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Reasoning and problem-solving programs must eventually allow the full use
of quantifiers and sets, and have strong enough control methods to use them
without combinatorial explosion. 1

–J. McCarthy

Abstract

We show that Prolog is intimately connected with Gentzen’s cut-free sequent
calculus G , analyzing Prolog computations as the construction of certain cut-
free derivations. We introduce a theorem-proving program GENTZEN based
on Gentzen’s sequent calculus, which incorporates some features of Prolog’s
computation procedure. We show thatGENTZEN has the following properties:
(1) It is (non-deterministically) sound and complete for first-order intuitionistic
predicate calculus; (2) Its successful computations coincide with those of Prolog
on the Horn clause fragment (both deterministically and non-deterministically).
The proofs of (1) and (2) contain a new proof of the completeness of (non-
deterministic) Prolog for Horn clause logic, based on our analysis of Prolog
in terms of Gentzen sequents instead of on resolution. GENTZEN has been
implemented and tested on examples including some proofs by induction in
number theory, an example constructed by J. McCarthy to show the limitations
of Prolog, and “Schubert’s Steamroller.” An extension of GENTZEN also
provides a decision procedure for intuitionistic propositional calculus (but at
some cost in efficiency).

1McCarthy [1987], p. 1032.
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1 Introduction

Prolog is a programming language in which the underlying computation mecha-
nism is logical deduction. The language uses a subset of the first-order predicate
calculus called Horn clauses. These may be defined as formulaeA1, . . . , An → B,
where the Ai and B are atomic. The deduction process used by Prolog has been
explained in the literature as a form of resolution (Lloyd [1984]). It is one of our
purposes here to give an alternate, and we believe more useful, explanation of
Prolog’s deduction process, in terms of the classical proof theoretic results of G.
Gentzen. Acquaintance with the systems of Gentzen (see Kleene pp. 452-501)
is presumed.

Our second purpose is to extend Prolog to the full intuitionistic first-order
predicate calculus, without sacrificing efficiency. 2 Note that this is a stronger
result than completeness for classical logic: we can define classical logic within
intuitionistic logic, simply by expressing ∃ and ∨ in terms of ∀, ∧, and ¬. Intu-
itionistic logic is more general than classical logic. The (family of) program(s)
we provide for extending Prolog to intuitionistic predicate calculus is called
GENTZEN in honor of the proof theorist G. Gentzen, whose ideas have illumi-
nated proof theory for half a century and may yet help in automated deduction.

Both Prolog and GENTZEN are described by algorithms which can be
interpreted either non-deterministically or deterministically. All known meta-
mathematical results about Prolog apply only to the non-deterministic version,

2Of course, one can construct examples where even Prolog requires exponential time for
backtracking. We are discussing practical efficiency, not theoretical efficiency.
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while it is the deterministic version that executes in practice. In this paper, we
prove corresponding metamathematical results for the non-deterministic version
of GENTZEN.

The deterministic version of Prolog makes sacrifices of both soundness and
completeness for speed. GENTZEN makes similar sacrifices, but we also show
how to make these trade-offs explicit: if you are willing to accept a slower
GENTZEN, you can come much closer to completeness with deterministic
GENTZEN.

If the simpler versions of GENTZEN are run deterministically under Pro-
log, they work very well on many interesting examples. However, on examples
require complicated search, such as Schubert’s Steamroller, they fail rather mis-
erably. The control structure provided in these simple versions for the use of the
rules is simply inadequate. There are, however, a wide variety of possibilities for
deterministic versions of GENTZEN. We believe that the framework provided
by non-deterministic GENTZEN provides a unifying conceptual apparatus into
which one can translate and compare various approaches to automated deduc-
tion. We have, for example, discovered simple control structures for the use
of GENTZEN’s rules which permit very rapid solution of the Steamroller and
other such problems. This will be taken up in a later paper.

The main results of this paper can be summarized as follows:

• The completeness of (non-deterministic) Prolog for Horn clause logic is
a consequence of the proof theory of a Gentzen sequent calculus. 3 A Prolog
computation uses backtracking and unification to construct a Gentzen derivation
of a sequent representing the program and goal.

•GENTZEN’s computations on sequents representing Prolog programs and
queries exactly parallel Prolog’s computations. This is true both deterministi-
cally and non-deterministically.

• Non-deterministic GENTZEN is complete for intuitionistic predicate cal-
culus.

• If deterministic GENTZEN terminates, it decides whether the input is
provable in intuitionistic predicate calculus; incompleteness only can result from
infinite regress.

• GENTZEN has been implemented and tested, and can rapidly prove
several test problems, including some proofs by induction in number theory and
an example which J. McCarthy invented to show the limitations of Prolog. It
can also do many independence proofs by terminating with failure.

• If certain “redundancy checks” are added toGENTZEN, it runs somewhat
slower, but then provides a decision procedure for intuitionistic propositional
calculus, thus improving on Prolog even on the propositional fragment.

The analysis of Prolog given here answers two questions which haunted the
author for several years after he began programming in Prolog:

3More precisely, of the completeness of Gentzen’s cut-free rules, which can be directly
proved without the cut-elimination theorem, (or via the cut-elimination); and of an additional
not-quite-trivial “Permutation Lemma”.
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• Why is it that Prolog seems so “constructive”, yet resolution is non-
constructive?

• What is the true source of Prolog’s efficiency?

The answers to these questions are clear and short, so we give them here,
even though you may have to read the paper to understand them fully: Prolog
is constructive because its computation method is essentially the construction
of a proof in an intuitionistic sequent calculus. The source of its efficiency
is threefold: (1) Use only cut-free intuitionistic proofs; (2) Use unification to
calculate the terms required at the rules ⇒ ∃ and ∀ ⇒; and (3) never go up the
right branch of a left implication; use left implication only if the right premise
is an axiom.

Having understood Prolog in terms of Gentzen sequents, we were able to
generalize Prolog’s computation method to the full intuitionistic predicate cal-
culus. We think we have thus contributed some answers to the following two
general questions:

• How can logic programming be extended to first-order predicate calculus?
• What general logical principles (as opposed to domain-specific knowledge)

can guide the construction of improved automated theorem-provers?

Namely, the same three principles just mentioned, with (3) modified to per-
mit going up the right branch of a left implication only if all other proof methods
fail.

GENTZEN bridges the gap between logic programming and automatic the-
orem proving. If you add the clause derive(( Gamma => A)):- call(A) to the
top of the program listing for GENTZEN, an attempt to prove A can call on
Prolog’s built-in procedures, so that what you have is an extension of Prolog to
full first-order predicate calculus, but able to access all the non-logical features
of Prolog at the same time.

Although GENTZEN can be viewed as an extension of Prolog, we think
in addition that the framework of GENTZEN is a good skeleton on which to
build a general-purpose mathematical theorem prover. Personally we find Prolog
adequate as a programming language, and our interest in GENTZEN is rather
from the perspective of automated deduction. GENTZEN makes theorem-
proving look like logic programming: In order to get a proof, you pay attention
to the order in which you list your axioms, thus controlling the execution of
the prover. There is a trade-off between efficiency and completeness. Since
GENTZEN is non-deterministically complete, there are no obvious theoretical
limits to its deterministic abilities. For example, if you were willing to pay
the price of replacing its Prolog-like search strategy by “depth-first iterative
deepening”, you could achieve deterministic completeness. Bledsoe [1984] (p.
93) says:

Experience so far has shown that complete procedures tend to
be weak, in the sense that they take too long to prove easy theorems
(or cannot prove them at all) . . .
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With GENTZEN’s basic architecture, we can have either a fast incomplete
prover or a slower complete prover, and we can explore many possible interme-
diate versions. The version presented here is the fast incomplete version, which
we show is still more than adequate as a useful extension of Prolog to problems
involving quantifiers.

The completeness of non-deterministic GENTZEN makes deterministic
GENTZEN “partially complete”: when it terminates, it decides provability of
the input, so it can be used for independence proofs. (Note that this means
independence from intuitionistic axiom systems, which is often rather difficult
to prove.)

Finally, we would like to mention a widespread misconception: that intu-
itionistic logic is esoteric and not useful for mainstream mathematics. This is
really two misconceptions: one, that using intuitionistic logic involves rejecting
classical logic. This is not the case, as explained above. Rather, it involves
refining classical logic to keep track of extra information (about algorithms)
provided in the proof. The other misconception is related: that constructive
methods can’t be powerful in mathematics. On the contrary, the more informa-
tion you keep track of (without getting lost) the better off you are. We think
this principle should apply in automated deduction algorithms as well as to
people, and so we think more work should be done on proving theorems con-
structively by machine. We hope GENTZEN will contribute to this program.
We have purposely not considered versions of GENTZEN based on classical se-
quent calculi, believing that restriction to the intuitionistic rules should improve
performance.4

We are under no illusions that four pages of Prolog code make a general
purpose theorem prover. Rather, we think GENTZEN offers a particularly
fruitful underlying architecture for a theorem-prover. There are natural places
to integrate the following into GENTZEN: type theory, equality reasoning us-
ing symbolic computation, semantic methods, symbolic computation, control
of expansion or non-expansion of definitions. 5 Whether or not our hopes for
the power of theorem-provers based on GENTZEN’s architecture will be borne
out remains to be seen; the proof of the pudding lies in actually building such
theorem-provers and using them to prove theorems. It is thus not the point of
this paper to discuss “real control structures and efficiency in a practical sense”,
in the words of a referee. On the contrary, the purpose of this paper is to exhibit
a unified theoretical framework based on the sequent calculus, in which one can
understand both Prolog and general-purpose theorem-provers, and in which one
has the flexibility to use the logical form of both goals and axioms to specify
control structures.

Prerequisites to this paper are an acquaintance with Gentzen’s logical sys-
tems and an acquaintance with unification, up through the concept of “most
general unifier”. For background on Gentzen, see Kleene [1952], pp. 481-501.

4When considering devices to improve completeness at the expense of efficiency, the clas-
sical sequent calculi should be reconsidered.

5See also the work of N. Shankar, described in Section 11, for an improvement to
GENTZEN’s purely logical search algorithm.
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For background on unification, see Lloyd [1984]. Familiarity with Prolog will
be required to actually read the program of GENTZEN, but in theory it is not
required to read the paper.

A detailed comparison of our work with that of Bledsoe, Bowen, Boyer and
Moore, Constable, Feferman, Felty, Hayashi, Lifschitz, McCarty, Miller, Paul-
son, Shankar, Stickel, and others is given in the last section of the paper.

2 Proof-theoretic Preliminaries

Matters of Notation

The basic reference we use for sequent calculi is Kleene [1952]. We have,
however, changed the notation for sequents slightly, writing → for implication
and ⇒ for the separator between the left part (antecedent) and the right part
(succedent) of a sequent.

We have also adopted a different typography for proof trees than is tradi-
tional. Instead of drawing tree diagrams growing upwards from goal to axioms,
our trees grow left-to-right, with indentation being used instead of horizontal
bars to indicate passage to subtrees. For example, the rule →⇒ is written in
traditional notation as

A→ B,Γ ⇒ A B,A→ B,Γ ⇒ Θ

A→ B,Γ ⇒ Θ

and in our notation as

A→ B,Γ ⇒ Θ

A→ B,Γ ⇒ A

B,A→ B,Γ ⇒ Θ

This notation is similar to that used in the “proof refinement logic” of NuPrl
(Constable et. al. [1986]). It is much more convenient to write or typeset than
the traditional notation. However, it is almost impossible to break the habit of
visualizing proof trees with the axioms at the top and the conclusions at the
bottom; so we will retain the informal meaning of ‘above’ as meaning nearer
the leaves of the tree (the axioms) and ‘below’ as meaning nearer the root, even
though ‘above’ means ‘to the right and below on the page’ in the newer notation.

Let me remind the reader that there are several different Gentzen sequent
calculi. G3 (Kleene [1952], p. 481) is the one designed to provide a decision
procedure for intuitionistic propositional calculus. In this calculus, as you work
up the tree from the goal, you do not discard formulae; this enables a bound
(in the propositional case) on the size of the proof tree.

G1 (Kleene [1952], p. 442) does not provide a propositional decision pro-
cedure, because there is a rule that permits dropping duplicated hypotheses.
When that rule is used in reverse, you lose control over the possible size of the
proof. On the other hand, the rule →⇒ in G1 is closer to Prolog than G3.
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Note: In Kleene [1952], G1 and G3 contain the cut rule. We use these
letters instead to stand for the corresponding cut-free systems. All systems in
this paper are cut-free.

In a Gentzen sequent Γ ⇒ ∆, usually Γ and ∆ are finite sets (or lists) of
formulae. The difference between intuitionistic and classical Gentzen calculi is
only that in the intuitionistic calculus, the succedent ∆ is allowed to contain at
most one formula (it may be empty). If we permit the atomic formula false to
stand for the empty sequent in the succedent, we can assume ∆ always contains
exactly one formula, in which case we may as well write sequents in the form
Γ ⇒ Θ, where Θ is a formula and Γ is a finite set of formulae.6 The calculus G3
as formulated in Kleene in effect treats Γ as a set, i.e. duplicates and order are
ignored, while G1 treats Γ as a list. The treatment as a set is more convenient
for our purposes, even though ultimately sets must be represented as lists for
an implementation.

The Sequent Calculi G4 and G

In order to explain Prolog, we found it necessary to develop a hybrid version
of Gentzen’s calculus incorporating some of the features of G1 and some of the
features of G3. G3 differs from G1 by carrying more formulae from conclusion
to hypothesis. For our purposes, the definition of G3 was “overkill”. It isn’t
necessary to carry quite so many formulae to the hypothesis. 7 Our system G
is an extension of G3. It is similar to G3, but permits carrying fewer formulae
to the hypothesis under certain circumstances. This is accomplished by giving
G a different rule →⇒ (and also ∧ ⇒ and ∨ ⇒) than G3. A related system is
G4, which requires the omission of premisses whenever G permits it. We shall
refer to a G4 derivation as a strict G derivation.

In rule →⇒, the question is whether the principal formula A → B is to
occur in the premise(s) as well as the conclusion of the rule. In G3 it does, in
G1 it does not. Our system G adopts the following rule: In case A− > B is
obtained by a substitution from the matrix of a universally quantified member
of Γ (the rest of the antecedent), then it may be omitted from the premise of
the rule. Otherwise, it shall occur. The universally quantified member of Γ may
have several universal quantifiers. Here are the two rules for comparison:

A→ B,Γ ⇒ C G3

A→ B,Γ ⇒ A

6Unless false is specified “by the user” in listing the axioms (the formulae of the an-
tecedent), it can never occur except in the succedent, where it can be interpreted as the
empty list. However, if the user is permitted to use false, as seems natural, an argument
which we have not given is required to show that the rules of the system handle it correctly.
To stay strictly in the scope of proved metatheorems, false should not be used in axioms;
use ¬ instead.

7In fact, there is a version of GENTZEN based on each of these calculi. It is only the
G and G4 versions, however, which exactly imitate Prolog. The others work in a slightly less
efficient way. In fact, on certain computations the G3 version suffers practical problems due
to Prolog’s lack of an “occurs check” in unification, which the G and G4 versions do not seem
to. However, on all the examples in this paper, all of these versions run more or less equally
well.
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B,A→ B,Γ ⇒ C

That rule applies in G too; but when A→ B is obtained by a substitution from
the matrix of a universally quantified member of Γ, the following rule can be
applied instead:

A→ B,Γ ⇒ C G

Γ ⇒ A

B,Γ ⇒ C

The rules ∧ ⇒ and ∨ ⇒ are also changed in G. In G3, the rule ∧ ⇒ causes
branching: there are two rules with the same conclusion. There is no reason
(except possibly symmetry with rule ⇒ ∨) for this; we can just take this one
rule instead:

A ∧B,Γ ⇒ C

A,B,Γ ⇒ C

Similarly, in rule ∨ ⇒, there is no reason to carry A ∨B from conclusion to
premise, as either disjunct is stronger. Just take this rule instead:

A ∨B,Γ ⇒ C

A,Γ ⇒ C

B,Γ ⇒ C

A similar variation is made in the rules ∧ ⇒ and ∨ ⇒.
G also admits a more general syntax than the Gentzen calculi described

in Kleene [1952]. In particular, we admit formulas ∀xA and ∃xA where x is
not a single variable, but a list of variables. In this case, however, we require
that the list x be in alphabetical order. 8 There are obvious generalizations
of the quantifier rules to list quantifiers. In the case of rule ∀ ⇒, adding the
generalized rule is not just a matter of abbreviation: if we were to “strip off”
the quantifiers one at a time (using the rule of G3 in reverse) we would get a
lot of extra formulas in the antecedent. It is important to be able to strip them
all off at once.

8Kleene is not specific about which symbols are legal variables, specifying only that there
is a fixed list of variables. We specify that the variables are any legal Prolog atoms (except
false and true), and that the order on the variables is the lexicographical order determined
by the Prolog system’s ordering predicate. Requiring quantified lists to be in order is done
for the sake of efficiency.
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For reference, here are the rules exactly:

Rules of G

C,Γ ⇒ C (axiom)

Γ ⇒ A→ B (⇒→)

A,Γ ⇒ B

Γ ⇒ A ∧B (⇒ ∧)

Γ ⇒ A

Γ ⇒ B

Γ ⇒ A ∨B (⇒ ∨)

Γ ⇒ A

Γ ⇒ A ∨B (⇒ ∨)

Γ ⇒ B

Γ ⇒ ¬A (⇒ ¬)

A,Γ ⇒ false

A→ B,Γ ⇒ C (→⇒)

(A→ B),Γ ⇒ A

B, (A→ B),Γ ⇒ C

where the formulae in parentheses may be omitted if A→ B is a substitution
instance of the matrix of a universally quantified formula in Γ.

A ∧B,Γ ⇒ C (∧ ⇒)

A,B,Γ ⇒ C
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A ∨B,Γ ⇒ C (∨ ⇒)

A,Γ ⇒ C

B,Γ ⇒ C

¬A,Γ ⇒ C (¬ ⇒)

¬A,Γ ⇒ A

Γ ⇒ ∀xA (⇒ ∀)

Γ ⇒ A[y/x] (y not free in Γ, ∀xA)

∃xA,Γ ⇒ C (∃ ⇒)

A[y/x],Γ ⇒ C (y not free in Γ, C)

∀xA,Γ ⇒ C (∀ ⇒)

A[t/x], ∀xA,Γ ⇒ C

Γ ⇒ ∃xA (⇒ ∃)

Γ ⇒ A[t/x]

Lemma 1 Every derivation in G can be converted to a derivation in G3 (first
replacing list quantifiers by iterated quantifiers). Conversely, every derivation in
G3 can be converted to a strict G derivation. Consequently, the cut-elimination
theorem holds for G and G4 as well as for G3.

Proof. (⇒) By induction on the length of derivations in G. Suppose the last
inference is by rule →⇒, and we are in the case where the principal formula is
omitted from the hypothesis. Then by inserting some extra applications of rule
∀ ⇒, we can recover the omitted formula; indeed it was this possibility that
determined the cases in which we could afford to omit the formula.

Suppose that the last inference is by rule ∧ ⇒; let the last two lines of the
derivation be

A ∧B,Γ ⇒ C (∧ ⇒)

A,B,Γ ⇒ C
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By induction hypothesis, there is a G3 derivation of A,B,Γ ⇒ C. Thus all
we need to know is that G3 is closed under the ∧ ⇒ rule of G. We can prove
this directly with two applications of cut elimination: start with a derivation of
A ∧ B ⇒ A and one of A,B,Γ ⇒ C. Apply cut-elimination with cut-formula
A, to get A ∧ B,B,Γ ⇒ C. Take a derivation of A ∧ B ⇒ B, and use B for a
cut-formula, getting A ∧B,Γ ⇒ C.

Suppose the last inference is by rule ∨ ⇒; let the last two lines of the
derivation be

A ∨B,Γ ⇒ C ∨ ⇒

A,Γ ⇒ C

B,Γ ⇒ C

By induction hypothesis, there are G3 derivations of the premises (so again all
we really need is the closure of G3 under this rule, which is the same as the
∨ ⇒ rule of G1). Just add A ∨ B to the antecedent of every sequent in the
derivations of the premises. The derivation will remain a derivation, unless there
are free variables in A∨B that cause a violation of the “restriction on variables”
above this point. This problem can be avoided by renaming eigenvariables in the
derivation of A,Γ ⇒ C to avoid the free variables of B, and vice-versa renaming
eivenvariables in the derivation of B,Γ ⇒ C to avoid the free variables of A.

Suppose that the last inference is by rule ∀ ⇒, applied to a list quantifier.
If we had used the ∀ ⇒ rule of G3 several times (one quantifier at a time)
(proceeding backwards from the root), we would have produced a sequent just
like the hypothesis of this inference, except with some extra formulae in the
antecedent. We can add these formulae to the antecedents of every formula
above this point in the proof tree. The free variables of these intermediate
formulae already occur in the antecedent, so no inferences are invalidated by
violations of the “restriction on variables” due to these added formulae in the
antecedents.

(⇒) By induction on G3 derivations. Suppose the last inference of the
given G3 derivation is by rule →⇒ in the case where the principal formula is
not dropped in the hypothesis. Then the deduction is already in G3. In the
case where the principal formula is dropped, we copy the principal formula to
the antecedents everywhere above, first renaming eigenvariables if necessary to
avoid violating the restriction on variables. Similarly, if the last inference is by
rule ∧ ⇒ or rule ∨ ⇒, we copy the principal formula to the antecedents above.
That completes the proof.

Substitutions and Unification

A substitution is a (partial) map from terms to variables which commutes
with all function symbols. Lower-case Greek letters are used to denote sub-
stitutions. They are written on the right in algebraic notation: tθ instead of
θ(t). Juxtaposition of symbols for substitutions indicates composition. We write
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θ ≥ δ (“θ is more general than δ”) if for some µ we have θµ = δ. Note µ might
be the identity. We regard all substitutions as defined everywhere, extending
them to be the identity where they are not explicitly defined. Substitutions
determined by their action on a finite number of variables can be indicated by
a list of equations such as x = a2, y = a3. Similarly, if θ is a substitution sat-
isfying xθ = x, we denote by θ, x = t the new substitution which agrees with θ
except at x, and takes x to the value t. This is not a “union” since we regard
all substitutions as defined everywhere.

Note that substitutions can be applied to formulas as well as to terms, the
difference being that formulas may contain bound variables. In this case the
application of a substitution θ to a formula (or other expression with bound
variables) is presumed not to affect the bound variables, even if θ has a non-
trivial action on those bound variables.

A substitution θ is said to unify terms t and s if tθ and sθ are identical. A
most general unifier of t and s is a unifier more general than any other unifier.
The most general unifier is unique up to renamings of variables.

The Permutation Lemma

Note: The reader is invited to postpone reading the rest of this section until
it is clear why it is needed.

We shall make use of the “permutation lemmas” about Gentzen’s calculus.
These lemmas, familiar (at least in outline) to experts in proof theory but
less well-known than the material in Kleene’s book, show how the order of
application of Gentzen’s rules can be changed, so that one may assume that a
cut-free proof of a given sequent ends with a certain rule. This restructuring of
the proof tree cannot be done arbitrarily; there are certain restrictions on the
form of the formulae involved.

Kleene [1952a] contains a thorough analysis of the possibilities for such “per-
mutations” of the inference rules. Since there are on the order of ten rules, there
are on the order of 100 cases to consider— a number which is doubled when you
realize that some permutations are permissible classically, but not intuitionis-
tically. Each individual case is simple: you can work them out yourself in a
few lines by writing out the last two lines of a derivation and then trying to
reverse the order of the last two rules. Many cases are obviously permutable, for
example if one rule affects only the antecedent and the other only the succedent.
However, it is not the case that any two rules permute.

Remark ( examples of non-permutable pairs of rules): The permutation of
certain pairs is blocked by the “restriction on variables”. An example of this
kind of non-permutable inference is given by the proof of the sequent ∀xA ⇒
∃yA[y/x], which must have the ∀ ⇒ inference last. In classical logic, this is the
only block to the permutation of inferences. In intuitionistic logic, there are
others: for example the sequent A∨ (B ∨C) ⇒ (A∨B)∨C can only be proved
by opening up the left side first.

In this paper we need only certain cases of Kleene’s Permutation Lemma
(Lemma 7 of Kleene [1952a]). We need those cases, however, not (only) for the
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system G1 treated in Kleene [1952a] but also for the systems G3, G4, and G.
In the interest of a complete and self-contained presentation, we therefore give
the proof of the cases we need.

Lemma 2 (Permutation Lemma ) (Kleene [1952a])G derivations (G3 deriva-
tions; strict G derivations) can be transformed so as to permute the order of
applications of the rules →⇒, ∀ ⇒, and ⇒ ∃, and we can permute ∀seq be-
low ⇒ ∧. (except of course in the case when the principal formula of the first
inference is a subformula of the principal formula of the second one).

This includes permuting two applications of →⇒. When two applications
of the →⇒ rule are permuted, the principal formulae of the inferences are the
same before and after the transformation.

In addition, we can permute ∀seq below ⇒ ∧. 9

Proof. Consider for example the permutation of the rules ∀ ⇒ and →⇒. To
bring →⇒ ‘below’ ∀ ⇒ we transform the deduction steps 10

∀xA,C → D,Γ ⇒ Q

A[t/x], ∀xA,C → D,Γ ⇒ Q

A[t/x], ∀xA, (C → D),Γ ⇒ C

D, (C → D), A[t/x], ∀xA,Γ ⇒ Q

into the steps

∀xA,C → D,Γ ⇒ Q

∀xA, (C → D),Γ ⇒ C

A[t/x], ∀xA, (C → D),Γ ⇒ C

∀xA,D, (C → D),Γ ⇒ Q

A[t/x], ∀xA,D, (C → D,Γ ⇒ Q

Next consider the reverse transformation, in which we desire to bring an
application of ∀ ⇒ below an application of →⇒. The derivation we start with
thus contains:

∀xA,C → D,Γ ⇒ Q

9The principal formula of an inference is the one whose connective is introduced by the
inference.

10where the parentheses around (C → D) indicate that this formula may possibly be omitted
at the indicated location, if it is obtained by substitution from a matrix of a universally
quantified member of Γ, ∀xA. If we consider only G3 derivations, no such omissions are
allowed. If we consider strict G derivations, they will occur whenever allowed. In cases in
which some possible omissions are not made, some inferences by ∀ ⇒ may have to be inserted
in the exhibited transformed derivations, so that the same formula is either omitted or not
throughout a given exhibited piece of a derivation.
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∀xA,D, (C → D),Γ,⇒ Q

A[t/x], ∀xA,D, (C → D),Γ ⇒ Q

∀xA, (C → D),Γ ⇒ C

A[s/x], ∀xA, (C → D),Γ ⇒ C

Note that this is not quite the reverse of the preceding situation since two
instances of A are used, i.e. s may not be the same term as t. The calculus
G does not permit simply padding the antecedent with more hypotheses as
you go up the tree. However, extra hypotheses can be introduced by an extra
application of ∀ ⇒, resulting in the intermediate tranformation

∀xA,C → D,Γ ⇒ Q

∀xA,D, (C → D),Γ,⇒ Q

A[t/x], ∀xA,D, (C → D),Γ ⇒ Q

A[s/x], A[t/x], ∀xA,D, (C → D),Γ ⇒ Q

∀xA, (C → D),Γ ⇒ C

A[s/x], ∀xA, (C → D),Γ ⇒ C

A[t/x], A[s/x], ∀xA, (C → D),Γ ⇒ C

The extra instances of A on the ‘top’ two lines can be carried ‘upwards’ in
the antecedents of preceding lines until they reach an axiom. The final trans-
formation is then

∀xA,C → D,Γ ⇒ Q

A[t/x], ∀xA, (C → D),Γ ⇒ Q

A[t/x], A[s/x], ∀xA, (C → D),Γ ⇒ Q

A[s/x], A[t/x], ∀xA,D, (C → D),Γ ⇒ Q

A[t/x], A[s/x], ∀xA, (C → D),Γ ⇒ C

Next we show the permutability of rule →⇒ and rule ⇒ ∃. Suppose we are
given a derivation containing

A→ B,Γ ⇒ ∃xC

A→ B,Γ ⇒ C[t/x]

(A→ B),Γ ⇒ A

B, (A→ B),Γ ⇒ C[t/x]

It can be transformed to

A→ B,Γ ⇒ ∃xC
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(A→ B),Γ ⇒ A

B, (A→ B),Γ ⇒ ∃xC

B, (A→ B),Γ ⇒ C[t/x]

and this transformation is reversible, so that rules ⇒ ∃ and →⇒ commute.
Rules ⇒ ∃ and ∀ ⇒ affect opposite sides of the ⇒ sign, and hence obviously

commute.
It remains to permute two different applications of →⇒. There are two

cases, according as the ’higher’ application is on the right branch or the left
branch of the ’lower’ application. We take the right branch case first. Suppose
given:

A→ B,C → D,Γ ⇒ Q

(A→ B), C → D,Γ ⇒ A *

B, (A→ B), C → D,Γ ⇒ Q

B, (A→ B), (C → D),Γ ⇒ C

D,B, (A→ B), (C → D),Γ ⇒ Q

We transform this to

A→ B,C → D,Γ ⇒ Q

A→ B, (C → D),Γ ⇒ C

(A→ B), (C → D),Γ ⇒ A

B, (A→ B), (C → D),Γ ⇒ C

D,A→ B, (C → D),Γ ⇒ Q

D, (A→ B), (C → D),Γ ⇒ A *

B,D, (A→ B), (C → D),Γ ⇒ Q

Of the four ‘top’ nodes in this (partial) derivation, three are ‘top’ nodes in the
given derivation (so we can graft on the subtrees at those nodes). The fourth
node, tagged (∗), is like the tagged node in the given derivation, except it has
the extra formula D in the antecedent. We can graft on the subtree ‘above’ the
tagged node in the given derivation, provided we write D in the antecedent of
every formula in that subtree. (This will not affect the validity of any inference,
including the axioms at leaves, since D is already a subformula of the antecedent,
so its free variables cannot cause any violation of the restriction on variables.)

This transformation, unlike the others we have constructed, may increase the
number of applications of →⇒, as the implication which is moved ‘upwards’ has
to be opened up twice, and a subtree of the old derivation has to be duplicated
in the new.
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Finally we consider the case of permuting an application of→⇒ with another
application on the left branch of the first. Suppose given:

A→ B,C → D,Γ ⇒ Q

(A→ B), C → D,Γ ⇒ A

(A→ B), (C → D),Γ ⇒ C

D, (A→ B), (C → D),Γ ⇒ A

B, (A→ B), C → D,Γ ⇒ Q

We transform this to

A→ B,C → D,Γ ⇒ Q

A→ B, (C → D),Γ ⇒ C

D,A→ B, (C → D),Γ ⇒ Q

D, (A→ B), (C → D),Γ ⇒ A

B,D, (A→ B), (C → D),Γ ⇒ Q

whose ‘top’ nodes are the same as those of the given derivation.
Now there is only one more permutation to consider: permuting ∀ ⇒ below

⇒ ∧. Suppose given a derivation ending

∀xP,Γ ⇒ A ∧B

∀xP,Γ ⇒ A

P [t/x], ∀xP,Γ ⇒ A

∀xP,Γ ⇒ B*

We transform this to

∀xP,Γ ⇒ A ∧B

P [t/x], ∀xP,Γ ⇒ A ∧B

P [t/x], ∀xP,Γ ⇒ A

P [t/x], ∀xP,Γ ⇒ B*

Note that the starred line isn’t exactly the same; there is an extra formula
P [t/x] in the succedent of the transformed derivation. We will have to copy
this formula to the succedent of every sequent ‘above’ the starred line (that
is, nearer the axioms) in the original derivation. In so doing, we won’t violate
any conditions on variables, since the condition on variables is satisfied in the
original derivation. That completes the proof.
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3 Explaining Prolog by Gentzen Sequents

We view Prolog’s deduction algorithm as the construction of a formal derivation
in an intuitionistic sequent calculus. The Prolog program, a finite list of clauses,
constitutes the antecedent of a sequent, and the query constitutes the succedent.

The clauses in the program go in the antecedent as implications, while the
goal is existentially quantified in the succedent: 11

(∀x)(Hyp1− > P1), (∀y)(Hyp2− > P2), . . . => (∃z)Goal

Note that since “the scope of a Prolog variable is the clause in which it oc-
curs”, the clauses are universally quantified in the antecedent. Here the quan-
tifier ∃z is short for a finite sequence of quantifiers over every variable free in
Goal, and similarly for the universal quantifiers on the left.

To make matters as clear as possible: the above sequent is the expression
as a Gentzen sequent of a Prolog program (given by the antecedent) together
with a query. Normally a user of Prolog would enter the clauses in the form
Pn :- Hypn, and Hypn would be a conjunction of atomic formulae. The system
understands the universal quantifiers implicitly. These clauses would be put in
a program file and consulted, after which the query Goal would be typed to
the Prolog interpreter prompt. The existential quantifier(s) are also understood
implicitly by the Prolog system. When we refer to “clauses” in this paper, we
will be speaking of implications in the antecedent of a sequent; the usual form
of clauses in connection with resolution will not be mentioned. (We do count
a clause with no “body”, i.e. a universally quantified atomic formula in the
antecedent counts as a “clause”.)

The following definitions make the above considerations precise:

Definition 1 A “Prolog clause” is a formula of one of the forms ∀x(Con)
or ∀x(Hyp → Con), where Con is atomic, and Hyp is either atomic or a
conjunction of (possibly many) atomic formulae. The universal quantifier need
not actually occur.

Definition 2 A Prolog sequent is a sequent whose succedent is either atomic, a
conjunction of atomic formulae, or an existentially quantified atomic formula,
and whose antecedent contains (only) Prolog clauses as just defined.

A closed Prolog sequent corresponds to a Prolog program and query. Prolog
sequents with free variables may arise in the course of Prolog’s computations,
as we shall see below.

Prolog’s deduction algorithm tries to unify Goal with the “head” Pn of one
of the clauses in the antecedent. Let us suppose for notational simplicity that
Goal unifies with P1. The deduction step which unifies Goal with P1 involves

11This is one important place where our treatment differs from Bowen [1980]. He puts
the program clauses as separate sequents, and considers them as “sequent axioms”, thus
treating Prolog deductions as applications of the cut rule instead of constructions of cut-free
derivations.
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the most general unifier θ of Goal and P1. Suppose for the moment that we are
in the simplest case, in which Goalθ has no free variables. Prolog’s computation
in this case is represented by the following incomplete G proof

∀x(Hyp1 → P1), ∀y(Hyp2 → P2), . . . => ∃zGoal

∀x(Hyp1 → P1), ∀y(Hyp2 → P2), . . . => Goalθ

Hyp1θ → P1θ, ∀x(Hyp1 → P1), (∀y)(Hyp2 → P2), . . . => Goalθ

∀x(Hyp1 → P1), . . .⇒ Hyp1θ

P1θ, ∀x(Hyp1 → P1), . . .⇒ Goalθ

The last sequent is an axiom, since P1θ is the same formula as Goalθ (that’s
what it means that θ unifies Goal and P1), so that formula occurs on both sides
of ⇒. The computation will continue in an attempt to construct a proof of the
previous sequent. The last inference is by rule →⇒; compare it with the list of
rules to see why.

Note that we have allowed conjunction in the succedent; the main reason for
doing so is that such formulae will arise in derivations anyway, when a “clause”
containing a conjunction is “opened up”. It is customary to extend Prolog to
allow disjunction in the query and the heads of the clauses, but these are easily
reduced to formulae of the above form by the introduction of new predicate
letters. Alternately, one can easily extend the description of Prolog’s algorithm
in terms of Gentzen sequents to this somewhat larger fragment. We shall not
take the space to do so, since we shall extend the algorithm to all of first-order
predicate calculus later in the paper.

Non-deterministic versus deterministic Prolog. Implementations of Prolog
search for a proof of the goal in a deterministic manner. By a non-deterministic
Prolog deduction we mean a deduction as described above in which the choice of
clause Hypn → Pn can be made at will (non-deterministically). In practice, an
implementation of Prolog chooses the leftmost clause whose head will unify with
the goal; and it is possible that the search regresses infinitely along this branch,
while another choice would have succeeded in producing a proof. All known
metamathematical results on the semantics of Prolog refer to non-deterministic
proofs, as will the results of this paper. Nevertheless, our implementation of
the algorithm described here, like Prolog, makes a deterministic choice. Exper-
iments show that, like Prolog, it still works.

Note that in the case of Horn clause syntax, the succedent is always atomic
or atomic preceded by ∃; so it can unify only with conclusions of the clauses,
i.e. with formulae Pn, where ∀xn(Hypn → Conn) is one of the “clauses” of
the Prolog program represented by the antecedent, or possibly with formulae
generated from some Pn by applying some other substitution (lower down the
proof tree). These formulae Pn are positive in the antecedent, so actual Prolog
deductions fit the formal definition just given. Moreover, restricted to Horn
clause syntax, Prolog deductions as just defined clearly correspond to (non-
deterministic) Prolog deductions as informally defined above.
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More generally, if Goalθ does still contain free variables, the Prolog computa-
tion algorithm constructs a cut-free (G ) proof, but it does not do it line-by-line.
Instead, the terms needed in the hypotheses of the ∀ ⇒ and ⇒ ∃ rules are con-
structed gradually, only being settled on after the computation has progressed
some lines above the application of the rule in question.

Prolog explained by Gentzen proofs, using Prolog for the explanation

We give here the fragment of our theorem-prover which is needed for the
derivation of Prolog sequents. This Prolog program defines the predicate derive(Γ ⇒
A) which succeeds if the system can construct a Gentzen proof (in G ) of
Γ ⇒ A. We write ∀xA in Prolog as all(x,A). The predicate prove(A) is de-
fined to mean, “find a derivation of the sequent ⇒ A (with empty antecedent)”.
Sequents are represented in Prolog using the infix operator ⇒, where the an-
tecedent is a list of formulae and the succedent a single formula (with false

representing the empty succedent). Logical variables (“object variables”) are
represented as Prolog atoms. Prolog variables (beginning with upper-case let-
ters) range over object terms.

The Prolog Program

% construct a strict G derivation of a Prolog sequent

axiom((Gamma ⇒ A)):- member(A,Gamma).

derive(( Gamma => T=T )).

%this accounts for Prolog’s treatment of equality

derive(( Gamma => C )):- %rule -> =>

memberandrest( (A->B), Gamma,Delta),

%Delta is what’s in Gamma besides (A->B)

A \== C, %prevent an obviously redundant proof

axiom(( [B|Gamma] => C )),

derive((Delta => A)).

derive(( Gamma => and(A,B)):- %rule => &

derive(( Gamma => A )),

derive(( Gamma => B )).

derive((Gamma => B)) :- %rule all => (list quantifier)

member(all([X|Rest],A),Gamma),

findall( ,member( ,[X|Rest]),NewVarList),

list fsubst(NewVarList,[X|Rest],A,NewA),

not fmember(NewA,Gamma),

derive(( [NewA|Gamma] => B )).

derive((Gamma => B)) :- %rule all => (single quantifier)

member(all(X,A),Gamma),

fsubst( ,X,A,NewA),

not fmember2(NewA,Gamma),

%don’t make multiple instances of same clause

derive(( [NewA|Gamma] => B )).
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The predicates fmember, fmember2, fsubst, and memberandrest are not
printed here, for lack of space. The program can still be understood by means
of the following descriptions of these predicates:

fmember(A,L) generates members A of a given list L, or tests whether A

belongs to L, but without unification: thus A and L can contain Prolog vari-
ables which will be treated like atoms. fmember2 is similar, but it does not
distinguish terms that differ only be renaming of Prolog variables. Similarly,
fsubst(New,Old,Term,Ans) substitutes New for Old in Term obtaining Ans,
but treating Prolog variables as atoms (not subject to unification). They are
distinguished from the more ordinary member and subst by the prefix f for
“free variables”. list subst takes a list of items New to be substituted re-
spectively for the members of a list of items Old and uses fsubst to carry
out the substitutitions. The line using findall in the rule for a list quantifier
just generates a list of new Prolog variables of the right length. The predicate
memberandrest(Mem,List,Rest) generates members Mem of List, instantiating
Rest to List with (the occurrence in question of) Mem deleted.

The main theorem explaining Prolog in terms of Gentzen sequents can now
be stated:

Theorem 1 (1) Let Γ ⇒ ∃xA be a Prolog sequent representing a Prolog pro-
gram Γ and goal A. Then the goal A succeeds with program Γ if and only if the
goal derive(Γ ⇒ ∃xA) succeeds with the program listed above.

(2)If we give the program the query derive(Γ ⇒ A[X/x]), in which the
succedent contains Prolog variables (which range over terms), then the Prolog
interpreter will supply an instantiating term such that Γ ⇒ A[t/x] is provable
in G.

This is two theorems: one when “succeed” is interpreted non-deterministically,
and another when it has the deterministic interpretation given by an actual in-
terpreter.

Remark : While derive is obviously sound, it is not obviously complete,
since it requires the right branch of an application of rule →⇒ to be an axiom
already. The issue of completeness is addressed in the next section.

Proof. (1) follows from (2). We prove (2) by induction on the length of Prolog
computations from the given program. Suppose then that Γ ⇒ A is a closed
Prolog sequent, and suppose that Prolog’s computation of the query A relative
to program Γ begins by unifying A with the head P of a member ∀x(H → P ) of
Γ. For simplicity let us assume that the members of Γ have at most one universal
quantifier. Evidently the program above will begin by applying the clause of
derive corresponding to rule ∀ ⇒ with this same member of Γ as principal
formula of the inference. That will result in an attempt to derive the sequent
Hθ → Pθ,Γ ⇒ Aθ, where θ is the most general unifier of A and P . Then rule
→⇒ will be applied, resulting in an attempt to derive Γ ⇒ Hθ. Note that the
formula Hθ → Pθ has been dropped from the antecedent in accordance with
the rules of G.
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If H is a conjunction, an application of the clause labelled “rule => &” will
reduce to the case H is atomic, so that Γ ⇒ Hθ is again a Prolog sequent. Now
the Prolog computation proceeds as specified by the Prolog sequent Γ ⇒ Hθ.
By hypothesis, this Prolog computation succeeds; so by induction hypothesis,
the attempt to derive this sequent also succeeds. But then the original call to
derive succeeds. That completes the proof.

Explanation of Prolog by Gentzen proofs, not using Prolog

The remainder of this section serves two purposes: it introduces the technical
tool of “extended” Gentzen sequents and derivations, and it uses that tool to
explain Prolog in terms of Gentzen sequents, in a way not dependent on a prior
understanding of Prolog.

To see how Prolog works in terms of Gentzen sequents, let us consider an
example.

Consider the Prolog sequent (program and goal) given by

α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ ∃zγ(z) (1)

Prolog tries to construct a proof whose last inference is by the ⇒ ∃ rule; for
this it needs a term t so that γ[t/z] can be put in the succedent. For reasons that
will be clear in a minute, we prefer to place the emphasis on the substitution η
such that t = ηx. At first we cannot determine t, we can only place a constraint
upon η: by unifying γ(z) with the head of one of the clauses in the succedent,
we can see that ηx should have the form (xθ)3, where θ is a substitution to be
determined.

We then consider the sequent

α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ γ((xθ)3) (2)

and open up the ∀ on the left with the ∀ ⇒ rule (working in what would
traditionally be the upwards direction of a proof, i.e. towards the axioms):

β(xθ) → γ((xθ)3), α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ γ((xθ)3) (3)

Next we use the →⇒ rule (in reverse) to open up the first formula. The two
sequents which occur above the line of this inference are:

α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ β(xθ) (4)

and

γ((xθ)3), α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ γ((xθ)3) (5)

The last sequent (5) is an axiom; not by accident, as that was how we chose the
term t = (xθ)3 in the first place.

The sequent (4) is analyzed as follows: Prolog tries to unify the succedent
formula with the head of one of the clauses. The only possibility in this case
is to unify β(u2) with β(xθ). Hence we impose a constraint on θ: it must
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satisfy xθ = (u2)δ for some substitution δ. (If the variable u had occurred in
the succedent, we should have renamed it first.) Introducing a symbol for this
unknown substitution δ, we work upwards in the proof using the rule ∀ ⇒:

α(uδ) → β((uδ)2), β(xθ) → γ((xθ)3), α(2),

∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ β(xθ) (()6)

Now we can use the rule →⇒ as before, generating the following two sequents:

β(xθ) → γ((xθ)3), α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ α(uδ) (7)

β((uδ)2), β(xθ) → γ((xθ)3), α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ β(xθ)
(8)

As before, the last sequent (8) is an axiom by our choice of (constraint upon) δ.
We must continue from the sequent (7), by unifying the succedent with the head
of a clause in the antecedent. The only possibility is the clause α(2). If α(uδ) is
to unify with this, we must have uδ = 2. This determines xθ = (uδ)2 = 22, and
hence ηx = (xθ)3 = (22)3. Substituting these values for the symbols η,θ,and δ,
we find that a G proof has been constructed:

Example 1.

α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ ∃zγ(z)

α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ γ((22)3)

β(22) → γ((22)3), α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ γ((22)3)

α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ β(22)

γ((22)3), α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ γ((22)3)

α(2) → β(22), β(22) → γ((22)3), α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ β(22)

β(22) → γ((22)3), α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ α(2)

β(22), β(22) → γ((22)3), α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ β(22)

This example shows how the Prolog deduction algorithm can be regarded as
constructing (or attempting to construct) a G proof of a sequent representing
the program and query. The algorithm itself can be precisely specified as a
systematic attempt to proceed from the given sequent to axioms by applying the
rules of inference, leaving symbols for unknown substitutions to be determined,
and simultaneously building up a system of equational constraints on these
symbols for substitutions. The algorithm terminates successfully if axioms are
reached. When that happens, the system of equational constraints is certainly
solvable, since its form is just a chain of substitutions.

We next define a more precise notation for this process. Instead of permit-
ting symbols for substitutions in the derivation itself, we write the symbols for
substitutions outside the formula on each line,

Γ ⇒ A : θ
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This notation will be precisely defined. In order to explain Prolog in terms of
Gentzen sequents, which is the purpose of this section, we need only the first four
clauses of the following definition; the rest are needed only to generalize this
explanation to our theorem-prover (GENTZEN) for the entire intuitionistic
predicate calculus.

We shall need an alphabet of variables distinct from the “object variables”
of our logical language. The object variables have been defined as Prolog atoms
(other than true and false), i.e. they all begin with lower-case letters. By a
“Prolog variable” we mean a syntactic object specified by the same syntax as
Prolog usually accepts for variables, i.e. a word beginning with an upper-case
letter.12

Definition 3 (Extended Formulae). These are just ordinary formulae in which
Prolog variables are allowed to occur free.

Definition 4 (Extended Sequents). These are expressions of the form Γ ⇒
A : θ, where Γ is a finite set of extended formulae, A is an extended formula,
and θ is a substitution. The substitution θ must act non-trivially only on Prolog
variables.

Note that the substitutions occurring in extended sequents will in general
act non-trivially on variables which do not occur in the formula part of the
extended sequent. Expressions of the form Γ ⇒ A : θ will always stand for
extended sequents.

Definition 5 (Extended G Derivations). The following clauses define the no-
tion

⊢ Γ ⇒ A : θ

Indentation is used for ‘if’ just as in specifying rules of inference. Certain
premises of rules →⇒, ∨ ⇒, and ∧ ⇒ are parenthesized, with a similar meaning
as in the specification of the rules of G . Namely, the premise A → B can be
omitted if Aθ → Bθ is a substitution instance of the matrix of a universally
quantified formula in Γθ.

B,Γ ⇒ A : θ if Bθ = Aθ (axiom)

A→ B,Γ ⇒ C : θ (→⇒)

(A→ B),Γ ⇒ A : θ

B, (A→ B),Γ ⇒ C : θ

12Calling them “Prolog variables” is suggestive of the implementation of derive used in this
paper, where actual Prolog variables are used for “Prolog variables”. However, this is not the
case in some other implementations; the only point is to distinguish a kind of variable distinct
from the object variables of the language.
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Γ ⇒ ∃xA : θ (⇒ ∃)

Γ ⇒ A[X/x] : θ (where X is a Prolog variable)

∀xA,Γ ⇒ C θ (∀ ⇒)

A[X/x],Γ ⇒ C : θ (where X is a Prolog variable)

Γ ⇒ ∀xA : θ (⇒ ∀)

Γ ⇒ A : θ (xθ not free in Γθ)

∃xA,Γ ⇒ B : θ (∃ ⇒)

A,Γ ⇒ B : θ (xθ not free in Γθ)

The remaining clauses of the definition are exactly the same as the propositional
rules of inference, but with : θ written beside each formula.

Example 2: The extended derivation corresponding to Example 1 above is
as follows: (When the page is not wide enough to place the annotations on the
same line as the formulae, they are placed on the next line.)

α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ ∃zγ(z) : Z = (22)3, X = 22, U = 2

α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ γ(Z) : Z = (22)3, X = 22, U = 2

β(X) → γ(X3), α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ γ(Z)

: Z = (22)3, X = 22, U = 2

α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ β(X) : Z = (22)3, X = 22, U = 2

γ(X3), α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ γ(Z)

: Z = (22)3, X = 22, U = 2

α(U) → β(U2), β(X) → γ(X3), α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ β(X)

: Z = (22)3, X = 22, U = 2

β(X) → γ(X3), α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ α(U)

: Z = (22)3, X = 22, U = 2

β(U2), β(X) → γ(X3), α(2), ∀u(α(u) → β(u2)), ∀x(β(x) → γ(x3)) ⇒ β(x)

: Z = (22)3, X = 22, U = 2

Note that an extended derivation gives rise to an actual G derivation if we
carry out the substitutions indicated on each line.
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Lemma 3 If ⊢ Γ ⇒ C : θ, then there is a G derivation of Γθ ⇒ Cθ.

Proof. Induction on the length of the extended derivation of Γ ⇒ C : θ. That
completes the proof.

We are now in a position to explain in terms of Gentzen sequents what
Prolog “really” does:

Definition 6 An extended derivation is called a “Prolog derivation” if it satis-
fies the following conditions at each application of rule →⇒, and if θ cannot be
replaced in the derivation by any more general substitution:

A→ B,Γ ⇒ C : θ (→⇒)

A→ B,Γ ⇒ A : θ

B,A→ B,Γ ⇒ C : θ

Then θ is required to unify C with B. That is, the right premise of the inference
is required to be a logical axiom.

The following “Observation” codifies the sense in which “what Prolog does
is compute extended G derivations”:

Observation 1 A Prolog computation with program Γ and query A[X/x] con-
structs a substitution θ and a Prolog G derivation of Γ ⇒ A[X/x] : θ.

One who has understood the definitions and who knows Prolog will recognize
the truth of this “Observation”. It is difficult to “prove” it, since it depends on
a precise definition of “Prolog computation”. We could take the definition in
Lloyd [1984] in terms of SLD resolution, in which case the Observation would be
a Theorem, but we feel that extended G derivations are closer to what Prolog
interpreters actually do than SLD resolution. We therefore omit any formal
definition and corresponding proof. The reader who is not familiar with Prolog
may take the “Observation” simply as an “Explanation”: this is what Prolog
does.

For a theorem with essentially the same content, we refer to Theorem 1
above.

In this section, we are interested only in derivations of Prolog sequents. In
that case, the antecedent contains only formulas ∀x(Hyp → Con) or ∀x(Con),
where Con is atomic, and the succedent is always atomic or an existentially
quantified atomic formula, so the above condition amounts to requiring that
the goal unify with the head of a clause in the program. Thus the unification
steps allowed by the above definition are just those permitted by Prolog. In
other words, we have the converse of Observation 1:

Observation 2 Any Prolog derivation of an extended Prolog sequent Γ ⇒
Goal : θ corresponds to a (non-deterministic) Prolog computation proving
Goal, with answer substitution θ, from the program Γ.
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Like Observation 1, this theorem could be “proved” if we accept some other
concept as the definition of “Prolog computation”, but we prefer to let it stand
as an intuitively clear characterization of the notion, as we feel it is closer to
what Prolog computation systems actually do than the notion of SLD resolution.

We summarize, somewhat less formally, the main result:

Prolog computations correspond to the construction of cut-free extended deriva-
tions from the root up, in which process, at each application of rule →⇒, the
right premise is already an axiom on the basis of the substitution constructed so
far.

4 Completeness of Prolog

The completeness of Prolog deductions for the Horn clause fragment of logic is
the fundamental result on the semantics of Prolog. See Lloyd [1981] (Chapters
1 and 2) for the standard proof, in terms of Herbrand models and resolution.
Here we give an alternate proof, which is informative because it shows that
the fundamental result on semantics of Prolog depends on proof-theoretical
properties of Gentzen calculi.

At first, the author thought that the completeness of Prolog would boil down
to just the cut-elimination theorem in the Horn-clause fragment. This was not
quite the case: Prolog deductions have the important restriction that the right
premise of an inference by rule →⇒ must be an axiom. We must not only rely
on cut-elimination, but also on the Permutation Lemma to show that proofs
satisfying this restriction are complete.

The reader should now glance at the statement of the theorem near the end
of this section, before continuing in logical fashion to read the lemmas leading
up to it.

We begin with a lemma that shows it doesn’t matter whether we use classical
or intuitionistic logic in Horn clause deductions:

Lemma 4 A Prolog sequent has a proof in intuitionistic G1 if and only if it
has a proof in classical G1.

Proof. Suppose we have a Prolog program Γ (regarded as a set of G formulae)
and suppose the sequent Γ ⇒ ∃xA is provable in classical G1. Here A is atomic
and we assume ∃xA possibly abbreviates several existential quantifiers; but for
notational simplicity we shall write only one.

The only propositional connectives in the sequent are →, which occurs only
in the antecedent and is not iterated, and , which occurs only in the left part
of implications in the antecedent, and possibly in the succudent. It follows that
the G1 proof in question uses only quantifier rules, the rule →⇒, and the rule
⇒. None of these rules introduces two formulae on the right as we go up the
tree: that is done only by the classical rule

¬A,Γ ⇒ Θ, A

¬A,Γ ⇒ Θ
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Consequently the proof is actually in intuitionistic G3. (Remember the only
difference between intuitionistic and classical sequent calculi is the restriction
to one formula in the succedent in the intuitionistic calculi.) 13 That completes
the proof.

The essence of the problem is now clear:
(1) An arbitrary G proof can introduce unknown substitutions at rules ∀ ⇒

and ⇒ ∃. Prolog, on the other hand, admits only substitutions produced by
certain specified unifications. Are these specifications general enough to produce
a proof of every sequent that has some G proof?

(2) An arbitrary G proof can use both branches of applications of rule →⇒,
while a Prolog derivation can use only the left branch. Can the use of the right
branch be avoided?

The answer to both questions is yes. To some extent they can be answered
separately; we first address (2).

Lemma 5 Let Γ ⇒ Goal be a Prolog sequent derivable in G. Then it has a
G-derivation in which at every application of rule →⇒, the right branch is an
axiom.

Proof. First, by Gentzen’s cut-elimination theorem, we may find a cut-free
derivation of the given sequent. In this derivation, the existential quantifier in
the succedent (if any) must be introduced after all applications of rule→⇒, since
no existential quantifiers occur in the antecedent. We may use the Permutation
Lemma to bring applications of ⇒ ∃ to the root of the tree. Then, again
by the Permutation Lemma, we may bring all applications of ∀ ⇒ towards
the root of the tree until there are no applications of other rules except ⇒
∃ below them. At some points in the derivation, as we move “up” the tree
(towards the axioms), an application of →⇒ may create a conjunction in the
succedent. If this happens, we may assume (by the Permutation Lemma) that
the conjunction is immediately broken up by (enough applications of) rule ⇒ ∧
until the succedents are atomic.

We now give an algorithm based on the Permutation Lemma for transforming
the given derivation from the form explained so far to a derivation of the desired
form.

Case 1 : If the last inference is by rule ⇒ ∃, ∀ ⇒, or ⇒ ∧, just apply the
algorithm to transform the derivations of the premise(s) of the last inference.

Case 2 : If the last inference is an application of rule →⇒, then by the form
required of the input, the only rules used in the derivation are →⇒ and ⇒ ∧,
and ⇒ ∧ is used only to break up conjunctions in the premises of an application
of →⇒. Let the sequent derived have atomic succudent D. Trace upwards
(towards the axioms), taking the right branch at all applications of →⇒, so
that D is always the succedent, and the rule of inference is always →⇒, until
we reach an axiom D,∆ ⇒ D at the right branch of a certain inference by →⇒.

13Note that Gödel’s double-negation interpretation is not sufficient to establish the connec-
tion between classical and intuitionistic proofs here: it would leave double negations on the
prime formulae.
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Then use the Permutation Lemma (that is, the algorithm implicit in its proof)
to permute that inference with all the others we have traced through to find it,
until it becomes the last inference. We then have a derivation of the form

A→ D,∆ ⇒ D

(A→ D),∆ ⇒ A

D,∆ ⇒ D

Apply the algorithm recursively to the sequent (A → D),∆ ⇒ A occurring on
the left branch. The resulting derivation is tacked on to the derivation fragment
shown, producing the output derivation.

This defines an algorithm: but does it converge? Yes, because applications
of the permutation lemma to permute two →⇒ inferences do not increase the
depth of the proof tree (though they may increase the total number of lines in
the proof). It follows inductively that the algorithm being defined here does
not increase the depth of the proof tree. Since the recursive calls are made
on shorter trees, they terminate by induction hypothesis. Hence the algorithm
terminates.

It still remains to prove that the transformed derivation is a Prolog deriva-
tion. We prove this by induction as follows: If the input is an axiom, so is the
output. If the last inference is by ⇒ ∃, ⇒ ∧, then the transformed derivation
has the same last rule, and the subtrees are all Prolog derivations by induction
hypothesis. If the last inference is by →⇒, then the last inference of the output
derivation is a right-branch-an-axiom application of →⇒, by the above con-
struction, and all the subtrees are Prolog derivations by induction hypothesis.
That completes the proof.

Lemma 6 (Main Lemma) Let Γ ⇒ Goal be a Prolog sequent derivable in G.
Then there is a substitution θ and a Prolog derivation of Γ ⇒ Goal : θ.

Proof. By the preceding lemma, there is a G derivation of Γ ⇒ Goal in which
at every application of rule →⇒, the right branch is an axiom. We show how
to convert such a derivation into an equivalent extended derivation. We do
not proceed from the axioms to the root, since we wouldn’t have any idea
what substitution to annotate the axioms with. Instead, we must start from
the root sequent, and proceed ‘up’ the tree. As we do this, we shall annotate
each line with a substitution. When we pass a quantifier rule ∀ ⇒ or ⇒ ∃, so
that A[t/x] occurs where ∃xA or ∀xA did one line before, we replace A[t/x] by
A[X/x], where X is a new Prolog variable, and annotate with θ,X = t, where
θ is the annotation on the conclusion of this inference. At the same time we
copy the equation X = t to the annotation space of all nodes we have already
passed along that branch from the root. 14 When we pass an inference by
→⇒, we simply copy the annotation θ already given to the conclusion to both

14Thus the answer substitution returned will be defined on some Prolog variables that are
not in the original query. This feature ofGENTZEN generalizes Prolog; in a normal Prolog
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premises (restricting the domain if necessary– one branch may not mention all
the variables in the domain of θ, so on that branch we should not put θ but
rather θ restricted to the variables occurring in that premise.) Continuing in this
way, we will eventually reach the axioms. The result is an extended derivation.
That completes the proof.

Theorem 2 (Prolog Completeness Theorem) Prolog deductions are com-
plete for the Horn-clause fragment of (classical) predicate logic. That is, every
valid Prolog sequent Γ ⇒ Goal has a Prolog deduction. Still more precisely: for
some substitution θ, there is a Prolog deduction of Γ ⇒ Goal : θ.

Proof. Suppose Γ ⇒ ∃xA is a valid Prolog sequent. By the completeness of
Gentzen’s cut-free (classical) system G1, Γ ⇒ ∃xA has a derivation in classical
G1. 15 By the Lemma, it has an intuitionistic G1 proof. By the equivalence of
G and G1, it has a G proof. By the Main Lemma, it has a Prolog deduction.
That completes the proof.

Define Γ ⇒ Goal : θ to be valid if Γθ ⇒ Goalθ is valid. (For this to make
sense, θ must eliminate all Prolog variables.) One can strengthen the statement
of the completeness theorem, as suggested to me by P. Schroeder-Heister:

Theorem 3 (Extended Completeness Theorem) Suppose Γ ⇒ Goal :
θ is valid. Then there is a substitution ψ agreeing with θ on Prolog variables
occurring in Γ ⇒ Goal and a Prolog derivation of Γ ⇒ Goal : ψ.

Proof. By the previous theorem there is a Prolog derivation of Γθ ⇒ Goalθ : µ
for some substitution µ. Taking ψ to be the composition of θ and µ, we claim
that there is a Prolog derivation of Γ ⇒ Goal : ψ. This “lifting lemma”
about Prolog derivations can be proved by induction on the length of the Prolog
derivation of Γθ ⇒ Goalθ. Consider the induction step: Given a derivation with
last step

Aµ→ Bµ,Γµ⇒ Cµ : θ (→⇒)

Aµ → Bµ,Γ ⇒ Aµ : θ

Bµ,Aµ→ Bµ,Γ ⇒ Cµ : θ

query we really use Prolog variables, not existentially bound object variables, and of course
explicit ∀ never occurs. The mechanism we have defined in the text does not provide an
explicit bookkeeping mechanism to explain the meaning of the “extra” variables on which the
answer substitution is defined; you will have to examine the extended derivation produced.

15The completeness of G1 can be proved directly as is done for a similar system in Schutte
[1977] (p. 28), or derived from Gentzen’s cut-elimination theorem, the equivalence of G1 plus
the cut-rule with Hilbert-style axiomatizations, and the completeness theorem for Hilbert-
style axiomatizations. The direct proof is easy and does not involve the machinery of the
cut-elimination theorem, which is really a separate matter.
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where by hypothesis Cµθ = Bµθ, we can transform the derivations of the
hypotheses using the induction hypotheses, to obtain a derivation terminating
as follows:

A→ B,Γ ⇒ C : µθ (→⇒)

A→ B,Γ ⇒ A : µθ

B,A→ B,Γ ⇒ C : µθ

This still meets the condition required to be a Prolog derivation, namely
Cµθ = Bµθ. That completes the proof.

5 The Program GENTZEN

In this section we exhibit a simple version of a Prolog programwe callGENTZEN

for a theorem-prover for the full intuitionistic predicate calculus. Like any Pro-
log program, GENTZEN determines a non-deterministic algorithm, as well as
a deterministic algorithm that will be executed when the program is run. The
emphasis in this paper is on non-deterministic GENTZEN. Questions of ef-
ficiency and completeness of non-deterministic GENTZEN will be taken up
briefly in Section 9 and continued in another paper.

This program has the following properties:

• Restricted to Prolog sequents, GENTZEN’s computations coincide with
Prolog’s deduction algorithm.

• GENTZEN can be applied to any sequent.
• It is sound: only intuitionistically valid formulae can be derived byGENTZEN,

even non-deterministically.
• It is (non-deterministically) complete for intuitionistic predicate calculus:

if a sequent has a G proof, the (nondeterministic version of) the algorithm will
find it eventually. In other words, if GENTZEN terminates with failure, the
sequent has no G proof.

• On input Γ ⇒ ∃xA, if there is a term t such that Γ ⇒ A[t/x] is derivable,
non-deterministic GENTZEN can find one. (It can also derive such formulae
in case no such term t exists.)

Deterministic GENTZEN, like Prolog, is not complete. GENTZEN is
really a family of programs, some of which include more “redundancy checks”
than others. The role of redundancy checks is to prevent infinite loops in the
deterministic execution of GENTZEN; they are irrelevant to non-deterministic
GENTZEN. In general, the more redundancy checks, the slower GENTZEN

runs, though of course there are efficient and inefficient ways of implementing a
given redundancy check. These issues are discussed in Section 9. The program
listed here contains no redundancy checks at all (except the obvious checks for
cognate sequents one immediately above the other).
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GENTZEN generalizes the Prolog program given for Horn clause logic in
Section 3, so the reader is invited to study that much shorter program first.
Before listing the program, we provide some information about its design.

The main predicate of the program is derive((Γ ⇒ A)), which constructs
a derivation of the sequent Γ ⇒ A. If A contains Prolog variables X , these will
be instantiated to object terms t and a G derivation of Γ ⇒ A[t/X ] will be
constructed. The derivation trees themselves are not visible to the user; they
are constructed only internally by Prolog. 16

The predicate prove(A) means to derive the sequent Γ ⇒ A, where the
axioms Γ are specified in an input file that has been consulted (see below); or
if there is no such file, then it means to derive the sequent ⇒ A with empty
antecedent.

It is now time to raise the question: in which sequent calculus doesGENTZEN

construct a derivation? In fact there is a version of GENTZEN based on G3, a
version based on G, and a version based on G4. The non-deterministic versions
of these all turn out to be complete. The deterministic versions all solve all the
examples in this paper. The G3 version has the simplest program (because you
don’t have to worrry about when to delete hypotheses); but it is the G4 ver-
sion (or the G version) which imitate successful Prolog computations exactly.
The labels drop in the program below are used to implement the omitting of
formulae in the premise of rule →⇒. You should ignore them at first reading.

Logical Notation in Prolog

GENTZEN uses the Prolog notation (A,B) for A∧B, and (A;B) for A∨B.
17 Implication is written A -> B. 18 Negation is written neg(A) to distinguish
it from Prolog’s negation by failure, not(A). Object variables (which can be
quantified) are represented by Prolog atoms (except true and false). ∀xA is
written all(x,A) and ∃xA is written exists(x,A). As mentioned previously, we
allow a more general syntax in which one may quantify over a list of variables
all at once. The notation for this is, for example, all([x,y,z],(a(x,y) ->

b(z))). The list of object variables is required to be in lexicographic order, as
defined by the Prolog system’s primitive ordering of terms.

For reasons to be explained in the section on proofs by induction, we also
allow λ-abstraction on formulas; the syntax is explained in that section, and the
clauses of the program mentioning lambda and ap should be ignored for now.

Treatment of Variables

We distinguish Prolog variables (written as identifiers beginning with an
uppercase letter) from object variables (treated as Prolog atoms, i.e. beginning

16Of course, if you want to see them explicitly, it is easy to add another argument to derive;
in fact our first program did so. But you gain efficiency by leaving the proof-trees internal.

17We could have used A B and A / B or even A & B; and we could have made the prover
accept all these notations, but at a price in efficiency.

18Unfortunately the operator declarations are such that extra parentheses are required when
formulae formed with binary operators are used as arguments: we need prove((A -> B)), not
just prove(A->B).
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with a lower-case letter). Prolog variables should be thought of as ranging
over terms of the object language (or sometimes, over other syntactic categories
such as variables or even formulae). That is, they serve as what logicians call
“meta-variables”.

If the formula A contains any Prolog variables in the syntactic position of
a term, the program attempts to instantiate them by terms. For example, the
query:

prove(( a(0) -> a(X) ))

will succeed and return X=0. The query

prove(( a(0) -> exists(x,a(x)) ))

will succeed, but will return only yes. The query

prove(( exists(x,a(x)) -> exists(x,a(x)) ))

will succeed, returning yes, but the query

prove(( exists(x,a(x)) -> a(X) ))

will fail, because there is no term t such that ∃xa(x) ⇒ a(t) is provable. Thus in
practice, if you want an “instantiating term” t for a sequent Γ ⇒ ∃xA, you must
first ask with a Prolog variable for x. If there is an instantiating term t, you
will get it. If you then want to know whether the sequent is derivable (without
an instantiating term), you ask again, this time with an explicit existential
quantifier and an object variable. (Of course this double query method could
be automated.)

Treatment of Axioms

Most problems in automated deduction involve a given set of axioms Γ, and
a desired conclusion A. We then desire a derivation of the sequent Γ ⇒ A. As
a matter of convenience, we want to enter the axioms Γ in a text file, and type
only the desired conclusion A directly to GENTZEN. This is done by means
of the predicate axiom of two arguments. The first argument is an (optional)
name of the axiom. The second argument is the axiom itself.

Axioms should be closed formulae, i.e. should have no free variables, either
object variables or Prolog variables. If you put a Prolog variable X in an axiom
B(X), and ask for a proof of B(X) ⇒ A, you are in effect asking if there is a
term t such that B[t/x] ⇒ A is provable. This may or may not be the case, but
it is a different question from asking if ∀xB(x) ⇒ A is provable.

The key to Prolog’s efficiency, generalized

Note particularly the crux of the algorithm in the treatment of the rules
⇒ ∃ and ∀ ⇒, where Prolog variables are introduced for the instantiating term.
When the computation reaches the axiom rule, unification will instantiate these
variables, producing the desired terms efficiently. Note also the treatment of
rule ∀ ⇒, in which we check whether the right branch is an axiom, and if it
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is not, we select another rule to apply, rather than go ‘up’ the right branch
further. Only if all else fails do we go up the right branch. This corresponds to
Prolog’s selection of a clause whose head unifies with the goal, and causes the
program to exactly imitate Prolog’s computation on Horn clause input. In the
case of more general input, it often causes the quick and efficient selection of the
correct axiom to use at the next step. As much as unification, this restriction
on the search for a proof-tree is the key to Prolog’s efficiency:

Don’t look up the right branch of →⇒ unless nothing else works.

Avoiding infinite regress

Kleene [1952], pp. 482, uses Gentzen’s system G3 to give a decision method
for intuitionistic propositional calculus. The point of using G3 (G would also
do) instead of the system G1 is that as we work ‘upwards’ in constructing a
proof tree, no new copies of formulas already present are introduced by ‘thinning’
as in G1. This lets us bound the size of the (possible) proof tree. However,
even in G it is possible that “loops” can occur in this process. For example,
consider the sequent a → b, b → a, a ⇒ a. Prolog will loop on this example:
to avoid the loop, you must write the input in a different order, for example
a, a→ b, b→ a⇒ a. GENTZEN will not loop on this particular example, as it
checks for axioms before using →⇒, but even this example illustrates the fact
that infinite regress is possible in the process of constructing proof trees in G .

If one wants only ‘parlor algorithms’, it is easy to avoid loops by stopping
whenever a ‘redundancy’ is created, i.e. a formula is generated that already
occurs ‘below’ (on the same branch). However, it is difficult to check for re-
dundancies efficiently. In the case of Prolog, it would change a linear algorithm
to O(n logn) at best. So Prolog omits “loop checks”; and following this lead,
we present here a version of GENTZEN with no redundancy checks. This
leaves it up to the user of GENTZEN (like the user of Prolog) to avoid infinite
regress by choosing a suitable ordering of the axioms before presenting them to
GENTZEN.

See Section 9 for further discussion.

Can I run GENTZEN on my machine? The program runs in Arity

Prolog, version 5.0x, on the IBM AT. It is written in standard Clocksin and
Mellish Prolog, except for the operators == and \==. The operator X == Y

tests whether X and Y are identical terms, even if they contain free variables,
without instantiating any of the free variables in those terms. The operator X
\==Y is its negation. So the program should run in any Prolog supporting these
operators. Perhaps one should also worry about the relative precedences of the
logical operators, which may vary between implementations of Prolog for all the
author knows.

We present below a version of GENTZEN based on the system G3 instead
of on G. For simplicity, we present the version with absolutely no redundancy
checks, and no attempt at controlling the search for a derivation except the one
needed to explain Prolog. This simple version, however, is included in entirety.
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If you are a Prolog programmer, you can supply the utilities described in Section
3, and then run the program whose main part is listed below. You can verify
for yourself that it solves the examples given in later sections. Just consult
your axiom file and give the query prove(Goal). Anyone seriously interested in
running GENTZEN should request source code for this and more complicated
(but more efficient) versions of GENTZEN from the author, as the version
presented here is really just a toy (albeit a working toy) whose purpose is to
demonstrate the principles on which GENTZEN is based.

We list here only the main predicates prove and derive. A short description
of some of the utility predicates used has been given already in Section 3. The
predicate pieces is declaratively identical to append, but is used to break a
given list into pieces (in different ways on backtracking) rather than to append
two given lists.

GENTZEN Partial Program Listing

% direct implementation of Gentzen sequents

% without explicit proof trees */

% No redundancy checks at all, for speed and simplicity

% No control of search beyond the

% (right-branch of -> => an axiom) principle

% Author: M. Beeson

% last edited 6.27.88

% original date of this version 5.18.88

% similar program with explicit proof-terms and equality, 9.30.87

:- op(1160, xfx, =>).

%infix, non-associative, binds looser than ’,’ and ’;’.

prove(A):-

findall(B, axiom(Name,B) ,Gamma),

derive(( Gamma => A)).

axiom((Gamma => A)):- % A = false is legal

member(X,Gamma), unify(X,A).

% for finitely axiomatized theories, "member(A,Gamma)" would suffice;

% but this allows unification to select an instance of an axiom

schema

derive(( Gamma => A )):- axiom((Gamma => A)).

derive(( Gamma => T=T )).

%this accounts for Prolog’s treatment of equality

derive(( Gamma => A->B )):- %rule => ->

derive(( [A|Gamma] => B )).

derive(( Gamma => (A,B) )):- %rule => &

derive(( Gamma => A)),

derive(( Gamma => B)).

derive(( Gamma => (A;B) )):- %rule => ’;’

derive(( Gamma => A )).

derive(( Gamma => (A;B) )):- %rule => ’;’

derive(( Gamma => B )).
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derive(( Gamma => neg(A))):- %rule => neg

derive(( [A|Gamma] => false )).

derive(( Gamma => C )):- %rule & =>

pieces(First,[(A,B) | Rest],Gamma),

append(First,[A,B|Gamma],Delta),

derive(( Delta => C )).

derive(( Gamma => C )):- %rule ’;’=>

pieces(First,[(A;B)|Rest], Gamma ),

not(fmember(A,Gamma)), %prevent cognates on left branch

not(fmember(B,Gamma)), %prevent cognates on right branch

append( First, [A|Rest], LeftHyp),

derive(( [A|Gamma] => C )),

append( First, [B|Rest], RightHyp),

derive(( [B|Gamma] => C )).

Taking the right branch first as the following clause specifies is important
when using this clause to instantiate a schema as in proofs by induction. On the
other hand, one of the keys to the efficiency of GENTZEN is the use of axiom
in the next clause instead of derive.

derive(( Gamma => C )):- %rule -> =>

memberandrest( drop(A->B), Gamma,Delta),

%drop A->B, it came from (all =>)

A \== C, %prevent an obviously redundant proof

axiom(( [B] => C )), %[B] instead of [B|Gamma] is ok

not(fmember(B,Gamma)),

%prevent redundant proofs (cognates on right branch)

derive((Delta => A).

derive(( Gamma => C )):- %rule -> =>

member( (A->B), Gamma), %don’t drop this occurrence of

A->B

A \== C, %prevent an obviously redundant proof

axiom(( [B] => C )), %[B] instead of [B|Gamma] is ok

not(fmember(B,Gamma)),

%prevent redundant proofs (cognates on right branch)

derive((Gamma => A).

derive(( Gamma => C )):- %rule neg=>

member(neg(A),Gamma),

A \== C, %prevent immediate redundancy

derive(( Gamma => A )).

derive(( Gamma => all([X|Rest],A) )):- %rule => all (list quantifier)

gensymlist([X|Rest],x,Varlist),

%make a list of new object variables

list fsubst(Varlist,X,A,AofVar),

derive(( Gamma => AofVar )),

not (member(Var,Varlist),fcontains([all([X|Rest],A)|Gamma],Var)).

% restriction on variables
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derive(( Gamma => all(X,A) )):- %rule => all (ordinary quantifier)

gensym(x,Var),

fsubst(Var,X,A,AofVar),

derive(( Gamma => AofVar )),

not fcontains([all(X,A)|Gamma],Var). % restriction on variables

derive(( Gamma => C )):- %rule exists => (list quantifier)

member( exists([X|Rest],A), Gamma),

gensymlist([X|Rest],x,Varlist),

%make a list of new object variables

list fsubst(Varlist,X,A,AofVar),

derive(( [AofVar|Gamma] => C )),

not (member(Var,Varlist), fcontains([C|Gamma],Var)).

% restriction on variables

derive(( Gamma => C )):- %rule exists => (ordinary quantifier)

member( exists(X,A), Gamma),

gensym(x,Var),

fsubst(Var,X,A,AofVar),

derive(( [AofVar|Gamma] => C )),

not fcontains([C|Gamma],Var). % restriction on variables

%rule => exist (list quantifier)

derive((Gamma => exists([X|Rest],A))):-

findall( ,member( ,[X|Rest]),NewVarList), %generate new variables

list fsubst(NewVarList,[X|Rest],A,NewA),

derive(( Gamma => NewA )).

%rule => exists (ordinary quantifier)

derive(( Gamma => exists(X,A) )):-

fsubst( ,X,A,NewA),

derive((Gamma => NewA )).

derive((Gamma => B)) :- %rule all => (list quantifier)

member(all([X|Rest],A),Gamma),

findall( ,member( ,[X|Rest]),NewVarList), %generate new variables

list fsubst(NewVarList,[X|Rest],A,NewA),

not fmember2(NewA,Gamma),

((functor(NewA,’->’, ),

derive(( [drop(NewA)|Gamma] => B ))

); %label implications with ‘drop’

derive(([NewA|Gamma] => B))

).

derive((Gamma => B)) :- %rule all => (ordinary quantifier)

member(all(X,A),Gamma),

fsubst( ,X,A,NewA),

not fmember2(NewA,Gamma),

((functor(NewA,’->’, ),

derive(( [drop(NewA)|Gamma] => B ))

); %label implications with ‘drop’

derive(([NewA|Gamma] => B))
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).

derive( (Gamma => ap(lambda(X,A),T) )):-

fsubst(T,X,A,AofT),

derive((Gamma => AofT)).

derive((Gamma => A)):-

pieces(Firstpart,[ap(lambda(X,A),T)|Rest], Gamma),

fsubst(T,X,A,AofT),

append(Firstpart,[AofT|Rest],Delta),

%replace ap(lambda(X,A),T) by AofT

derive(( Delta => A )).

derive(( Gamma => C )):- %rule -> =>, going up right branch further

memberandrest( drop(A->B), Gamma,Delta),

A \== C, %prevent immediate redundancy

not(fmember(B,Gamma)),

%prevent immediate redundancy on right branch

derive(( [B|Delta] => C )), %Not just "axiom" but "derive"

now

derive((Delta => A)).

derive(( Gamma => C )):- %rule -> =>, going up right branch further

member( (A->B), Gamma),

A \== C, %prevent immediate redundancy

not(fmember(B,Gamma)),

%prevent immediate redundancy on right branch

derive(( [B|Gamma] => C )), %Not just "axiom" but "derive"

now

derive((Gamma => A)).

Note: In the above program, gensym is supposed to generate new variables.
If your axioms contain variables such as x17, you should run gensym enough
times first to be sure that the variables it generates will indeed be new. In
practice it’s simpler to avoid using such variables in the axioms.

6 McCarthy’s sterilization example

John McCarthy has given the following example to illustrate the shortcomings of
Prolog.19 We will show that GENTZEN works the problem nicely. In order to
help the reader understand how GENTZEN works, we will trace the execution
of GENTZEN on this example.

∀ container( ∀ bug (in(bug,container) → dead(bug)) (sterile1)

→ sterile(container)

19See McCarthy [1987] where the problem is informally stated and the unsuccessful attempt
to formalize it in Prolog is discussed. The axioms given here were written down by L. T.
McCarty in a talk. Similar axioms (omitting sterile2 and coalescing heat1 and heat2) are
in Miller [1988], p. 65; McCarty’s work and Miller’s work are discussed in Section 11.
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∀ bug( ∃ container ( heated(container) ∧ in(bug,container))

→ heated(bug)) (heat1)

∀ bug( heated(bug) → dead(bug)) ( heat2)

∀ container (sterile(container) (sterile2)

→ ∀ bug (in(bug,container)→ dead(bug)))

heated(dish1) (special)

McCarthy points out that Prolog cannot represent this simple logic problem,
let alone solve it, as it isn’t formulated in Horn clause logic.

We shall show howGENTZEN solves this problem. The initial goal given to
the program is prove(sterile(dish1)). First, the rule ∀ ⇒ is used to open up
sterile1, replacing the bound variable containerwith a Prolog variable. Then
rule →⇒ applies, since the goal matches the “head” of sterile1. This gen-
erates the new goal ∀ bug (in(bug,dish1) → dead(bug). Next GENTZEN

uses ∀ ⇒ to open up the other universal axioms (and also the one which has
already been used once), replacing the bound variables by Prolog variables. But
none of the implications thus created can be used yet, so we reach the clause
for ⇒ ∀. A new variable name x1 is generated and we get the goal to prove
in(x1,dish1) → dead(x1). Then rule ⇒→ moves in(x1,dish1) to the an-
tecedent, and we have to prove dead(x1). Finally the goal matches the head of
an implication in the antecedent, namely the one obtained by opening up heat2.
Rule→⇒ generates the new goal of proving heated(x1). This matches the head
of the implication obtained from heat1, and generates the new goal of showing
that x1 is in some heated container. Now rule ⇒ ∃ comes into play, replacing
container with a Prolog variable and setting up the goal heated(Container),
in(x1,Container). Then ∨ ⇒ calls for proving heated(Container). That
goal, however, unifies with the axiom heated(dish1), so Container is instan-
tiated to dish1, leaving the goal in(x1,dish1) to work on. That formula,
however, is in the antecedent, so the clause for axiom applies. GENTZEN now
exits from all these recursive calls, back to the rule ⇒ ∀, where it still has to
check the restriction on variables: indeed, x1 is not free in the antecedent at
that point. That completes the proof.

It is interesting to note that the order of the axioms is important: if we put
the axiom heated(dish1) last, then an infinite regress results. The system tries
to prove dish1 is heated by finding a container x such that dish1 is in x and
x is heated. This it will try to do by trying to find a container y such that x
is in y and y is heated, and so on. This phenomenon is familiar from Prolog.
In this case, it reflects a failure of the axioms to express all the information of
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the informal problem: we should have used a typed system with types bug and
container, or at least unary predicates bug and container, and made sure that
in(x, y) holds only when x is a bug and y is a container. Similarly, the axioms
above permit the deduction of dead(dish1), which is surely not intuitive! The
role of types will be discussed more in another section.

In the version ofGENTZEN listed in Section 5, with no redundancy checks,
it is important that the axiom “sterile2” come after “heat2”. Otherwise
GENTZEN tries to prove dish1 is sterile by showing all bugs in it are dead, and
then tries to prove that by showing it is sterile, entering a loop. One intermediate
version of GENTZEN has redundancy checks only on rule ∀ ⇒. This version
doesn’t care where you put “sterile2”, but it still must have “special” last. Its
speed is intermediate between the version with no redundancy checks and full
redundancy check.

7 Completeness of Non-deterministic GENTZEN

The program listing of Gentzen, like any Prolog program, describes a non-
deterministic algorithm, as well as a deterministic algorithm determined by the
actual execution under Prolog. Just as all known metatheorems about Prolog
concern the non-deterministic version, so our completeness theorem concerns
non-deterministicGENTZEN. As in the case of Prolog, in the case of the actual
running prover, it matters in what order you state your antecedent formulae. 20

Note: In the theorems of this section, “GENTZEN” refers to the non-
deterministic algorithm defined either by the listing of derive in Section 5, or
by the similar but simpler programs based on G3 or even G1, or by any more
elaborate version of the program which improves on that listing’s deterministic
efficiency while retaining non-deterministic equivalence.21 The general plan in
developing GENTZEN as a practical theorem prover is to make modifications
for efficiency which still preserve non-deterministic equivalence to the prototype
derive studied here.

Theorem 4 (Soundness and Completeness of non-deterministic GENTZEN)
Let Γ ⇒ A be a closed, intuitionistically valid sequent. Then GENTZEN an-
swers the query prove(Γ ⇒ A) by constructing a G derivation of the sequent.

If the sequent is allowed to contain free variables x = x1, . . . , xn, and if
X = X1, . . . , Xn are corresponding Prolog variables, then GENTZEN answers

20The classic example is the logic program for member, which has two clauses:

member(A,[A|X]).

member(A,[B|X]):- member(A,X).

Putting these clauses in the other order produces infinite regress in the computations generated
by the query member(a,X). This is equally true whether the clauses are given to Prolog or to
GENTZEN as listed in this paper.

21Two versions of derive are non-deterministically equivalent, if they determine the same
derivable formulae when the Prolog clauses are interpreted as the clauses of an inductive
definition of “derivable”.
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the query prove(Γ[X/x] ⇒ A[X/x]) by constructing terms t and a derivation of
Γ[t/x] ⇒ A[t/x], if it is possible to find such terms.

Any answer to either of the above queries (for a sequent not containing
equality) implies the construction of appropriate derivations, so GENTZEN is
sound.

Corollary 1 (Classical Completeness) Let Γ ⇒ A be a closed, classically
valid sequent, in which every atomic formula is doubly negated and in which ∨
and ∃ have been replaced by the classical equivalents not involving these connec-
tives. Then GENTZEN constructs a G3 derivation of Γ ⇒ A.

Proof of Corollary. This follows from the theorem by Gödel’s double-negation
interpretation (Kleene [1952], p. 495, Theorem 60(d)).That completes the proof.

Proof of Theorem. The soundness of GENTZEN is proved by a straightfor-
ward induction on the length of (non-deterministic) Prolog computations of
derive(Γ,A). There is one induction step corresponding to each clause in the
program for derive.

Turning to the completeness, let Γ ⇒ A be an intuitionistically valid se-
quent. By the completeness of Gentzen’s cut-free rules (which can be proved
either directly or using the cut-elimination theorem), there is an irredundant
derivation of Γ ⇒ A. 22 It thus suffices to proceed by induction on the length of
irredundant derivations, showing that every sequent with an irredundant deriva-
tion is proved by (non-deterministic) GENTZEN. We shall carry out the proof
for the version of GENTZEN based on G3; the proof for the version based on
G is only slightly more complicated, but we have given the program listing only
for the version based on G3. Using the notion of extended derivation introduced
in Section 3, we prove more: if there is an irredundant extended derivation of
Γ ⇒ A : θ, where the variables free in the extended sequent are Prolog vari-
ables, and θ is the identity on variables not contained in Γ ⇒ A, then there is
a Prolog computation of the query derive(Γ ⇒ A) such that the substitution
produced by Prolog is more general than θ. This statement implies both parts
of the completeness theorem.

If you seriously intend to follow the proof, you should read it with a copy of
the program for GENTZEN at hand, as we will not repeat every clause when
it is needed.

Basis case: Γ ⇒ A : θ is an axiom in case there is a member B of Γ such
that Aθ = Bθ. In this case the predicate axiom(( Γ ⇒ A )) will succeed, in view
of its definition, with a unifying substitution more general than θ, since Prolog
finds the most general unifier.

There is one induction step for each rule of G3.

22The notion of redundant derivation is defined in Kleene [1952], p. 482: it means that
no two sequents on the same branch are cognate, i.e. have the same set of formulae in
the antecedent and the same succudent. Evidently every derivation can be shortened to an
irredundant derivation, since the rules of G3 are construed to treat the antecedents as sets of
formulae. An irredundant extended derivation is one whose associated derivation (obtained
by applying the substitution at each line) is irredundant).
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Rule ⇒ ∃: Suppose the last rule in the given G3 derivation is rule ⇒ ∃.
Then the last two lines of the derivation look like:

Γ ⇒ ∃xA : θ, x = Xθ

Γ ⇒ A[X/x] : θ

where we may suppose x does not occur elsewhere in the sequent, and θ does
not act on x. Then by induction hypothesis, the query derive(Γ ⇒ A[X/x])

succeeds with substitution more general than θ. Expressed more precisely, the
right-hand side of the clause of GENTZEN for this rule succeeds. (Assuming,
as we shall, that fsubst meets the specification given for it in the comments
of the program.) Hence, the query derive(Γ ⇒ exists(x,A) succeeds with
substitution more general than θ.

All the rules involving list quantifiers are handled similarly to the cases of
individual quantifiers, and will not be written out explicitly.

Rule ∀ ⇒: In this case we may assume the last two lines of the given deriva-
tion are of the form

∀xA,∆ ⇒ B : θ, x = Xθ

A[X/x],∆ ⇒ B : θ

where x doesn’t occur elsewhere, and θ does not act on x.
The program works differently according to whether A is an implication or

not; it labels implications with the prefix drop. It would be non-deterministically
equivalent to the listing in Section 5 just to have two clauses, one applying to
the case A is an implication, and the other the ordinary clause modelled on
G3.23 Since more clauses only make it easier to find proofs, we can for this
proof just forget about the part of this clause involving drop. (After having
checked its soundness.)

Note that since order is disregarded in the antecedent in the rules of G,
the formula ∀xA could actually be interspersed somewhere in ∆. The first line
of the relevant clause of GENTZEN can choose (non-deterministically) this
member of the antecedent (deterministically, it might choose a previous one!).
The next line, involving fsubst, makes sure the variable is new, i.e. “x doesn’t
occur elsewhere”. The next line rejects the derivation if the newly generated
formula for the antecedent is already present; in that case the derivation would
be redundant. Since we have assumed we have an irredundant derivation, this
line will also succeed. By induction hypothesis, the last line succeeds with
substitution more general than θ, completing this case. 24

23Deterministically, that way of writing the program would give preference to cases of ∀ ⇒

in which the matrix is an implication, instead of just taking the leftmost formula ∀xA in the
antecedent.

24The line involving fmember prevents certain infinite regresses in the deterministic version.
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Rule ⇒ ∀: In this case, we may assume the last two lines of the derivation
are of the form

Γ ⇒ ∀xA : θ

Γ ⇒ A : θ

where x does not occur free in Γ. Let x17 be the new variable produced by
gensym(x,Var). Renaming the free occurrences of the variable x in the deriva-
tion ‘above’ the root to be x17, we obtain an irredundant derivation of Γ ⇒
A[x17/x] : θ. Hence the call to derive in this clause of GENTZEN will suc-
ceed, by induction hypothesis. The last line of the clause is not fcontains(Γ,x17).
Since Γ did not contain x free, it does not contain x17 at all. Hence this line
succeeds, completing this case.

Rule ∃ ⇒: In this case, we may assume the last line of the given irredundant
extended derivation is

∃xA,∆ ⇒ B : θ

A,∆ ⇒ B : θ

where x does not occur free in ∆ or B, and (as in the case of rule ∀ ⇒) the
formula ∃xA may actually be interspersed in ∆. Non-deterministically, the
first line of the relevant clause of GENTZEN can choose this member of the
antecedent. Let x27 be the variable produced by the call to gensym in the second
line of this clause; as above, rename the free occurrences of x above the root
by x27. Then x27 does not occur at all in Γ or B. By induction hypothesis,
the recursive call to derive in this clause succeeds, with a substitution more
general than θ. The last two lines will succeed since x27 doesn’t occur in Γ or
B, completing this case.

Rule →⇒: The last lines of the given derivation are

A→ B,∆ ⇒ C : θ

(A→ B),∆ ⇒ A : θ

B, (A→ B),∆ ⇒ C : θ

Of course the formula A → B in the antecedent might be interspersed in ∆;
and as indicated by parentheses, it may even not occur in the premises. There
are two clauses for this rule in the listing in Section 5, the first one checking for
the case in which A→ B has been labelled with drop when introduced by rule
∀ ⇒. Non-deterministically, we are free to ignore that clause; the second one
suffices. We are assuming we have derivations of the premises; if the premises
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actually omit the parenthesized A→ B, we can add it back to the antecedents
of all formulae above this point, if necessary renaming some bound variables
above this point to avoid violating the restrictions on variables. Hence we may
assume that we have derivations of the premises with A→ B not omitted; that
is, that this inference follows the pattern of G3.

There are two cases, according as whether the ‘right’ (second) premise is an
axiom or not. Let us first take the case in which it is, i.e. in which Cθ = Bθ, or
possibly θ unifies C with some member of ∆. In the latter case, we would have
found a successful computation of derive already under the clause calling axiom
directly, so we may assume Cθ = Bθ. Now consider the computation by Prolog
according to the first clause of GENTZEN for rule →⇒. The first line (call to
member) we may suppose has selected A → B from Γ, leaving ∆ as the set of
remaining formulae in the antecedent. If A == C, then we have a redundant25

proof, since the left premise would be cognate to the root. Since by hypothesis
the given derivation is irredundant, the second line A \== C succeeds. Since
we have assumed Cθ = Bθ, the third line succeeds. Since the given proof is
irredundant, the line not fmember(B,Γ) succeeds, for if B belongs to Γ then
the right premise is cognate to the root. Finally, by induction hypothesis the
last line, derive((Γ ⇒ A )), succeeds with a substitution more general than θ,
completing this case of this rule.

Now consider the second case of rule →⇒, in which the right premise is not
an axiom. This case corresponds to the second group of clauses of GENTZEN

for this rule. (For efficiency’s sake this clause is placed at the end of derive,
but that is irrelevant to the present proof, which is about non-deterministic
GENTZEN.) As above we may ignore the clause involving drop and assume
that A → B is not omitted. The first line of this clause chooses a principal
formula for the inference. The next two lines, which check for cognates on the
left and right branch respectively, work as before. By induction hypothesis, the
recursive call to derive(([B|Γ] ⇒ C )) succeeds, producing a Prolog computa-
tion of derive(([B|Gamma] ⇒ C)) with a substitution θ1 more general than θ.
Using the definition of “more general”, we can write θ = θ1δ for some substitu-
tion δ. Applying the substitution θ1 to the given derivation of Γ ⇒ A : θ, we
obtain a G3 derivation of Γθ1 ⇒ A : δ. Applying the induction hypothesis
to this derivation, we see that the Prolog computation of derive((Γθ1 ⇒ Aθ1))
will succeed with a substitution η more general than δ; thus δ = ηγ for some
substitution γ, so θ = θ1δ = θ1ηγ. The substitution with which the computa-
tion of derive((Γ ⇒ C)) has progressed so far is θ1η, which is thus more general
than θ. This completes the argument for this rule.

The cases corresponding to the other propositional rules are comparatively
simple and are left to the reader to verify by inspection. That completes the
proof.

25It might become redundant later, after a unification, even if this condition is not satisfied;
but we have no way of checking for that now.
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8 GENTZEN Extends Prolog

In this section, “GENTZEN” will be used generically to refer to versions ei-
ther without redundancy checks, as in Section 5, or with redundancy checks.
However, in this section we consider both deterministic and non-deterministic
GENTZEN. When deterministic GENTZEN is considered, it is important
that we consider a version somewhat more complicated than the listing exhib-
ited in Section 5. That listing does not behave quite like Prolog, because it first
instantiates a clause, and then retains the instantiated clause after it is used,
which Prolog does not. To imitate Prolog, we must discard implications which
result from instantiated clauses: we must actually omit the premises that G
allows us to omit.

This version ofGENTZEN is implemented by making the following changes
to the listing in Section 5: (1) when rule ∀ ⇒ is used (in reverse) the new instance
added to the antecedent is labelled with the functor drop. That is, the formula
drop(A) is added to Γ rather than just A. (2) An extra clause for rules →⇒
is added to the program, just before the clause in Section 5, which checks for
formulae drop(A → B); it then takes such a formula for the principal formula
of the inference, and “drops” the formula drop(A→ B) from the antecedent, in
accordance with the rules of G. (3) Similar clauses are added for rules ∧ ⇒ and
∨ ⇒. The use of the functor drop saves repeated checking whether candidate
principal formulae are substitution instances of other formulae in the antecedent.
The resulting derivation will be in G4 provided “droppable” formulae were not
included among the axioms; if they were, however, some optional “drops” will
be missed, and the derivation will be only in G.

We will prove that this version of GENTZEN imitates successful Prolog
computations. This should be more or less obvious to the reader by now, al-
though we give a proof below. The theorem, however, concerns only the result
of the computation (that is, the answer substitution); while actually somewhat
more is true: Not only does GENTZEN have the same result as Prolog, but the
computation process is substantially identical. There is one difference, however:
GENTZEN uses atomic clauses P first, rather than treating them as implica-
tions true → P . If you want GENTZEN to exactly imitate Prolog, you have to
write your atomic clauses as implications this way.26 No doubt GENTZEN is
slowed down slightly by the process of checking the program for atomic clauses
instead of simply proceeding left-to-right.

Another point which may not be obvious is that the theorem only concerns
successful Prolog computations. GENTZEN does not always imitate Prolog
on unsuccessful computations: sometimes it terminates when Prolog goes into
a loop. There are some invalid Prolog sequents on which Prolog does not ter-
minate, even though they are purely propositional. For example, the sequent
a → b, b → a ⇒ a. GENTZEN terminates and says no on such inputs. In
this sense, GENTZEN properly extends Prolog: it improves on Prolog even in
the propositional fragment. Similarly, there are valid Prolog sequents on which

26Prolog actually represents them as implications true → P in just this way in its internal
database.
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Prolog does not terminate (because the clauses are in the wrong order), such
as a → b, b → a, a ⇒ a. GENTZEN terminates successfully on this example,
so deterministic GENTZEN improves upon Prolog, even on the valid proposi-
tional fragment. See Section 9 for further discussion.

Theorem 5 (Extension of Prolog) Non-deterministic GENTZEN extends
non-deterministic Prolog. More precisely: Let the Prolog sequent Γ ⇒ A corre-
spond to the query A to the logic program Γ. Suppose Prolog answers yes with
answer substition θ for the Prolog variables in A (if any). Then GENTZEN

answers yes with the same answer substitution to the query derive(Γ⇒ A).
Moreover, deterministic GENTZEN (based on G4 and running under Pro-

log) extends actual Prolog. That is, if Γ ⇒ A is a Prolog sequent, and actual Pro-
log returns an answer substitution θ to the query A under the program Γ, then de-
terministic GENTZEN constructs an extended G4 derivation of Γ ⇒ A : θ.
This remains true for versions of GENTZEN including (various) redundancy
checks.

Proof. First we consider non-deterministic GENTZEN. We use the tool of
extended G derivations introduced in the proof of completeness of Prolog.

Suppose the Prolog sequent Γ ⇒ A corresponds to a successful query A to
the (non-deterministic) logic program Γ. Note that Γ has no Prolog variables,
though A may. Then (by Observation 1) there is an extended G derivation of
Γ ⇒ A : θ, where θ is the answer substitution produced by Prolog. Removing
any redundancies from this derivation, we may assume we have an irredundant
extended G derivation of Γ ⇒ A : θ. By the completeness ofGENTZEN, the
query derive(Γ⇒ A) succeeds, with the Prolog variables X of A instantiated
by means of a substitution more δ more general than θ. By the soundness of
GENTZEN, there is an extended G derivation of Γ ⇒ A : δ. Then by the
completeness of Prolog, there is a Prolog computation answering the query A
to program Γ by a substitution more η more general than δ, and hence more
general than θ. But Prolog produces most general unifiers: hence η = θ. Hence
δ = θ too. This completes the proof for non-deterministic GENTZEN.

Now consider the case of deterministic GENTZEN. To understand what has
to be proved, consider what has been proved already in Section 4. There we con-
sidered a variant of GENTZEN obtained from the full G4-based GENTZEN

by
(1) deleting from the program for derive all clauses except those corre-

sponding to rules →⇒, ∀ ⇒, and ⇒ ∃; and
(2) deleting the label drop from implications everywhere, i.e. in rules ∀ ⇒

where they are introduced and in rule →⇒ where they are dropped.
(3) deleting the second group of clauses corresponding to rule →⇒ (for going

up the right branch), and retaining only the first clause of the two for going up
the left branch; and

(4) in case of versions of GENTZEN with redundancy checks, deleting all
redundancy checks.
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We proved in Theorem 2 that this program corresponds to Prolog. Evidently
in case the input is a Prolog sequent, only clauses corresponding to rules →⇒,
∀ ⇒, and ⇒ ∃ can be used, so (1) is no problem.

(2) is no problem either: every implication has to have originated in a Pro-
log clause, and so got labelled with drop when it first appeared. Since every
implication is labelled, we may as well drop the labels.

Since we only have to prove that GENTZEN succeeds when Prolog does,
it does no harm whatever to add more clauses to derive at the end of the
program; these can only result in GENTZEN succeeding when it otherwise
would not. Hence (3) makes no difference, since the clause in question comes at
the end of the program for derive.

Finally, consider (4). Adding a redundancy check can only improveGENTZEN’s
performance: no computations which succeeded without a redundancy check
will fail when a redundancy check is included. Hence (4) makes no difference.

We have now proved that GENTZEN will succeed at least on those inputs
for which the program in Section 4 succeeds; but by Theorem 2 this includes all
cases in which Prolog succeeds. That completes the proof.

Remark : There are a number of more elaborate versions of GENTZEN not
discussed in this paper; but they all work the same on the Prolog fragment, so
the theorem applies to them all.

9. Deterministic GENTZEN as a Theorem Prover

Deterministic GENTZEN is incomplete. This section contains a prelimi-
nary discussion of the factors leading to this incompleteness, and of the tradeoff
of incompleteness for efficiency. We describe an extension of GENTZEN that
provides a decision method for intuitionistic propositional calculus.

We intend to show in the future by demonstration that control structures can
be introduced into the framework provided by non-deterministic GENTZEN

which produce a very efficient practical theorem-prover. A full discussion of
these problems, let alone their solutions, is beyond the scope of this paper.

Using GENTZEN for independence proofs

GENTZEN attempts to generate a G derivation of the ‘goal’ sequent given
it as input, by using the rules of G in reverse, proceeding ‘upwards’ from the
goal, and relying on Prolog’s unification to later determine the terms needed at
rules ⇒ ∃ and ∀ ⇒. Non-deterministic GENTZEN can make “choices” about
which rule to use next. Deterministic GENTZEN specifies the order of rules to
be tried. However, Prolog’s backtracking will eventually try all the rules, so long
as GENTZEN does not go into infinite regress. More specifically, suppose we
have completed a partial (extended) derivation up to a certain sequent Γ ⇒ A.
We then choose a rule, generate its premises (possibly containing new Prolog
variables), and try to complete the derivations of these premises. If we succeed,
fine. If we fail, a new rule will be tried. The only danger to the completeness of
deterministicGENTZEN is thus the possibility of infinite regress in the attempt
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to complete the derivation of one of the premises. The following theorem makes
this precise:

Theorem 6 If deterministic GENTZEN terminates with answer no when asked
to derive Γ ⇒ A, then Γ ⇒ A is underivable in intuitionistic predicate calculus.

Proof. Suppose GENTZEN answers no to the query derive(Γ ⇒ A). There
are no cuts or non-logical predicates in the clauses for derive. Hence, if
GENTZEN terminates with failure, every branch of the search tree has been
explored, so any solution that might be found by non-deterministic GENTZEN

would have been found. Hence non-deterministic GENTZEN also fails on this
query. By the completeness of non-deterministic GENTZEN, Γ ⇒ A is un-
derivable in G . That completes the proof.Example. GENTZEN returns no

when asked to derive the sequent ∀x( a ∨ b(x)) ⇒ a ∨ ∀xb(x). This sequent
is therefore underivable. Compare Theorem 58(b), p. 487 of Kleene [1952];
GENTZEN proves this independence result and others like it automatically,
by essentially the same proofs given in Kleene.

Causes of Infinite Regress

Remember that we are dealing with extended sequents, i.e. sequents that
may contain Prolog variables and labeled with a substitution affecting those
variables (and possibly some of the bound variables). Such a sequent Γ ⇒ A :
θ is called “valid” if there is a substitution δ refining θ (i.e. δ ≥ θ) such that
Γδ ⇒ Aδ is valid.

There are two possible cases to distinguish: Case 1, the premise in question is
not valid. Because there is no decision procedure for predicate calculus, infinite
regress on at least some invalid sequents is absolutely inevitable. 27 Case 2, the
premise in question is valid. Then we can distinguish three possible causes of
infinite regress. First of all, a valid goal can generate an invalid subgoal, as in
the case of a theorem A∨B where B is valid but A is invalid. If A causes infinite
regress, then so will A ∨ true. Second, there can be infinite regress due to a
loop: the same formula is generated again and again. This is a “redundancy”
in Kleene’s sense. We will discuss methods of eliminating this possibility below.
The third cause is infinite regress without loops, as in the search for a proof of
member(a,X) when the clauses for member are given in the “wrong” order.

Some Examples

We shall now give some examples to show that GENTZEN can go into
loops and regresses in various ways, just like Prolog. Lest the reader form an ill
opinion of GENTZEN at first acquaintance, we hasten to point out that this is
not a bad thing: it is the price we pay for getting speedy performance most of
the time, just as in Prolog. Just as Californians get used to earthquakes, Prolog
programmers get used to occasional loops and regresses, and learn how to write

27In fact, it is possible to write a program which would take a theorem-proving program P

as input, and produce as output a formula on which P would go into infinite regress.
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programs that don’t get out of hand. We want to use GENTZEN the same
way.

Let us take Case 1 first. Is it possible to generate an invalid premise from a
valid conclusion by the reverse application of one of the (extended)G rules? Yes,
e.g. by rule ⇒ ∃ in case Γ ⇒ ∃xA is provable but for all terms t, Γ ⇒ A[t/x]
is not. Also it is possible by a purely propositional rule: The valid sequent
¬A→ ¬A can be derived from the invalid sequent ¬A→ A by rule ⇒ ¬. Thus
the possibility exists to improve GENTZEN by adding modules which check
for invalidity, e.g. by semantic methods. 28

Now consider Case 2. How can we save GENTZEN from infinite regress
on valid formulae? First consider some examples where (deterministic) Prolog
loops: a → b, b → a, a ⇒ b. In the attempt to prove b, the first clause a →
b leads to an attempt to prove a. The third clause (which would settle the
matter) is never reached, because the second clause is used first and leads to
the new goal b, which is a previous goal and so leads to a loop. We call this
example loop(2). Similarly, one can construct loop(n). For example, loop(3) is
a → b, b → c, c → a, a ⇒ b. Note that GENTZEN will succeed on all these
examples, because it tries the axiom rule before the rule →⇒.

However, GENTZEN (as presented in Section 5) does not escape the Prolog
phenomenon of loops. Something similar happens with the classical example of
member, where if the definition of member is given with the two clauses in reverse
order, the computation of member(a,X) will diverge, generating as first subgoal
X = [ |Y], member(a,Y).GENTZEN duplicates Prolog’s behavior on this ex-
ample. We recommend that the (serious) reader hand-simulate GENTZEN on
this example, to see that cognate (extended) sequents do result one immedi-
ately above the other, but that they are not seen to be cognate when first gen-
erated, only after another unification takes place later ‘up’ the branch. Hence
GENTZEN’s checks for immediate redundancies do not find these cognates,
permitting the computation to diverge like Prolog.

Loops can sometimes occur that involve quantifier inferences, although above
we gave an examples of propositional looping and quantifier regress. For exam-
ple, if the two clauses sterile1 and sterile2 are placed at the top in Mc-
Carthy’s sterilization example (Section 6), then the attempt to prove dish1

is sterile leads to an attempt to prove all bugs in it are dead, which leads to
another attempt to prove it is sterile.

Moreover, such loops can occur of arbitrary length. For example, if we
were to introduce another predicate clean and replace the axioms for sterile
by three looping axioms saying that sterile(x) implies all bugs in x are dead,
which in turn implies clean(x), which in turn implies sterile(x), McCarthy’s
example would fail. Similarly, we can hide loops of any given length inside
universal quantifiers.

28In the dawn of automatic theorem-proving, Gelernter used such a method for geometry:
Does this premise hold in the diagram? Since that time there have been other uses of semantic
methods. The use of Gentzen sequents provides a clear opportunity for integrating semantic
methods into an otherwise purely syntactic prover.
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Redundancy Checks

It is easy to supplyGENTZEN with a full redundancy check. All we have to
do is add another parameter to derive, so that derive(Avoidlist,Sequent)
constructs a G derivation of Sequent which does not contain any sequent
in the input list of sequents Avoidlist. Then we define prove(Sequent):-

derive(Sequent,[]) (in the case of no axioms), and modify the clauses of
derive so that the current goal is added to the front of Avoidlist. This al-
gorithm has been implemented, and of course it eliminates the examples of
incompleteness given under Case 2 above.

Such a scheme will be expensive, however: it will cost O(d), where d is the
depth of the proof tree so far constructed, at each step. This will turn a linear
algorithm into a quadratic algorithm, in case the input is restricted to Prolog
sequents.

By keeping the list of formulae on the current branch in a sorted array, so
access time is independent of the length, we can reduce the cost to O(log d) at
each step. That will give an algorithm with speed O(d log d) on Prolog sequent
input. This algorithm cannot be implemented in Clocksin-and-Mellish Prolog,
which does not support arrays or constant-access-time lists in any form. A
similar scheme using B-trees could be implemented in Arity Prolog, but this
has not yet been done. While doing this, we may as well keep a record of goals
attempted (successfully or not) so as to prevent duplication of effort.

There may well be interesting programs intermediate between GENTZEN

as listed and the version with full redundancy check. One such possibility is
suggested by the “tortoise and hare” technique for loop-checking in Prolog. See
the discussion of van Gelder’s work in Section 11.

Propositional Decision Procedure

Theorem 7 Deterministic GENTZEN with full redundancy check provides a
decision procedure for intuitionistic propositional calculus.

Remark : The theorem implies that we can decide if an arbitrary sequent can
be proved by propositional axioms alone, even if the sequent contains function
symbols and quantifiers.

Proof. As proved in Kleene [1952], p. 485, there is a bound on the depth of any
branch of a partially constructed proof tree, since the sequents on the branch
are all subformulae of the root, and a propositional formula has only finitely
many subformulae. Hence infinite regress is impossible, and GENTZEN must
eventually (by Prolog’s backtracking) examine all possible ways of constructing
an irredundant proof, finally either finding one or proving by its failure after a
finite time that no irredundant proof exists. That completes the proof.

Remark : With the O(n2) implementation of full redundancy check, the ster-
ilization example in the next section runs about six times slower than with no
redundancy check. But: it runs no matter how you order the axioms.
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Question: Implementing a full redundancy check makes the worst-case speed
of the propositional decision procedure O(log n2n), where n is the length of the
input formula. One may think the exponential makes the log hardly worth
worrying about; but all the same there is a theoretical question whether it
can be eliminated. Does anyone know a decision procedure for propositional
intuitionistic calculus which is faster than O(log n2n)? Is the validity problem
for intuitionistic propositional calculus in Co-NP?

GENTZEN as a Theorem Prover

In addition to redundancy checks, we have made other improvements to
GENTZEN, which for reasons of simplicity we have not included in the list-
ing in Section 5. The general plan in improving GENTZEN’s performance is
to make restrictions on the application or order of application of the (reverse)
rules, in such a way that the completeness of non-deterministic GENTZEN

is not affected, but the performance of deterministic GENTZEN is improved.
We have had considerable success in determining the proper control structures:
for example, Schubert’s Steamroller29 can be solved by essentially the most
efficient sequence of deductions, except for some duplicated derivations. (This
takes 85 seconds in interpreted Prolog on an IBM AT; allowing a factor of 10 for
compilation and a factor of three or four for the slow hardware, this is approx-
imately state-of-the-art.) See Section 11 for a comparison with SATCHMO.
The control structures involved will be sketched below.

The essence of the difficulties in using GENTZEN as it stands in section
5 can be seen by trying it on a problem like Schubert’s Steamroller, in which
there is a lot of branching in the proof construction process. Since GENTZEN

proceeds depth-first, when confronted with several possible ways to proceed, it
chooses the first and then fights to the death to prove the theorem that way,
never stopping to consider that another choice might be much easier. Others
have met the same fundamental problem, and tried to solve it by limiting the
resources to be expended on a given branch, for example by “iterative bounded
depth-first search”, etc. Our idea is instead to limit the means which can be
applied. We define derive1 which (1) uses only the minimal-logic form of rule
¬ ⇒, (2) only the right-branch-an-axiom case of rule →⇒, and (3) does not
use rule ∨ ⇒. When faced with a choice, we use only derive1 before going
on. When derive1 finally fails, we use another case of rule →⇒: this time we
require the left branch to be an axiom; and we also use ∨ ⇒. When these two
rules can do no more, we start over with derive1, and so on. Only if all else fails
do we use the full intuitionistic ¬ ⇒ or →⇒. These rules almost always lead us
down the garden path, except on examples concocted specifically to need them.

The Steamroller problem seems intuitively to be solved by a combination of
backwards and forwards reasoning. It seems that the backwards reasoning cor-
responds to the right-branch-an-axiom case of →⇒, and the forwards reasoning
is the left-branch-an-axiom (or conjunction of axioms) case. GENTZEN (in
this version) uses Prolog-style backwards reasoning till it does no more, then

29This is a standard “benchmark” problem for theorem provers. See Stickel [1986].
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reasons forward to generate new facts that can be used for another round of
backward reasoning, and so on.

Types in GENTZEN

We have also extended GENTZEN (in theory, but not yet in implemen-
tation) to various type theories. Analogues of the theorems proved here for
first-order logic also can be proved in some of these situations; certainly they
are without complication as long as the language does not include some form
of λ-calculus, e.g. in a simple many-sorted predicate logic. We view the exten-
sions to type theory as vital for a practical proof-checker or proof-finder, but a
description of this work is beyond the scope of this paper. See Constable et. al.
[1986], Feferman [1985], Huet [1987], and Martin-Löf [1984] for descriptions of
the kinds of type theories to which GENTZEN can be extended, and Paulson
[1986] for a type-theoretic theorem-prover based on natural deduction.

Equality in GENTZEN

As presented here, GENTZEN has no more ability to do equality reasoning
than Prolog does. However, one can add clauses to derive with the head
derive((Gamma => X=Y)), which embed in GENTZEN the equality reasoning
mechanisms of your choice. That is, the framework of GENTZEN permits the
natural integration of logical theorem-proving with, for example, rewrite rule
techniques or even symbolic computation in the style of MACSYMA. These
matters are also beyond the scope of this paper.

Using the Prolog Database to Store the Antecedent

One would like not to have to use an extra predicate prove to giveGENTZEN

a goal; one would like to type it directly to the Prolog prompt, and generally mix
quantifiers and implications at will into Prolog programs. One needs the source
code to Prolog to arrange that; but one may try to do it by using the Prolog
database to store the antecedent formulae. Since this paper was first written,
there have been several experimental versions of GENTZEN, testing different
ways of storing the antecedent. In practical theorem-proving, the antecedent
will be very long, including all the non-logical axioms and previously-proved
theorems. The antecedent must, for efficiency, be stored in a fixed location
rather than passed as a parameter to each call to the theorem-prover. Another
aim of these experimental versions is to take as much advantage of the com-
piled inference supplied by the underlying Prolog as possible. A desideratum
is that Prolog sequents ought to be derivable in GENTZEN as fast as they
are when expressed directly in Prolog (at least, when GENTZEN is not using
an occurs check). The program MATHPERT, designed for learning calculus,
trigonometry, and algebra, incorporates one of these versions of GENTZEN

to handle the logical aspects of calculus. For more information on the applica-
tion of GENTZEN to calculus (but not on implementation details), see Beeson
[1989].
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9 Automating proofs by induction with GENTZEN

If Prolog variables are used in places where formulas belong while stating ax-
ioms, the program is not confused. In fact, it sometimes works beautifully:
the unification step at rule axiom selects the appropriate instance of an axiom
schema. Thus Prolog variables can be used not only to range over terms, but
also to range over formulas. We have made use of this feature of GENTZEN

to automate some proofs by induction in number theory.
The first problem is to state the axiom schemata of induction in Prolog using

Prolog variables for formulae. Note that the usual method of stating the axiom
of induction is not in this form, since it mentions substitution. It is for this
reason that we have introduced λ-abstraction into the syntax of first-order logic
(following Church and Aczel). 30 We introduce a primitive application operator
ap, and allow ap(λx.A, t) to be a formula whenever A is a formula and t is a
term, and specify that to derive such a formula is the same as to derive A[t/x],
we obviously obtain a conservative extension of the usual formulation of first-
order logic. This extension of notation is accepted by GENTZEN. We then
can state the schema of mathematical induction as

ap(λx.A,0) ∧ ∀x(A → ap(λx.A, s(x)) → ∀xA

in which we can understand A as a Prolog variable. (In Prolog syntax, we
write λx.A as lambda(x,A), and we write ∀xA as all(x,A).)

We can now write down the axioms of Peano arithmetic (except the equality
axioms) in a finite list, with one entry for the axiom of induction. Equality
is a distraction to the point of this section, which can be made sufficiently
well using only the single equality axiom x = x. This axiom is enough to
illustrate proofs by induction. For example, in intuitionistic number theory
the decidability of equality x = y ∨ ¬x = y has to be proved by a double
induction, first proving x = 0 ∨ ¬x = 0 by induction on x, then proceeding by
induction on y. GENTZEN succeeds nicely in automatically generating the
required instances of induction and finding this proof (which is rather tricky for
advanced undergraduates) automatically.

To some extent, our success with induction is pure good fortune. Not every
axiom schema can be treated in this way. For example of one that cannot,
consider the axiom schema of the law of the excluded middle A ∨ ¬A. You can
ask GENTZEN to derive ¬¬a→ a from this axiom schema; but unfortunately
it can’t do it. The unification part ofGENTZEN settles too soon on an instance
of the schema, and never can find the right one.

30Church and Aczel were following Frege, who regarded a formula A(x) as a propositional
function. The quantifier ∀ then is a functional which applies to functions. What we usually
write ∀xA is really ∀(λx.A).
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10 Relations to the Literature

We have certainly not worked in a vacuum; many of the ideas in this paper
are “in the air”. There are a number of connections of this with the work of
others. As we found out only after writing GENTZEN, Felty and Shankar have
written quite similar programs; the main ideas of using Gentzen sequents for
a theorem prover and using Prolog’s unification to find the terms needed, had
already been anticipated by Bowen and found by Felty and Miller; the idea of
using G3 instead of G1 was found more of less simultaneously by Shankar (but
not by Felty and Miller); so perhaps the only really new ideas in this paper
are (1) the explanation of Prolog in terms of Gentzen sequents, and (2) the
rule don’t go up the right branch of a left implication unless all else fails. The
former suggested the latter, which seems to be the final key, after the other ideas
mentioned, to an efficient extension of logic programming to all of first-order
logic. In this section, we try to trace the connections with the work of others
(given in alphabetical order). Apologies in advance to those whose work we may
have omitted or mis-described.

Bledsoe

Bledsoe and his associates have implemented a theorem prover based on
“natural deduction”; but more precisely, I believe it is actually based on a
sequent calculus, using the cut rule only for the use of lemmas. They have
added a number of other techniques to the prover, notably rewrite rules, variable
shielding, and inequality chaining. I do not know how the search strategy used
compares with that of GENTZEN.

Bowen

K. Bowen [1980] gives an explanation of Prolog in terms of Gentzen sequents.
His work, like ours, uses unification to construct the terms needed by the rules
∀ ⇒ and ⇒ ∃. This is the main point of similarity.

However, his analysis differs from ours in several essential points. First of
all, he does not analyze Prolog in terms of cut-free derivations, but in terms of
derivations using only the cut-rule. He considers Gentzen derivations from “se-
quent axioms”, and instead of considering the Prolog program as the antecedent
of a sequent and the query as the succudent, he considers the query as a sequent
and the program as a set of sequent axioms. Prolog’s computation is then mim-
icked by the cut rule. This analysis does not permit a useful generalization to
first-order logic.

Bowen does, however, give an algorithm for generating Gentzen proofs of an
input sequent. The second main point of difference between Bowen’s work and
GENTZEN is that his algorithm (he calls it “reverse2”) proceeds to generate
all branches of a (prospective) proof tree, upwards from the goal sequent. The
essential restriction that the exploration of the right premise of rule →⇒ is
not made in Bowen’s work. His algorithm proceeds in breadth-first fashion,
developing all branches simultaneously. This prevents the construction of later
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(“right-hand”) branches from benefitting from unifications made deep in the
left-hand branch. GENTZEN, by contrast, proceeds depth-first, like Prolog.

Moreover, Bowen’s algorithm seems to depend on the idea stated in his
Lemma (p. 9) that the rules of Gentzen’s calculus are arbitrarily permutable.
As we have seen in Section 2, this is not the case. Bowen’s algorithm is thus in
need of a more precise definition; as it now stands it will generate false “proofs”
and fail to prove many valid sequents. In particular, this algorithm has surely
never been implemented and tested.

A relatively minor point is that Bowen uses G1 instead of G3 or a hybrid
system like G , and thus cannot obtain a decision procedure for propositional
calculus.

Boyer and Moore Boyer and Moore’s famous theorem-prover ([1979]) incor-

porates special heuristics for finding the right instance of mathematical induc-
tion needed to prove a given theorem. These techniques are more sophisticated
than the unification-based choices made by GENTZEN. Like other “high-level”
heuristics, these could be added to a GENTZEN-based theorem prover.

Feferman

Feferman [1975], [1979] (see also Beeson [1985]) has given theories which
were originally presented as theories of operations and “classes”, but which are
in the present context more usefully thought of as type theories with variable
types in which logic is not explicitly reduced to type theory. Feferman [1988]
develops versions of the systems more explicitly suited to this viewpoint, and
containing the polymorphic λ-calculus of Girard and Reynolds. GENTZEN

can be extended to a theorem prover for this kind of system. There is one
additional feature of the logic of these systems: they admit possibly undefined
terms (“partial terms”). The necessary modifications to the logic are given in
Beeson [1985], p. 97; it is not difficult to adapt GENTZEN to this logic.

Gabbay and Reyle In their papers [1984] and especially [1989], Gabbay and

Reyle describe a theorem-prover for intuitionistic logic which is based on a
sequent calculus.

van Gelder

van Gelder [1987] has given an interesting method of “loop detection” in
Prolog, known as the “tortoise and hare” technique. In our context this appears
as a method for detecting certain kinds of redundant proofs in linear time,
instead of time O(d log d) or O(d2) as in Section 9. The method does not detect
all redundancies, and since it was developed in connection with Prolog, it is
concerned only with redundancies involving the →⇒ rule. Perhaps it can be
generalized to a larger fragment of logic. In any case, it would be of interest
to add such techniques to GENTZEN, producing fast-running versions with at
least some redundancy checks.

Girard
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Girard’s influential book [1989] contains the explanation of Prolog in terms
of the cut-rule discussed under Bowen, above.

Hällnas and Schroeder-Heister

Their technical report [1987] contains a proof-theoretical explanation of Pro-
log similar to Bowen’s, discussed above.

Hayashi

Hayashi [1987] has built a proof-checker PX for a version of Feferman’s
systems, writing in LISP. The logic of PX is based on natural deduction, rather
than on Gentzen systems. PX can handle the logic of partial terms discussed
above. A proof-finder such as GENTZEN can be used in a proof-checker, to
increase the “step-size” of the proofs that can be checked: the lines of the proof
to be checked are given as successive goals to the proof-finder. It would be
interesting to see if the algorithm of GENTZEN could increase the power of
a proof-checker like PX; but this will in practice require re-writing a system
like PX based on Gentzen sequents instead of natural deduction, and in Prolog
instead of LISP.

Lifschitz

Lifschitz [1986] has given a characterization of circumscription in terms of
logic programming (or, as he would put it, a characterization of logic program-
ming in terms of circumscription). His work applied to the case when the circum-
scribing formula can be expressed in Horn clause logic extended to “stratified”
occurrences of negation. Perhaps there is an extension of his theorem to more
general cases if negation is not treated as negation-by-failure; this is a topic for
further research.

Manthey and Bry

Manthey and Bry [1988] describe a theorem prover called SATCHMO. It
works on the “clausal fragment”: in sequent calculus terms, it works on sequents
with atomic succudent, and whose antecedent formulae are either atomic, or im-
plications whose left side is a conjunction of atomic formulae and whose right
side is a disjunction of atomic formulae. Consequently quantifier rules never
come into play. As discussed in Section 9, on this fragment we can implement
GENTZEN to use the Prolog database to store the antecedent formulae. It
then turns out that GENTZEN, with the control structure sketched in Section
9, exactly reproduces the action of SATCHMO. This is somewhat remark-
able, as the creators of SATCHMO thought of SATCHMO’s computations
as a model-construction process; but proof theorists have long known that the
proof of the completeness theorem is a process which either constructs a model
or a cut-free proof, so you can view it either way. The proof-theoretic frame-
work of GENTZEN permits a unified understanding of the two processes in
SATCHMO, whose interaction was previously a bit mysterious (at least to the
author). In particular, GENTZEN with the control structure described in Sec-
tion 9 proves the Steamroller very rapidly, and by essentially the same process
as SATCHMO.
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McCarty

L. McCarty [1988] has given a semantics of Prolog in terms of partial Kripke
models, and an extension of Prolog to a fragment of intuitionistic predicate
calculus he calls “clausal intuitionistic logic”, which generalizes Prolog by per-
mitting negation and universally quantified implications in the “body” of a
(generalized) clause. McCarty [1988a] gives a tableau proof procedure for this
fragment. The procedure has a similar flavor to GENTZEN, in that there are
two kinds of variables (McCarty writes ?x for what correspond to our Prolog
variables), and bindings are determined later and propagated down. There is
surely a close connection between this tableaux method and GENTZEN, but
it works only for the fragment mentioned.

L. McCarty (not yet published) uses intuitionistic negation in combination
with negation by failure to define a form of “default reasoning”: a “default
rule” is one of the form B ∧ not(¬A) → A. In words: B normally implies
A, i.e. it does unless we have evidence that A is false. That is, A is true
by default if the condition B holds and at present we can’t refute A. Since
GENTZEN provides efficient means to handle intuitionistic logic (including
negation), it would be interesting to develop a default reasoning system based on
GENTZEN’s inference mechanisms and McCarty’s ideas on default reasoning.

Miller et. al.

Miller et. al. [1987] define the “hereditary Harrop formulae”. This frag-
ment is essentially defined so that when analyzed as Gentzen sequents, the
reverse proof process never leads to any connective other than ∀ or → in the an-
tecedent. (Thus other connectives are barred from the left part of implications
also in the succudent.) The language λ-prolog is a logic programming language
based on the hereditary Harrop fragment of (higher-order) logic. In this lan-
guage, the quantifiers are represented as a composition of functionals ∀ and ∃
with λ-abstraction, as described in Section 10 of this paper. For this restricted
fragment, the proof process described on p. 64 of Miller [1988] is essentially
that of GENTZEN, since the formulae and the proof process are so restricted
that the process amounts to using only those cases of rule →⇒ in which the
right branch is an axiom. Miller says that this process is non-deterministically
complete for the hereditary Harrop fragment of intuitionistic logic. This re-
sult (at least for first-order hereditary Harrop formulae) is a special case of the
completeness of non-deterministic GENTZEN.31

Felty and Miller [1988] report on the implementation of theorem provers (for
all of logic, not just the hereditary Harrop fragment) in λ-Prolog32

31While neither is directly relevant to our work, we note that the fixed-point Kripke model
semantics of Miller et. al. [1987] is extremely similar to McCarty [1988].

32They argue that ordinary Prolog is insufficient for writing theorem-provers, because of the
difficulties of handling bound variables. They say that encoding formulas as first-order terms
as GENTZEN does is “unnatural and spoils the elegance with logic programming offers”.
We disagree wholeheartedly; but we do agree that is (also) elegant to decompose quantification
into a functional and λ-abstraction. Besides, from the point of view of efficiency, it is better
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The implementation of Gentzen’s calculus described in Felty and Miller
[1988] is similar to the G1 version of GENTZEN, but without the separa-
tion of the clauses for the rule →⇒ into two cases, implementing the principle
don’t go up the right branch of a left implication unless all else fails. In fact, on
p. 70, they admit “Another aspect of these theorem provers not yet considered
is control.” Then on p. 71, they mention the problem which led us to use G3
or G instead of G1. Another minor difference is that they keep proof-terms
explicit, rather than letting Prolog construct them only implicitly; this is a du-
plication (since Prolog constructs them internally anyway) and slows the prover
down. (Of course, for proof checking you may need to keep the terms explicit.)

Nadathur

I have been told that Nadathur’s Ph. D. thesis [1987] contains a proof of a
theorem closely related to the “Main Lemma” of Section 4 of this paper. I have
not yet seen the thesis.

NuPrl

The rules of NuPrl (Constable et. al. [1986]) are best understood as an
extension of Gentzen’s G1 (with cut) to a typed formalism as discussed above.
The cut rule is NuPrl’s SEQUENCE rule. In spite of a superficial similarity
to natural deduction, the function type rules clearly mimic Gentzen’s rules.
NuPrl is designed primarily as a proof-checker, not as a proof-finder. However,
the use of “tactics” permits the user to write proof-finding algorithms in the
programming language ML. One such tactic, backchain with (pp. 202-203), is
billed as being similar to Prolog. However, it “first breaks down the conclusion
and then tries to back through each hypothesis in turn until it succeeds”. This
tactic also misses the point of stopping exploration of the right premise of rule
→⇒. Clearly, however, a tactic could be written for NuPrl which implements
the algorithm of GENTZEN.

Paulson

Paulson [1986] describes a theorem-prover Isabelle which is based on natural
deduction, as opposed to a sequent calculus such as GENTZEN uses. He has
used Isabelle to implement Martin-Löf’s constructive type theory.

Shankar

N. Shankar at Stanford has written a theorem-prover in LISP based on
Gentzen’s G3. This work is extremely closely related to ours. His prover differs
from GENTZEN in only four ways:

• It does not incorporate the key provision, “don’t go up the right branch of
left implication unless all else fails”, from which GENTZEN derives its ability
to generalize Prolog.

to run a theorem prover written directly in Prolog than to run a theorem prover written in
another language which itself is written in Prolog. Eliminate the middle-man. In my opinion,
the main point of λ-prolog is the use of Huet’s λ-calculus unification.
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• It is written in LISP, not Prolog. This is inessential if one thinks of it as
a theorem-prover, but it prevents adding one line (derive(( Gamma => A ))

:- call(A). ) to convert it into a generalized logic-programming language.
• It does, however, improve upon GENTZEN by implementing an algo-

rithm for early detection of violation of the “restriction on variables” at infer-
ences by rules ⇒ ∀ and ∃ ⇒.

Here is a more complete explanation of the last point: Let P denote a node
in the proof where a “restriction on variables” has to be met. The variable to
be introduced must not occur in the terms in the rest of the formula, but those
terms are still under construction and will not be settled upon until unifica-
tion takes place at the axioms. GENTZEN does not check the restriction on
variables until it has already constructed a candidate proof ‘above’ P , which
will then be tested for whether it meets the restriction on variables. Shankar’s
prover, by contrast, labels every formula with a list of variables which must be
avoided. Hence if there are several branches above P in a derivation, his prover
can detect after the first branch that the restriction on variables will be vio-
lated, while GENTZEN does not detect it until later, when all recursive calls
to derive have been completed and execution returns to the point P . Here is
a concrete example where this happens:

∀x(a ∨ (b(x) ∧ c(x))) ⇒ a ∨ ∀x(b(x) ∧ c(x))

This is an unprovable sequent, but Shankar’s prover discovers that fact
sooner than GENTZEN, as follows. When we attempt to prove this sequent,
it soon becomes apparent that you must ‘open up’ the left side first. Then you
drop the ∀x on the left and replace x with a Prolog variable X . Then you use
∨ ⇒ and soon come to the goal

(b(X) ∧ c(X))) ⇒ ∀x(b(x) ∧ c(x))

Then you use ⇒ ∀ to introduce a new variable x1 subject to the restriction
that x1 is not free in X . Then you try to verify that from the given antecedent,
both b(x1) and c(x1) are provable. Shankar’s prover will realize after attempting
the first of these two that it is impossible to meet the restriction on variables, but
GENTZEN doesn’t realize it until both attempts have resulted in candidate
proofs.

It is not difficult to add Shankar’s idea to GENTZEN.

Stickel

Stickel [1986a, 1988] describes his “Prolog Technology Theorem Prover”
(PTTP) which is “an extension of Prolog that is complete for the full first-
order predicate calculus”. PTTP differs from GENTZEN in that (1) it is not
designed for intuitionistic logic; (2) it is not intended to provide an explanation

of Prolog; (3) it is not based on sequent calculus. It is similar to GENTZEN in
that as a practical theorem prover, it implements a Prolog-like depth-first search
strategy. It incorporates two additional features which can easily be added to
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GENTZEN: iterative bounded depth-first search (to stop infinite regress), and
unification with occurs check.

Thistlewaite, McRobbie, and Meyer

In their book [1988], they discuss the use of finite models to prune the search
tree in propositional non-standard logics. The point is that if one had a fast way
of detecting (some) non-theorems, one could save the effort of trying fruitlessly
to construct that branch of a proof tree when a non-theorem is generated as a
goal. The difficulty is that model-testing isn’t fast; but these authors show that
it is sometimes useful anyway.
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