part (ii) follows immediately from Tromba’s Lemma, since the difference of
two solutions of k ·N = 0 and kzuz = 0 satisfies k ·N = 0 and kzuz = 0, so by
Tromba’s Lemma it is a forced Jacobi or conformal direction. It is interesting
to note, however, how this comes out of the above analysis as well, since as
we have remarked, the family of possible solutions A has exactly the dimension
2N + 1 =M + 3.

Now we prove part (v) of the theorem. We have already proved half of it,
namely that any solution h of hz̄ = G in D and Re (z̄h) = 0 on S1, such that
k = Re (huz) + φN is bounded, gives rise to a solution k of k · N = φ with
k in KerD2E[u]. Moreover, we have proved there exists such a solution h0.
Now let k be any tangent vector in KerD2E[u] with k ·N = φ. We must prove
k = Re (huz) + φN for some h satisfying hz̄ = G in D and Re (z̄h) = 0 on S1.
Let k0 = Re (h0uz)+φN . By part (ii), we have k = k0 + k1, where k1 is forced
Jacobi or conformal. Thus k1 = Re (hzuz), for h1 meromorphic, have poles of
order at most mi at zi. Then k = Re (huz) + φN , where h = h0 + h1. The
boundary condition on h will be satisfied, since h0 and h1 separately satisfy it,
since k0 and k1 are tangent vectors. That proves part (v).

Now part (iii) is immediate. We have established that the map F : k 7→ k ·N
is a surjective linear map from KerD2E[u] to KerD2A[u], and has a kernel of
dimension M + 3.

Ad (iv). Write k in the form Re (huz); any tangent vector k with k ·N = 0
can be put in this form for some Ck,β function h. We wish to prove hz̄ = 0, i.e.
h is meromorphic, for then k is a forced Jacobi or conformal direction. Take
the dot product of equation (8.4) with uz, remembering △k = 0, φ = 0, u2z = 0,
and uzzuz = 0. We get

0 = hz̄uz̄z̄uz. (8.19)

We wish to show that hz̄ vanishes identically. In that case u is conformally
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equivalent to a surface with uz = α for some complex constant vector α, and
u = Re (α)x + Im (α)y.

We begin by showing that the second factor in (8.19), namely uz̄z̄uz, does
not vanish identically in any neighborhood V unless u lies in a plane. Suppose
to the contrary that it does vanish in some neighborhood V . Then (|uz|2)z̄ =
(uzuz̄)z̄ = uzuz̄z̄ since uzz̄ = 0. Hence if uzuz̄z̄ is zero, then |uz|2 is a constant;
hence |uz| is a real constant, say R. That is not enough to conclude that
uz is constant, since uz is a vector. We use the functions of the Weierstrass
representation, namely f = 1uz − i2uz and g = 3uz/f . We have

4W = f f̄(1 + gḡ)2

4Wz = (1 + gḡ)f̄(fz(1 + gḡ) + 2f ḡgz).

If this vanishes identically then fz(1 + gḡ) + 2fggz vanishes identically. Since
u does not lie in a plane, g is not constant, so we can divide by fgz, obtaining
fz/(fgz) = −2ḡ/(1 + gḡ). But the left-hand side is meromorphic, while the
right-hand side definitely depends on z̄. To prove this rigorously, differentiate
the right-hand side with respect to z̄. We get a fraction whose numerator is ḡz̄.
Hence if the right-hand side is meromorphic, ḡz̄ is identically zero; but then g
is constant; and by analytic continuation, it is constant not only in V but in
the whole unit disk. Since g is the stereographic projection of the unit normal,
u lies in a plane, contradiction. Hence the zero set of the real-analytic function
uz̄z̄uz does not contain any neighborhood.

Now consider hz̄, which we want to prove is identically zero. Suppose to
the contrary that it is nonzero at some point z0. Since h is at least C1, hz̄ is
continuous. Therefore, hz̄ is nonzero in some neighborhood V of z0. Since uz̄z̄uz
does not vanish in V , there is a point z1 in V where uz̄z̄uz is nonzero; but then
(8.19) yields a contradiction, since both factors on the right are nonzero at z1.
That completes the proof of (iv), and the proof of the theorem.



Chapter 9

Some Theorems of Tomi

and Böhme

9.1 Tomi’s no-immersed-loops theorem

In this section we prove a theorem due to Tomi [22], or maybe it is due to Tomi
and Böhme [5]. It is difficult to give an exact reference for this theorem as
the paper where it is stated [22] contains deeper theorems about the structure
of the solution set of Plateau’s problem, and the calculation needed for this
proof is referenced to [5] where, at the crucial point, the paper says “Durch eine
elementare aber etwas mühsame Rechnung finder man. . .” (by an elementary
but somewhat tiresome computation one finds). Anyway, we give a proof here,
but it may or may not be the proof Böhme and Tomi had in mind. Also, they
required the boundary to be C4,α, but that was for other reasons in their paper;
C2 is enough for the theorem stated here.

Theorem 31 Let Γ be a C2 Jordan curve and suppose u = u(t) is a periodic
one-parameter family of minimal surfaces, C2 as a function of z and C1 in t,
bounded by Γ for each t, and satisfying a three-point condition. Suppose that
ut is not identically zero as a function of z for any t, and that each u(t) has
λmin = 2. Then some u(t) has a branch point, either in the interior or on the
boundary.

Remarks. By a “periodic family”, we mean that u(t + 2π) = u(t); the exact
period is not relevant. The condition λmin = 2 will be fulfilled if u(t) is a relative
minimum of area, but it is a more general condition. The condition that the
u(t) satisfy a three point condition is only needed to guarantee that ut is not a
conformal direction.

Proof. Suppose, for proof by contradiction, that u(t) has no branch point. Since
each u(t) is a minimal surface, the first variation of Dirichlet’s integral E is zero,
so E(t) = E[u(t)] is constant. Hence the second derivative ∂2E/∂t2 = 0. Hence
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the second variation of E is zero in the direction ut. That is,

D2E[u](ut) = 0

Define
φ := ut ·N

where N is the unit normal to u(t). (We suppress the t-dependence in our
notation, writing u instead of u(t) and not indicating the t-dependence of φ and
ut.) Because there is no branch point, there are no forced Jacobi directions.
Because of the three-point condition, ut is not a conformal direction. Then
D2[A](φ) = 0 as shown in the previous section. Since u has no branch points,
φ is not identically zero. By Theorem 29, φ is an eigenfunction of

∆φ = 2KWφ

over the parameter domain D, with φ = 0 on the boundary ∂D. We define the
“volume integral” to be

V (t) :=

∫

D

u · (ux × uy) dxdy =

∫

D

u ·N W dxdy

where N is the unit normal to u. The key to the proof is the “mühsame Rech-
nung” that

∂V

∂T
= Vt =

∫

φW dxdy

We first finish the proof and then return to that computation. Since by hy-
pothesis λmin = 2, for each t the function φ = φ(t) has only one sign in the
interior of the parameter domain. Since φ is continuous in t (because u is C1 in
t), that sign is the same for all t in [0, 2π]. Now choose t0 at which V (t) has its
minimum value. Then we have

0 = Vt(t0)

=

∫

ut ·NW dxdy

=

∫

φW dxdy

But since φ is not identically zero and has one sign, this is a contradiction. That
reduces the proof to the computation of Vt(t0), which we now undertake.

We may assume (by replacing t by t−t0 mod 2π) that t0 = 0. The functional
V (t) is invariant under reparametrization of u. For sufficiently small t we can
find a reparametrization of u(t) in the form

ũ(x, y) = u(x, y) + tφN(x, y) +O(t2)

where u and N on the right correspond to t = 0. The surfaces ũ(t) are not
necessarily harmonic except when t = 0. We have

ũx = ux + t(φxN + φNx) +O(t2)
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ũy = uy + t(φyN + φNy) +O(t2)

ũx × ũy = ux × uy + tux × (φyN + φNy) + tuy × (φxN + φNx)

Nx = b11ux + b12uy

Ny = b12ux + b22uy

ũx × ũy = ux × uy + tux × (φyN + b22φuy)− tuy × (φxN + b11φux) +O(t2)

ux ×N = −uy
uy ×N = ux

ux × uy = NW

ũx × ũy = ux × uy + t(−φyuy + b22φNW )− t(φxux − b11φNW ) +O(t2)

= ux × uy + t(−φyuy)− t(φxux) +O(t2) since b11 + b22 = 2H = 0

= ux × uy − t(φyuy + φxux) +O(t2)

We have

V (t) =

∫

ũ · (ũx × ũy) dxdy

=

∫

(u + tφN +O(t)2)(ux × uy − t(φyuy + φxux) +O(t2)) dxdy

Extracting the t term we have

Vt(0) =

∫

φN · (ux × uy) dxdy −
∫

u · (φyuy + φxux) dxdy

=

∫

φW dxdy −
∫

u · (φyuy + φxux) dxdy

The first term is the desired value of Vt(0). It therefore suffices to show that
the second term vanishes. By the mean value theorem of integral calculus,
there exists for each i = 1, 2, 3, a value iẑ such that with iû = u(iẑ), where
u = 1u, 2u, 3u, and û = (1û, 2û, 3û), we have

∫

u · (φyuy + φxux) dxdy = û ·
∫

(φyuy + φxux) dxdy

= û ·
∫

∇φ∇u dxdy

Now, applying Green’s theorem (“integrating by parts”),

∫

u · (φyuy + φxux) dxdy = û ·
∫

∂D

φuν ds− û ·
∫

D

φ∆u dxdy

The second term vanishes since ∆u = 0, and the first term vanishes since φ is
zero on the boundary. Hence, as claimed, the left side is equal to zero. That
completes the proof of Tomi’s theorem.
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Theorem 32 (Tomi’s theorem for other topological types) Let Γ be a union
of finitely many Jordan curves, and let u(t) be a periodic family of orientable
minimal surfaces defined in the same parameter domain D and bounded by Γ,
C2 in z and C1 in t, each with λmin = 2, and suppose that ut is never a con-
formal direction and never identically zero. Then one of the surfaces u(t) has a
branch point.

Proof. Because u(t) is orientable, we can find a unit normal N defined on the
whole surface. The computations in the previous proof then work just as well,
though the integrals have to be rewritten as integrals over the surface, or taking
the parameter domain to be a Riemann surface. If u(t) is not connected, we
apply the argument separately to each connected component, so without loss
of generality we can assume u(t) is connected. That enables us to conclude
that the first eigenfunction (the one associated to the last eigenvalue) has a
one-dimensional eigenspace and hence just one sign. That completes the proof.

Remark. The simplest case not covered by Tomi’s theorem is the case of Jordan
curve (possibly) bounding a periodic one-parameter family of minimal surfaces
of the type of the Möbius strip. Nobody has ruled this possibility out, even if all
the surfaces are absolute minima of area. The least eigenfunction of a Möbius
strip has two signs.

Remark. In a subsequent section, we show how Tomi and Böhme used their
structure theorem about the set of minimal surfaces bounded by Γ to weaken
the hypothesis of the theorem. It is only necessary to suppose that one of the
surfaces u(t) has λmin = 2 and is not isolated; then a one-parameter family of
surfaces u(t) exists, depending analytically on t, such that u = u(0) and some
u(t) has a branch point.

9.2 Böhme and Tomi’s structure theorem

Let Γ be a C4,α Jordan curve. Let M be the space of minimal surfaces bounded
by Γ (with the C4,α metric).

In [5] and [22], Böhme and Tomi prove that the space of minimal surfaces
bounded by Γ near a relative minimum u is one-dimensional. Specifically this
is stated in Lemma 3 of [22], whose proof depends on [5]. Tomi states it only
for relative minima of area, but proves it for minimal surfaces with λmin = 2,
as in the following statement.

Theorem 33 Let u be a minimal surface bounded by Γ with λmin = 2. Suppose
u is not isolated. Then there is a neighborhood of u in M whose intersection
with M is a one-parameter family u(t) defined for some open interval of t-values
containing 0, with u(0) = u.

Böhme and Tomi proved a structure theorem about the space M of minimal
surfaces bounded by Γ, without (interior or boundary) branch points. According
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to this structure theorem, the space is, in the neighborhood of any particular
minimal surface u, a finite-dimensional manifold. In particular, Lemma 3 of [22]
(whose proof depends also on [5]), states that if u is a relative minimum of area
then the space M near u is a one-dimensional manifold; Tomi gives an explicit
chart for this manifold in the form

u(t) = (u + (φt+O(t2)) ·N)) ◦ σ

where σ is a diffeomorphism of the parameter domain D designed to ensure
that u(t) is harmonic and isothermal. In particular ut(0) is not identically zero.
Although Lemma 3 hypothesizes that u is a relative minimum, that hypothesis is
only used to conclude λmin = 2 (or zero for Tomi’s formulation of the eigenvalue
equation), at the bottom of page 315 of [22]. Note that u(t) depends analytically
on t.

9.3 Tomi’s Finiteness Theorem

Theorem 34 (Tomi) Let Γ be a C4,α Jordan curve and let u be a relative
minimum of area bounded by Γ. If u is not isolated, then there exists a one-
parameter family u(t) of minimal surfaces bounded by Γ, defined for t in some
interal [0, b), such that u(t) is a relative minimum for t > 0, but u(0) has a
branch point.

Proof. Tomi’s structure theorem in the preceding section gives us a family u(t)
defined for some interval of t-values, with u = u(0). Then 2 is an eigenvalue of
each u(t) and A(u(t)) is constant. Since the least eigenvalue depends continu-
ously on u, and hence on t, we have λmin = 2 for all t for which u(t) is defined.
Consider the set Q of t for which the family ut can be analytically continued to
an open neighborhood of t and for which λmin = 2. This set is open by Tomi’s
structure theorem . We claim it is also closed. Let s be a boundary point of
Q; then consider a sequence tn of members of Q converging to s. Then u(tn)
has a subsequence that converges to a minimal surface; call that surface u(s);
and by the continuity of λmin, λmin = 2 for this surface. If u(s) has a branch
point, we are finished (after replacing t by s− t or t− s put the branch point at
t = 0.) Hence, we may assume that u(s) does not have a branch point. Then
by Tomi’s structure theorem, the minimal surfaces bounded by Γ close to u(s)
form a one-parameter family; this family must include the u(tn). Hence the
one-parameter family does extend to ut analytically. Hence Q is both open and
closed; the one-parameter family u(t) is thus defined for all t.

Now we have a differentiable map of R into a compact space (a subset of
M) whose derivative is never zero and whose image is closed, and every point
of the image has a neighborhood in which the range is one-dimensional. An
elementary argument shows that the map must be periodic. Here are the details:
By compactness, the surfaces u(0), u(1), u(2) . . . have a convergent subsequence,
converging to some minimal surface w. Again, λmin = 2 for this surface, and
hence by Tomi’s lemma the minimal surfaces near w form a one-parameter
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family; hence w = u(t0) for some t0. Let j < t0 < j+2 for some integer j; then
for some k > j + 2 we have tj between j and j + 2, so the path u(t) contains a
loop, i.e. it is periodic. Then by Tomi’s no-immersed-loops theorem, Theorem
31, some u(s)) has a branch point. Replacing t by s− t or t − s, we bring the
branch point to t = 0. That completes the proof.

Theorem 35 (Tomi) Let Γ be a real-analytic Jordan curve. Then Γ does not
bound infinitely many absolute minima of area.

Proof. Suppose Γ does bound infinitely many absolute minima of area. Then
there is, by compactness, a minimal surface u bounded by Γ that is a limit
of absolute minima. Hence u is also an absolute minimum of area. Hence,
by the previous theorem, there is a one-parameter family of minimal surfaces
u(t), all of which are absolute minima, and some u(t) has a branch point. But
this contradicts known regularity results, since Γ is real-analytic and u(t) is an
absolute minimum.

Remark. Note that the proof does not work for relative minima instead of
absolute minima. With relative minima for t > 0, there is no reason why u(0)
has to be a relative minimum; we only get that u(0) must have a branch point.
This is the starting point of my work on finiteness in Plateau’s problem.
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