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Abstract. Otter-lambda is a theorem-prover based on an untyped logic
with lambda calculus, called Lambda Logic. Otter-lambda is built on
Otter, so it uses resolution proof search, supplemented by demodulation
and paramodulation for equality reasoning, but it also uses a new al-
gorithm, lambda unification, for instantiating variables for functions or
predicates. The basic idea of a typed interpretation of a proof is to “type”
the function and predicate symbols by specifying the legal types of their
arguments and return values. The idea of “implicit typing” is that if the
axioms can be typed in this way then the consequences should be ty-
pable too. This is not true in general if unrestricted lambda unification
is allowed, but for a restricted form of “type-safe” lambda unification it
is true. The main theorem of the paper shows that the ability to type
proofs if the axioms can be typed works for the rules of inference used
by Otter-lambda, if type-safe lambda unification is used, and if demod-
ulation and paramodulation from or into variables are not allowed. All
the interesting proofs obtained with Otter-lambda, except those explic-
itly involving untypable constructions such as fixed-points, are covered
by this theorem.

1 Introduction: the no-nilpotents example

We begin with an example. Consider the problem of proving that there are no
nilpotent elements in an integral domain. To explain the problem: an integral
domain is a ring R in which xy = 0 implies x = 0 or y = 0, i.e. there are no zero
divisors. A element c of R is called nilpotent if for some positive integer n, cn

(i.e., c multiplied by itself n times) is zero. Informally, one proves by induction
on n that cn is not zero. The equation defining exponentiation is xs(n) = x ∗ xn.
If c and cn are both nonzero, then the integral domain axiom implies that cn+1

is also nonzero. It is a very simple proof, but it is interesting because it involves
two types of objects, ring elements and natural numbers, and the proof involves
a mix of the algebraic axioms and the number-theoretical axioms (mathematical
induction). Since the proof is so simple, we can consider the issues raised by
having two types of objects without being distracted by a complicated proof.

How are we to formalize this theorem in first order logic? The traditional way
would be to have two unary predicates R(x) and N (x), whose meaning would
be ”x is a member of the ring R” and ”x is a natural number”, respectively.
Then the ring axioms would be “relativized to R”, which means that instead
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of saying x + 0 = 0, we would say R(x) → x + 0 = 0, or in clausal form,
−R(x)|x + 0 = 0. (The vertical bar means “or”, and the minus sign means
“not”.) Similarly, the axiom of induction would be relativized to N . The axiom
of induction is usually formulated using a symbol s for the successor function, or
“next-integer” function. For example, s(4) = 5. The specific instance of induction
we need for this proof can be expressed by the two (unrelativized) clauses

xo 6= 0 | xg(x) = 0 | xn = 0.

xo 6= 0 | xs(g(x)) 6= 0 | xn = 0.

To see that this corresponds to induction, think of g(x) as a constant (on which
x is not allowed to depend). Then the middle literal of the first clause is xc = 0.
That is the induction hypothesis. The middle literal of the second clause is
xs(c) 6= 0. That is the negated conclusion of the induction step. We have used o
instead of 0 for the natural number zero, which might not be the same as the
ring element 0.

A traditional course in logic would teach you that to formalize this problem,
you need to relativize all the axioms using R and N . Just to be explicit, the
relativized versions of the induction axioms would be

−R(x) | − N (n) | xo 6= 0 | xg(x,n) = 0 | xn = 0.

−R(x) | − N (n) | xo 6= 0 | xs(g(x,n)) 6= 0 | xn = 0.

−R(x) | − N (n) | N (g(n, x)).

and we would need additional axioms such as these:

−R(x) | − N (n) | R(xn).
−R(x) | − R(y) | R(x + y).
−R(x) | − R(y) | R(x ∗ y).
−R(x) | x + 0 = 0.

and so on for the other ring axioms.

2 Implicit typing in first order logic

Now here is the question: when formalizing this problem, do we need to relativize
the induction axioms and the ring axioms using R(x) and N (x), or not? Exper-
imentally, if we put the unrelativized axioms into Otter (Otter-λ is not needed,
since we have explicitly given the prover the required instance of induction), we
do find a proof. What does this proof actually prove? Certainly it shows that in
any integral domain whose underlying set is the natural numbers, there are no
nilpotents, since in that case all the variables range over the same set, and no
question of typing arises. We can prove informally that any countable integral
domain is isomorphic to one whose underlying set is the natural numbers. But
this is not the theorem that we set out to prove, so it may appear that we must
use R(x), N (x), and relativization to formalize this problem.
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That is, however, not so. The method of “implicit typing” shows that under
certain circumstances we can dispense with unary predicates such as R and N .
One assigns a type to each predicate, function symbol, and constant symbol,
telling what the sort of each argument is, and the sort of the value (in case of
a function; predicates have Boolean value). Specifically each argument position
of each function or predicate symbol is assigned a sort and the symbol is also
assigned a “value type” or “return type”. For example, in this problem the ring
operations + and ∗ have the type of functions taking two R arguments and
producing an R value, which we might express as type(R, +(R, R)). If we use
N for the sort of natural numbers then we need to use a different symbol for
addition on natural numbers, say type(N, plus(N, N )), and we need to use a
different symbol for 0 in the ring and zero in N . The Skolem symbol g in the
induction axiom has the type specification type(N, g(R)). The exponentiation
function has the type specification type(R, RN )).

Constants are considered as 0-ary function symbols, so they get assigned
types, for example type(R, 0) and type(N, o). We call a formula or term correctly
typed if it is built up consistently with these type assignments. Note that variables
are not typed; e.g. x + y is correctly typed no matter what variables x and y
are. Types as we discuss them here are not quite the same as types in most
programming languages, where variables are declared to have a certain type.
Here, when a variable occurs in a formula, it inherits a type from the term in
which it occurs, and if it occurs again in the same clause, it must have the same
type at the other occcurence for the clause to be considered correctly typed. Once
all the function symbols, constants, and predicate symbols have been assigned
types, one can check (manually) whether the clauses supplied in an input file are
correctly typed.

Then one observes that if the rules of inference preserve the typing, and if
the axioms are correctly typed, and the prover finds a proof, then every step
of the proof can be correctly typed. That means that it could be converted
into a proof that used unary predicates for the sorts. Hence, if it assists the
proof-finding process to omit these unary predicates, it is all right to do so.
This technique was introduced long ago in [4], but McCune says it was already
folklore at that time. It implies that the proof Otter finds using an input file
without relativization actually is a valid proof of the theorem, rather than just
of the special case where the ring elements are the natural numbers.

“Implicit typing” is the name of this technique, in which unary predicates
whose function would be to establish typing are omitted. There are two ways to
use implicit typing. First, we could just omit the unary predicates, let a theorem-
proving program find a proof, and afterwards verify by hand (or by a computer
program) that the proof is indeed well-typed. Second, we could verify that the
axioms are well-typed, and prove that the inference rules used in the prover
lead from correctly typed clauses to correctly typed clauses. Let us explore this
second alternative. In order to state and prove a theorem, we first give some
definitions:
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Definition 1. A type specification is an expression of the form type(R, f(U, V )),
where R, U , and V are “type symbols”. Any first-order terms not containing vari-
ables may be used as type symbols. Here ‘type’ must occur literally, and f can
be any symbol. The number of arguments of f , here shown as two, can be any
number, including zero.

The type R is called the value type of f . The symbol f is called the symbol
of the type specification, and the number of arguments of f is the arity.

Definition 2. A typing of a term is an assignment of types to the variables
occurring in the term and to each subterm of the term. A typing of a literal is
similar, but the formula itself must get value type bool. A typing of a clause is
an assignment that simultaneously types all the literals of the clause. A typing
of a term (or literal or clause or set of clauses) t is correct with respect to a list
of type specifications S provided that

(i) each occurrence of a variable in t is assigned the same type.
(ii) each subterm r of t is typed according to a type specification in S. That

is, if r is f(u, v) and f(u, v),u, and v are assigned types a,b,and c respectively,
then there is a type specification in S of the form type(a, f(b, c)).

(iii) each occurrence of each subterm r of t in t has the same value type.

In the definition, nothing prevents S from having more than one type speci-
fication for the same function symbol and arity. Condition (iii) is needed in such
a case.

The phrase, correctly typed term t, is short for “term t and a correct typing
of t with respect to some list of type specifications given by the context”.

Remark. Allowing type specifications to contains variables would correspond
to polymorphic types, i.e. overloading of function symbols. We do not allow such
typings, but of course at the meta-level we can refer to a “typing of the form
i(U, U ).” That covers any specific typing such as i(N, N ), etc. For first-order
theories, usually constant terms will suffice for naming the types (which are
then usually called sorts rather than types, as in “multi-sorted logic”).

The simplest theorem on implicit typing concerns the inference rule of (bi-
nary) resolution.1

Theorem 1. Suppose each function symbol and constant occurring in a theory
T is assigned a unique type specification, in such a way that all the axioms
of T are correctly typed (with respect to this list of type specifications). Then
conclusions reached from T by binary resolution (using first-order unification)
are also correctly typed.

Remark . This theorem is perhaps implicit in [4]. We give it here mainly to
prepare the way for extensions to lambda logic in the next section.

1 In the following theorem, we assume (as is customary with resolution) that after a
theory has been brought to clausal form, the variables in distinct clauses are renamed
so that no variable occurs in more than one clause.
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Proof. Suppose that literal P (r) resolves with literal −P (t), where r and t are
terms; then there is a substitution σ such that rσ = tσ, the unifying substitution.
Here P stands for any atomic formula and t and r might stand for several terms if
P has more than one argument position. Since P (r) and P (t) are correctly typed
by hypothesis, r and t must have the same value type (if they are not variables).
The result of the resolution will be a disjunction of literals Qσ|Sσ, where Q and
S are the remaining (unresolved) literals in the clauses that originally contained
P (r) and −P (t), respectively. Now Q and S are correctly typed by hypothesis,
so we just need to show that applying the substitution σ to a correctly typed
term or literal will produce a correctly typed term or literal. This will be true
by induction on the complexity of terms, provided that substitution σ assigns
to each variable x in its domain, a term q whose value type is the same as the
value type of x in the clause in which x occurs. In first-order unification (but not
in lambda unification) variables get assigned a value in unification only when
the variable occurs as an argument, either of a parent term or a parent literal.
That is, a variable cannot occur in the position of a literal. Thus when we are
unifying f(x, u) and f(q, v), x will get assigned to q, and the type of x and the
value type of q must be the same since they are both in the first argument place
of f . That completes the proof.

Does this theorem apply to the no-nilpotents example? We have to be careful
about the type specification of the equality symbol. If we specify type(bool, =
(R, R)), then we cannot use the same equality symbol in the axioms for the
natural numbers, for example s(x) 6= 0 and x = y|s(x) 6= s(y). However, Otter
treats any symbol beginning with EQ as an equality; = is a synonym for EQ, but
one can also use, for example EQ2. Therefore, if we want to apply the theorem,
we need to use two different equality symbols. Of course, we could just use =
throughout and verify afterwards that the proof can be correctly typed, as = is
never used in the same clause for equality between natural numbers and equality
between ring elements; but if we want to be assured in advance that any proof
Otter will find will be correctly typable, then we need to use different equality
symbols. If we do so, then the theorem does apply.

There are, of course, more inference rules than just binary resolution. Even in
this example, the proof uses demodulation. The theorem above can be extended
to included additional rules of inference:

Theorem 2. Suppose each function symbol and constant occurring in a theory
T is assigned a unique type specification, in such a way that all the axioms of
T are correctly typed (with respect to this list of type specifications). The type
specifications of equality symbols must have the form type(bool, = (X, X)) for
some type X. Then conclusions reached from T by binary resolution, hyperreso-
lution, factoring2 , demodulation, and paramodulation (using first-order unifica-
tion in applying these rules) are also correctly typed, provided demodulation and
paramodulation are not applied to or from variables.
2 The rule of “factoring” permits the derivation of a new clause by unifying two literals

in the same clause that have the same sign, and applying the resulting substitution
to the entire clause.
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Remark. The theorem cannot be extended to apply to paramodulation from
variables. An example is given below.
Proof. Conclusions reached by hyperresolution can also be reached by binary
resolution, so that part of the theorem follows from the previous theorem. The
results on factoring, paramodulation and demodulation follow from the fact that
applying a substitution produced by unification preserves correct typings. The
lemma that we need is that if p and r unify, then they have the same value type.
If neither is a variable, this follows from the assumption that the axioms of T
are correctly typed. (If one is a variable, this need not be the case.)

Suppose, for example, that r = s is to be used as a demodulator on term
t. The demodulator is applied by unifying r with a certain subterm p of t. Let
σ be the substitution that performs this unification, so pσ = rσ. Then p and
r, since they unify, have the same value type, and hence p, pσ, and rσ all have
the same value type. The type specification of equality must have the form
type(bool, = (X, X)) for some type X; so r and s have the same value type,
so rσ and sσ have the same value type. Hence sσ and pσ also have the same
value type, and hence the result of replacing p in t by sσ (the result of the
demodulation) is a correctly typed term.

Example. This example will show that one cannot allow “overloading”, or
multiple type specifications for the same symbol, and still use implicit typing
with guaranteed correctness. For example, suppose we want to use x + y both
for natural numbers and for integers. Thinking of integers, we write the axiom
x + (−x) = 0, and thinking of natural numbers we write 1 + x 6= 0, Resolving
these clauses, we find a contradiction upon taking x = 1.

Example. This example, taken from Euclidean geometry, shows that the the-
orem cannot be extended to paramodulation from variables. In this example,
EQpt stands for equality between points, EQline stands for equality between
lines, I(a, b) stands for point a incident to line b, and p1(u) and p2(u) are two
distinct points on line u. The types here are boolean, point, and line. Axioms
(1) and (2) are correctly typed:

EQpt(x, y)|I(x, line(x, y)). (1)
EQline(line(p1(u), p2(u)), u). (2)

Paramodulating from the first clause of (1) into (2), we unify x with line(p1(u), p2(u)),
and thus derive

EQline(y, u)|I(line(p1(u), p2(u)), line(line(p1(u), p2(u)), y)). (3)

This conclusion is incorrectly typed since y is a point and u is a line.
Example. This simpler example illuminates the situation with regard to paramod-

ulation from variables. Consider the three unit clauses x = a, P (b), and −P (c).
These clauses lead to a contradiction using paramodulation from the variable
x and binary resolution. But without paramodulation from variables, no con-
tradiction can be derived. This shows that we have lost first-order refutation
completeness, already in the first order case, as the price of implicit typing. But
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this is good: if equality is between objects of type A and P is a predicate on ob-
jects of type B, then these clauses are not contradictory. This loss of first-order
completeness already occurs in the first-order case, and is not a phenomenon
special to lambda logic.

3 Lambda logic and lambda unification

Lambda logic is the logical system one obtains by adding lambda calculus to first
order logic. This system is formulated, and some fundamental metatheorems are
proved, in [1]. The appropriate generalization of unification to lambda logic
is this notion: two terms are said to be lambda unified by substitution σ if
tσ = sσ is provable in lambda logic. An algorithm for producing lambda unifying
substitutions, called lambda unification, is used in the theorem prover Otter-λ,
which is based on lambda logic rather than first-order logic, but is built on
the well-known first-order prover Otter [3]. In Otter-λ, lambda unification is
used, instead of only first-order unification, in the inference rules of resolution,
factoring, paramodulation, and demodulation.

In Otter-λ input files, we write lambda(x, t) for λx. t, and we write Ap(x, y)
for x applied to y, which is often abbreviated in technical papers to x(y) or
even xy. In this paper, Ap will always be written explicitly, but we use both
lambda(x, t) and λx. t.

Our main objective in this section is to define the lambda unification algo-
rithm. As we define it here, this is a non-deterministic algorithm: it can return,
in general, many different unifying substitutions for two given input terms. As
implemented in Otter-lambda, it returns just one unifier, making some specific
choice at each non-deterministic choice point. As for ordinary unification, the
input is two terms t and s (this time terms of lambda logic) and the output,
if the algorithm succeeds, is a substitution σ such that tσ = sσ is provable in
lambda logic.

We first give the relatively simple clauses in the definition. These have to do
with first-order unification, alpha-conversion, and beta-reduction.

The rule related to first-order unification just says that we try that first;
for example Ap(x, y) unifies with Ap(a, b) directly in a first-order way. However,
the usual recursive calls in first-order unification now become recursive calls to
lambda unification. In other words: to unify f(t1, . . . , tn with g(s1, . . . , sm), this
clause does not apply unless f = g and n = m; in that case we do the following:

for i = 1 to n {
τ = unify(ti, si);
if (τ = failure)

return failure;
σ = σ ◦ τ; }

return σ
Here the call to unify is a recursive call to the algorithm being defined.

The rule related to alpha-conversion says that, if we want to unify lambda(z, t)
with lambda(x, s), let τ be the substitution z := x and then unify tτ with s, re-
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jecting any substitution that assigns a value depending on x.3 If this unification
succeeds with substitution σ, return σ.

The rule related to beta-reduction says that, to unify Ap(lambda(z, s), q)
with t, we first beta-reduce and then unify. That is, we unify s[z := q] with t
and return the result.

Lambda unification’s most interesting instructions tell how to unify Ap(x, w)
with a term t, where t may contain the variable x, and t does not have main
symbol Ap. Note that the occurs check of first-order unification does not apply
in this case. The term w, however, may not contain x. In this case lambda
unification is given by the following non-deterministic algorithm:
1. Pick a masking subterm q of t. That means a subterm q such that every
occurrence of x in t is contained in some occurrence of q in t. (So q “masks” the
occurrences of x; if there are no occurrences of x in t, then q can be any subterm
of t, but see the next step.)
2. Call lambda unification to unify w with q. Let σ be the resulting substitution.
If this unification fails, or assigns any value other than a variable to x, return
failure. If it assigns a variable to x, say x := y reverse the assignment to y := x
so that x remains unassigned.
3. If qσ occurs more than once in tσ, then pick a set S of its occurrences. If q
contains x then S must be the set of all occurrences of qσ in t. Let z be a fresh
variable and let r be the result of substituting z in tσ for each occurrence of qσ
in the set S.
4. Append the substitution x := λz. r to σ and return the result.

There are two sources of non-determinism in the above, namely in steps 1 and
3. These steps are made deterministic in Otter-λ as follows: in step 1, if x occurs
in t, we pick the largest masking subterm q that occurs as a second argument of
Ap.4 If x occurs in t, but no masking subterm occurs as a second argument of
Ap, we pick the smallest masking subterm. If x does not occur in t, we pick a
constant that occurs in t; if there is none, we fail. In step 3, if q does not contain
x, then an important application of this choice is to proofs by mathematical
induction, where the choice of q corresponds to choosing a constant n, replacing
some of the occurrences of n by a variable, and deciding to prove the theorem by
induction on that variable. Therefore the choice of S is determined by heuristics
that prove useful in this case. In the future we hope to implement a version
of lambda unification that returns multiple unifiers by trying different sets S
in step 3. Our proofs in this paper apply to the full non-deterministic lambda
unification, as well as to any deterministic versions, unless otherwise specified.

Example. Lambda unification can lead to untypable proofs, for example those
needed to produce fixed points in lambda calculus. As an example, if we unify
3 Care is called for in this clause, as illustrated by the following example: Unify

lambda(x, y) with lambda(x, f(x)). The “solution” y = f(x) is wrong, since substi-
tuting y = f(x) in lambda(x, y) gives lambda(z, f(x)), because the bound variable
is renamed to avoid capture.

4 The point of this choice is that, if we want the proof to be implicitly typable, then
q should be chosen to have the same type as w, and w is a second argument of Ap.
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Ap(x, y) with f(Ap(x, y)), the masking subterm q is x itself; w is y so σ is y := x;
wσ is x and tσ is Ap(x, x). Thus we get the following result:5

x := lambda(z, f(Ap(z, z))) y := x

Type restrictions will be violated if we have specified the typing:

type(B, Ap(i(A, B), A)). type(B, f(B)).

Variable x has type i(A, B), and variable y has type A, so the unification of x
and y violates type restrictions, since i(A, B) is not the same type as A.

Definition 3. We say that a particular lambda unification (of Ap(X, w) with
t) is type-safe (with respect to some explicit or implicit typings) if the masking
subterm q selected by lambda unification has the same type (with respect to those
typings) as the term w, and q is a proper subterm of t (unless the two argu-
ments of Ap have the same type). We also require that the value type assigned
to Ap(X, w) is the same as the value type assigned to t.

The example preceding the definition illustrates a lambda unification that is not
type-safe for any reasonable typing. The masking subterm is x; type safety would
require x to be assigned the same type as y. But x occurs as a first argument
of Ap and y as a second argument of Ap. Therefore the type specification of Ap
would have to be of the form type(V, Ap(U, U )); but normally Ap will have a
type specification of the form type(B, Ap(i(A, B), A)).

Remark. A discussion of the relationship, if any, between lambda unification
and the higher-type unification algorithms already in the literature is beyond the
scope of this paper. The algorithms apply to different systems and have different
definitions. Similarly, the exact relationship between lambda logic and various
sytems of higher-order logic, if there is any, is beyond the scope of this paper (or
any paper of this length).

4 Implicit typing in lambda logic

If we consider the no-nilpotents example in lambda logic, we can state the axiom
of mathematical induction in full generality, and Otter-lambda can use lambda
unification to find the specific instance of induction that is required. (See the
examples on the Otter-lambda website.) The proof, obtained without relativiz-
ing to unary predicates, is correctly typable. This is not an accident: there are
theorems about implicit typing that guarantee it.

We first give an example to show that the situation is not as straightforward
as in first-order logic. If we use the axioms of group theory in lambda logic,
must we relativize them to a unary predicate G(x)? As we have seen above,

5 The symbol i does not have to be “defined” here; type assignments can be arbitrary
terms. But intuitively, i(A,B) could be thought of as the type of functions from type
A to type B.
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that is not necessary when doing first-order inference. We could, for example,
put in some axioms about natural numbers, and not relativize them to a unary
predicate N (x), and as long as our axioms are correctly typed, our proofs will
be correctly typed too. There is, however, reason to worry about this when we
move to lambda logic.

In lambda calculus, every term has a fixed point. That is, for every term F we
can find a term q such that Ap(F, q) = q. Another form of the fixed point theorem
says that for each term H, we can find a term f such that Ap(f, x) = H(f, x).
Applying this to the special case when H(f, x) = c ∗ Ap(f, x), where c is a
constant and ∗ is the group multiplication, we get Ap(f, x) = c ∗ Ap(f, x). It
follows from the axioms of group theory that c is the group identity. On the
other hand, in lambda logic it is given as an axiom that there exist two distinct
objects, say c and d, and since each of d and c must equal the group identity,
this leads to a contradiction. Looked at model-theoretically, this means it is
impossible, given a lambda model M , to define a binary operation on M and an
identity element of M that make M into a group.

Referees of other papers about Otter-lambda have complained about this
and similar examples. The referee’s point about this example was that I ought
to relativize the group axioms to a unary predicate G. The point of this paper
is that there are good theoretical reasons why I do not need to do that.

First, let us consider how to type the relevant axioms. Writing G for the type
of group elements, 1 for the group identity, and i(G, G) for the type of maps from
G to G, we would have the following type specifications:

type(G, 1).
type(G, ∗(G, G)).
type(G, Ap(i(G, G), G).
type(i(G, G), lambda(G, G)).

In general, of course, we want type(i(X, Y ), lambda(X, Y )), but the special case
shown is enough in this example. According to these type specifications, the
axioms are correctly typable, and when Otter-λ produces a proof, the proof
turns out to also be correctly typable. This is not an accident, as we will see.

In defining type specifications for lambda logic, the following technicality
comes up: Normally in predicate logic we tacitly assume that different symbols
are used for function symbols and predicate symbols. Thus P (P (c)) would not be
considered a well-formed formula. In lambda logic we do wish to be able to define
propositional functions, as well as functions whose values are other objects, so we
allow Ap both as a predicate symbol and a function symbol. However, except for
Ap, we follow the usual convention that predicate symbols and function symbols
use distinct alphabets. This is the reason for clauses (4) and (5) in the following
definition.

Definition 4. A list of type specifications S is called coherent if
(1) for each (predicate or function) symbol f ( except possibly Ap and lambda)
and arity n, it contains at most one type specification of symbol f and arity n;
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the value type of a predicate symbol must be Prop and of a function symbol, must
not be Prop.
(2) type(i(X, Y ), lambda(X, Y )) belongs to S if and only if

type(Y, Ap(i(X, Y ), X)) belongs to S.
(3) all type specifications with symbol Ap have the form type(V, Ap(i(U, V ), U )),
for the same type U , which is called the “ground type” of S.
(4) all type specifications with symbol lambda have the form

type(i(U, V ), lambda(U, V )),6 where U is the ground type of S.
(5) There are at most two type specifications in S with symbol Ap; if there are
two, then exactly one must have value type Prop.

Conditions (2) and (3) guarantee that beta-reduction carries correctly typed
terms to correctly typed terms.

If S is a coherent list S of type specifications, it makes sense to speak of “the
type assigned to a term t by S”, if there is at least one type specification in S
for the main symbol and arity of t. Namely, unless the main symbol of t is Ap,
only one specification in S can apply, and if the main symbol of t is Ap, then we
apply the specification that does not have value type Prop. Similarly, it makes
sense to speak of “the type assigned to an atomic formula by S”. When the main
symbol of t is Ap, we can speak of “the type assigned to t as a term” or “the
type assigned to t as a formula”, using the specification that does not or does
have Prop for its value type.

Theorem 3. Let S be a coherent list of type specifications. Let s and t be two
correctly typed terms or two correctly typed atomic formulas with respect to S.
Let σ be a substitution produced by successful type-safe lambda unification of s
and t. Then sσ and tσ are correctly typed, and S assigns the same type to s, t,
and sσ.

Example. Let s be Ap(X, w) and t be a + b. We can unify s and t by the
substitution σ given by X := lambda(x, x + b). If type(0, Ap(i(0, 0), 0)) and
type(0, +(0, 0)) then these are correctly typed terms and the types of sσ and a+b
are both 0. It may be that Ap also has a type specification type(Prop, Ap(i(0, P rop), 0)),
used when the first argument of Ap defines a propositional function. However,
this additional type specification will not lead to mis-typed unifications.
Proof. We proceed by induction on the length of the computation by lambda
unification of the substitution σ.

(i) Suppose s is a term f(r, q) (or with more arguments to f), and either
f is not Ap, or r is neither a variable nor a lambda term. Then t also as the
form f(R, Q) for some R and Q, and σ is the result of unifying r with R to
get rτ = Rτ and then unifying qτ with Qτ , producing substitution ρ so that
σ = τ ◦ ρ. By the induction hypothesis, rτ is correctly typed and gets the same
type as r and Rτ ; again by the induction hypothesis, qτρ and Qτρ are correctly
6 Intuitively, this says that if z has type X and t has type Y then lambda(z, t) has

type i(X,Y ), the type of functions from X to Y .
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typed and get the same type as q. Then sσ = f(rσ, qσ) = f(rτρ, qτρ) is also
correctly typed.

(ii) The argument in (i) also applies if s is Ap(r, q) and t is Ap(R, Q) and
lambda unification succeeds by unifying these terms as if they were first-order
terms.

(iii) If s is a constant then sσ is s and there is nothing to prove.

(iv) If s is a variable, what must be proved is that t and s have the same value
type. A variable must occur as an argument of some term (or atom) and hence
the situation really is that we are unifying P (s, . . .) with some term q, where P
is either a function symbol or a predicate symbol. If P is not Ap, then q must
have the form P (t, . . .), and t and s occur in corresponding argument positions
(not necessarily the first as shown). Since these terms or atoms P (t, . . .) and
P (s, . . .) are correctly typed, and S is coherent, t and s do have the same types.
The case when P is Ap will be treated below.

(v) Suppose s is Ap(r, q), where r = lambda(z, p), and z does occur in p.
Then s beta-reduces to p[z := q], and lambda unification is called recursively to
unify p[z := q] with t. By induction hypothesis, t, tσ, p[z := q], and p[z := q]σ are
well-typed and are assigned the same value type, which must be the value type,
say V , of p. Since S is coherent, the type assigned to lambda(z, p) is i(U, V ),
where U is the “ground type”, the type of the second arg of Ap. The type of q is
U since q occurs as the second arg of Ap in the well-typed term s. The type of
s, which is Ap(r, q), is V . We must show that sσ is well-typed and assigned the
value type V . Now sσ is Ap(rσ, qσ). It suffices to show that qσ has type U and
rσ has type i(U, V ). We first show that the type of qσ is U . Since z has type
U in lambda(z, p), qσ occurs in the same argument positions in p[z := q]σ as z
does in p, and since z does occur at least once in p, and p[z := q]σ is well-typed,
qσ must have the same type as z, namely U . Next we will show that rσ has
type i(U, V ). We have rσ = lambda(z, p)σ = lambda(z, pσ) (since the bound
variable z is not in the domain of σ). We have pσ[z := qσ] = p[z := q]σ] and the
type of the latter term is V as shown above. The type of A[z := B] is the type
of A, and moreover A[z := B] is well-typed provided A and B are well-typed
and z gets the same type as B. That observation applies here with A = pσ and
B = qσ, since the type of z is U and the type of qσ is U . Therefore the type
of pσ is the same as the type of pσ[z := qσ], which is the same as p[z := q]σ,
which has type the same as p[z := q], which we showed above to be V . Since
rσ = lambda(z, pσ), and z has type U , rσ has type i(U, V ), which was what had
to be proved.

(vi) There are two cases not yet treated: when s is Ap(X, w), and when
s is a variable X occurring in the context Ap(X, w). We will treat these cases
simultaneously. As described in the previous section, the algorithm will (1) select
a masking subterm qσ of tσ (2) unify w and q with result σ (failing if this fails),
(3) create a new variable z, and substitute z for some or all occurrences of qσ
in tσ, obtaining r, and (4) produce the unifying substitution σ together with
X := lambda(z, r).
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Assume that t is a correctly typed term. Then every occurrence of q in t
has the same type, by the definition of correctly typed. Since by hypothesis
this is type-safe lambda unification, q and w have the same type, call it U .
Since q unifies with w, by the induction hypothesis qσ and wσ are correctly
typed and get the same types as q and w, respectively, namely U . If Ap(X, w)
has type Prop, then the type of s and that of t are the same by hypothesis.
Otherwise, both occur as arguments of some function or predicate symbol P , in
corresponding argument positions, and hence, by the coherence of S, they are
assigned the same (value) type V . Then X has the type i(U, V ). We now assign
the fresh variable z the type U ; then r is also correctly typed, and gets the same
type V as s and t, since it is obtained by substituting z for some occurrences
of qσ in tσ. For this last conclusion we need to use the fact that q is a proper
subterm of t, by the definition of type-safe unification; hence r is not a variable,
so the value type of r is well-defined, since S is coherent. Since S is coherent,
there is a type specification in S of the form type(i(U, V ), lambda(U, V )). Thus
the term lambda(z, r) can be correctly typed with type i(U, V ), the same type
as X. Hence Xσ has the same type as X, and sσ has the same type as s. That
completes the proof of the theorem.

The next theorem mentions paramodulation and paramodulation from a vari-
able. Readers not already familiar with these terms will find them explained in
the last paragraph of the proof below.

Theorem 4 (Implicit Typing for Lambda Logic). Let A be a set of clauses,
and let S be a coherent set of type specifications such that each clause in A
is correctly typable with respect to S. Then all conclusions derived from A by
binary resolution, hyperresolution, factoring, paramodulation, and demodulation
(including beta-reduction), using type-safe lambda unification in these rules of
inference, are correctly typable with respect to S, provided paramodulation from or
into variables are not allowed, and paramodulation into or from terms Ap(X, w)
with X a variable is not allowed, and demodulators similarly are not allowed to
have variables or Ap(X, w) terms on the left.

Remark. The example after Theorem 3 shows that the second restriction on
paramodulation is necessary: otherwise we could paramodulate from x + 0 = x
into Ap(X, x) getting X := lambda(x, x + 0), but here Ap has value type Prop,
which is not the type of x + 0.
Proof. Note that a typing assigns type symbols to variables, and the scope of a
variable is the clause in which it occurs, so as usual with resolution, we assume
that all the variables are renamed, or indexed with clause numbers, or otherwise
made distinct, so that the same variable cannot occur in different clauses. In
that case the originally separate correct typings T [i] (each obtained from S by
assigning values to varaibles in clause C[i]) can be combined (by union of their
graphs) into a single typing T . We claim that the set of clauses A is correctly
typed with respect to this typing T . To prove this correctness we need to prove:

(i)each occurrence of a variable in A is assigned the same type by T . This fol-
lows from the correctness of C[i], since because the variables have been renamed,
all occurrences of any given variable are contained in a single clause C[i].
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(ii) If r is f(u, v), and r occurs in A, and f(u, v),u, and v are assigned types
a,b,c respectively, then there is a type specification in S of the form type(a, f(b, c)).
If the term r occurs in A, then r occurs in some C[i], so by the correctness of
T [i], there is a type specification in S as required.

(iii) each occurrence of each term r that occurs in A has the same value type.
This follows from the coherence of S. The different typings T [i] are not allowed
to assign different value types to the same symbol and arity.

Hence A is correctly typed with respect to T .
All references to correct typing in the rest of the proof refer to the typing T .
We prove by induction on the length of proofs that all proofs from A using

the specified rules of inference lead to correctly typed conclusions. The base
case of the induction is just the hypothesis that A is correctly typable. For the
induction step, we take the rules of inference one at a time. We begin with binary
resolution. Suppose the two clauses being resolved are P |Q and −R|B, where
substitution σ is produced by lambda unification and satisfies Pσ = Rσ. Here
Q and B can stand for lists of more than one literal, in other words the rest of
the literals in the clause, and the fact that we have shown P and −R as the first
literals in the clause is for notational convenience only. By hypothesis, P |Q is
correctly typed with respect to S, and so is −R|B, and by Theorem 3, Pσ|Qσ
and −Rσ|Bσ are also correctly typed. The result of the inference is Qσ|Bσ.
But the union of correctly typed terms, literals, or sets of literals (with respect
to a coherent set of type specifications) is again correctly typed, by the same
argument as in the first part of the proof. In other words, coherence implies that
if some subterm r occurs in both Qσ and in Bσ then r gets the same value
type in both occurrences. That completes the induction step when the rule of
inference is binary resolution.

Hyperresolution and negative hyperresolution can be “simulated” by a se-
quence of binary resolutions, so the case in which the rule of inference is hyper-
resolution or negative hyperresolution reduces to the case of binary resolution.
The rule of “factoring” permits the derivation of a new clause by unifying two
literals in the same clause that have the same sign, and applying the resulting
substitution to the entire clause. By Theorem 3, a clause derived in this way is
well-typed if its premise is well-typed.

Now consider paramodulation. In that case we have already deduced t = q
and P [z := r], and unification of t and r produces a substitution σ such that tσ =
rσ. The conclusion of the rule is P [z := qσ]. (This is the promised explanation
of paramodulation.) Paramodulation from variables is the case in which t is a
variable. Paramodulation into a variable is the case in which r is a variable.
We have disallowed paramodulation from or into variables in the statement of
the theorem; therefore t and r are not variables. Let us write Type(t) for the
value type of (any term) t. Because t = q is correctly typed, we have Type(t) =
Type(q). If neither t nor q is an Ap term, then Type(tσ) = Type(qσ), since they
have the same functor. If one of them is an Ap term, then by hypothesis it is
not of the form Ap(X, w), with X a variable. Then by Theorem 3, Type(tσ) =
Type(t) and Type(qσ) = Type(q) = Type(t) = Type(tσ). Thus in any case
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Type(qσ) = Type(tσ). The value type of r is the same at every occurrence,
since P [z := r] is correctly typed. To show that P [z := qσ] is correctly typed, it
suffices to show that Type(qσ) = Type(r), which is the same as the type of rσ.
Since the terms t and r unify, and neither is a variable, their main symbols are
the same, since by hypothesis r is not of the form Ap(X, w). Hence Type(r) =
Type(rσ) = Type(tσ) = Type(qσ), which is what had to be shown.

Now consider demodulation. In this case we have already deduced t = q and
P [z := tσ] and we conclude P [z := qσ], where the substitution σ is produced
by lambda unification of t with some subterm ρ of P [z := ρ]. Taking r = tσ, we
see that demodulation is a special case of paramodulation, so we have already
proved what is required. That completes the proof of the theorem.

Example: fixed points. The fixed point argument which shows that the group
axioms are contradictory in lambda logic requires a term Ap(f, Ap(x, x)). The
part of this that is problematic is Ap(x, x). If the type specification for Ap is
type(V, Ap(i(U, V ), U )), then for Ap(x, x) to be correctly typed, we must have
V = U = i(U, U ). If U and V are type symbols, this can never happen, so the
fixed point construction cannot be correctly typed. It follows from the theorem
above that this argument cannot be found by Otter-λ from a correctly typed
input file. In particular, in lagrange3.in we have correctly typed axioms, so we
will not get a contradiction from a fixed point argument.

On the other hand, in file lambda4.in, we show that Otter-λ can verify the
fixed-point construction. The input file contains the negated goal

Ap(c, Ap(lambda(x, Ap(c, Ap(x, x))), lambda(x,Ap(c, Ap(x,x)))))
6= Ap(lambda(x, Ap(c, Ap(x, x))), lambda(x, Ap(c,Ap(x, x)))).

Since this contains the term Ap(x, x), it cannot be correctly typed with respect
to any coherent list of type specifications T . Otter-λ does find a proof using
this input file, which is consistent with our argument above that fixed-point
constructions will not occur in proofs from correctly typable input files. The fact
that the input file cannot be correctly typed, which we just observed directly,
can also be seen as a corollary of the theorem, since Otter-λ finds a proof. The
fact that the theoretical result agrees with the results of running the program is
a good thing.

Remarks. (1) The (unrelativized) axioms of group theory are contradictory
in lambda logic, but if we put in only correctly-typed axioms, Otter-λ will find
only correctly typed proofs, which will be valid in the finite type structure based
on any group, and hence will not be proofs of a contradiction.

(2) We already knew that resolution plus factoring plus paramodulation from
non-variables is not refutation-complete, even for first-order logic; and we re-
marked when pointing that out that this permits typed models of some theories
that are inconsistent when every object must have the same type. Here is another
illustration of that phenomenon in the context of lambda logic.

(3) Of course Otter-lambda can find the fixed-point proof that gives the
contradiction; but to make it do so, we need to put in some non-well-typed
axiom, such as the negation of the fixed-point equation.
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5 Enforcing type-safety

The theorems above are formulated in the abstract, rather than being theorems
about a particular implementation of a particular theorem-prover. As a practical
matter, we wish to formulate a theorem that does apply to Otter-λ and covers
the examples posted on the Otter-λ website, some of which have been mentioned
here. Otter-λ never uses paramodulation into or from variables, so that hypoth-
esis of the above theorems is always satisfied. But Otter-λ does not always use
only type-safe lambda unification; nor would we want it to do so, since it can find
some untyped proofs of interest, e.g. fixed points, Russell’s paradox, etc. Once
Otter-λ finds a correctly typable proof, we can check by hand (and could easily
check by machine) that it is correctly typable. Nevertheless it is of interest to be
able to set a flag in the input file that enforces type-safe unification. In Otter-λ,
if you put set(types) in the input file, then only certain lambda unifications
will be performed, and those unifications will always be type-safe.

Spefically, restricted lambda unification means that, when selecting a masking
subterm, only a second argument of Ap or a constant will be chosen. This is the
restriction imposed by the flag set(types). We now prove that this enforces
type safety under certain conditions.

Theorem 5 (Type safety of restricted lambda unification). Suppose that
a given set of axioms admits a coherent type specification in which there is no typ-
ing of the form Ap(U, U ), and all constants receive type U . Then all deductions
from the given axioms by binary resolution, factoring, hyperresolution, demodu-
lation (including beta-reduction) paramodulation (except into or from variables
and Ap terms), lead to correctly typable conclusions, provided that restricted
lambda unification is used in those rules of inference.

Proof. It suffices to show that lambda unifications will be type-safe under these
hypotheses. The unification of Ap(x, w) with t is type-safe (by definition) if
in step (1) of the definition of lambda unification, the masking subterm q of
t has the same type as w. Now q is either a constant or term containing x
that appears as a second argument of Ap, since those are the “restrictions” in
restricted lambda unification. If q is a variable then it must be x, and must
occur as a second argument of Ap; but x occurs as a first argument of Ap, and
all second arguments of Ap get the same type, so there must be a typing of
the form type(T, Ap(U, U )). But such a typing is not allowed, by hypothesis.
Therefore q is not a variable. Then if q contains x, it must occur as a second
argument of Ap, as does w; hence by hypothesis w and q get the same type.
Hence we may assume q is a constant. But by hypothesis, all constants get the
same type as the second arguments of Ap. That completes the proof.

6 Some examples covered by Theorem 5

It remains to substantiate the claims made in the abstract and introduction,
that the theorems in this paper justify the use of implicit typing in Otter-λ for
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the various examples mentioned. The first theorems apply in generality to any
partial implementation of non-deterministic lambda unification, used in com-
bination with resolution and paramodulation, but disallowing paramodulation
into and from variables. Only Theorem 5 applies to Otter-lambda specifically,
when the set(types) command is in the input file. We will now check explicitly
that interesting examples are covered by this theorem.

Let us start with the “no nilpotents” example. It appears prima facie not to
meet the hypotheses of Theorem 5, since that theorem requires that all constants
have the same type as the second argument of Ap. In this example the type of Ap
is the one needed for mathematical induction: type(Prop, Ap(i(N, Prop), N )), so
the type of the second arg of Ap is N ; but the axioms include a constant o for
the zero of the ring. This is not a serious problem: we can simply replace o in the
axioms by zero(0), and give zero the type specification type(R, zero(N )). The
term zero(0) is not a constant, so it won’t be selected as a masking term (where
it would interfere with the proof of Theorem 5). But it will be treated essentially
as a constant elsewhere in the inference process; and if we were worried about
that, we could use a weight template to ensure that it has the same weight as a
constant and hence will be treated exactly as a constant. On the logical side we
have the following lemma to justify the claim:

Lemma 1. Let T be a theory with at least one constant c. Let T ∗ be obtained
from T by adding a new function symbol f , but no new axioms. Then (i) T ∗ plus
the axioms c = f(x) is conservative over T .

(ii) If T contains another constant b and we let Ao be the result of replacing
c by f(b) in A, then T proves A if and only if T ∗ proves Ao.

(iii) There is an algorithm for transforming any proof of Ao in T ∗ to a proof
of A in T .

Proof. (i) Every model of T can be expanded to a model of T ∗ plus c = f(x)
by interpreting f as the constant function whose value is the interpretation of c.
The completeness theorem then yields the stated conservative extension result.

(ii) Ao is equivalent to A in T ∗ plus c = f(x), so by (i), Ao is provable in T ∗

plus c = f(x) if and only if T proves A. In particular, if T ∗ proves Ao then T
proves A. Conversely, if T proves A and we just replace c with f(b) in the proof,
we get a proof of Ao in T ∗.

(iii) The algorithm is fairly obvious: simply replace every term f(t) in the
proof with c. (Not just terms f(b) but any term with functor f is replaced by c.)
Terms that unify before this replacement will still unify after the replacement,
so resolution proof steps will remain valid. The axioms of T ∗ plus c = f(x) are
converted to axioms of T plus c = c. Paramodulation steps remain paramod-
ulation steps and demodulations remain demodulations. Since no variables are
introduced, paramodulations that were not from or into variables are still not
from or into variables. That completes the proof of the lemma.

This lemma shows us that logically, the formulation of the no-nilpotents prob-
lem with zero(0) for the ring zero is equivalent to the original formulation with
a constant o for the ring zero; and Theorem 5 directly applies to the formulation
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with o(0). In practice, if we run Otter-lambda with o replaced by zero(0) in
the input file, we find the same proof as before, but with o replaced by zero(0).
In essence this amounts to the observation that o was never used as a masking
term in lambda unification in the original proof. Technically we should run the
input file with zero(0) first. Theorem 5 guarantees that if we find a proof, it will
be well-typed. The lemma guarantees that we can convert it into a proof of the
original formulation using a text editor to replace all terms with functor zero
by the original constant o.

We conclude with another example. Bernoulli’s inequality is

(1 + nx) < (1 + x)n if x > −1 and n > 0 is an integer.

Otter-lambda, in a version that calls on MathXpert [2] for “external simplifica-
tion”, is able to prove this inequality by induction on n, being given only the
clausal form of Peano’s induction axiom, with a variable for the induction pred-
icate. The interest of the example in the present context is the fact that three
types are involved: real numbers, positive integers, and propositions. The propo-
sitional functions all have N , the non-negative integers, for the ground type, but
the types are not disjoint: N is a subset of the reals R. Moreover, the left-hand
side of the inequality uses n in multiplication, so if multiplication is typed to
take two real arguments, the inequality as it stands will not be well-typed.

The solution is to introduce a symbol for an injection map i : N → R. The
inequality then becomes

(i(1) + i(n)x) < (i(1) + x)n

This formulation is well-typed, if we type i as a function from N to R. Again, in
the definition of exponentiation we have to use 0 for the natural number zero,
and zero(0) for the real number zero, so that all the constants will have type N .
If that is done, Theorem 5 applies, and we can be assured that the inference steps
performed by Otter-lambda proper will lead from well-typed formulas to well-
typed formulas. However, the theorem does not cover the external simplification
steps performed by MathXpert. To ensure that these do not lead to mis-typed
conclusions, we have to discard any results containing a minus sign or division
sign, as that might lead out of the domain of integers. Problems involving em-
bedded subtypes also arise even in typed theorem provers or proof checkers, so
it is interesting that those problems are easily solved in lambda logic. The inter-
ested reader can find the input and output files for this and other examples on
the Otter-lambda website.
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