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Abstract

Constructivity, in this context, refers to a theory of geometry whose axioms
and language are closely related to ruler and compass constructions. It may
also refer to the use of intuitionistic (or constructive) logic, but the reader who
is interested in ruler and compass geometry but not in constructive logic, will
still find this work of interest. Euclid’s reasoning is essentially constructive (in
both senses). Tarski’s elegant and concise first-order theory of Euclidean geom-
etry, on the other hand, is essentially non-constructive (in both senses), even
if we restrict attention (as we do here) to the theory with line-circle continuity
in place of first-order Dedekind completeness. Hilbert’s axiomatization has a
much more elaborate language and many more axioms, but it contains no essen-
tial non-constructivities. Here we exhibit three constructive versions of Tarski’s
theory. One, like Tarski’s theory, has existential axioms and no function sym-
bols. We then consider a version in which function symbols are used instead
of existential quantifiers. This theory is quantifier-free and proves the contin-
uous dependence on parameters of the terms giving the intersections of lines
and circles, and of circles and circles. The third version has a function symbol
for the intersection point of two non-parallel, non-coincident lines, instead of
only for intersection points produced by Pasch’s axiom and the parallel axiom;
this choice of function symbols connects directly to ruler and compass construc-
tions. All three versions have this in common: the axioms have been modified
so that the points they assert to exist are unique and depend continuously on
parameters. This modification of Tarski’s axioms, with classical logic, has the
same theorems as Tarski’s theory, but we obtain results connecting it with ruler
and compass constructions as well. In particular, we show that constructions
involving the intersection points of two circles are justified, even though only
line-circle continuity is included as an axiom. We obtain metamathematical
results based on the Gödel double-negation interpretation, which permit the
wholesale importation of proofs of negative theorems from classical to construc-
tive geometry, and of proofs of existential theorems where the object asserted to
exist is constructed by a single construction (as opposed to several constructions
applying in different cases). In particular, this enables us to import the proofs
of correctness of the geometric definitions of addition and multiplication, once
these can be given by a uniform construction.

We also show, using cut-elimination, that objects proved to exist can be
constructed by ruler and compass. (This was proved in [3] for a version of
constructive geometry based on Hilbert’s axioms.) Since these theories are in-

Preprint submitted to Elsevier August 9, 2015



terpretable in the theory of Euclidean fields, the independence results about
different versions of the parallel postulate given in [5] apply to them; and since
addition and multiplication can be defined geometrically, their models are ex-
actly the planes over (constructive) Euclidean fields.
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1. Introduction

Euclidean geometry, as presented by Euclid, consists of straightedge-and-
compass constructions and rigorous reasoning about the results of those con-
structions. Tarski’s twentieth-century axiomatization of geometry does not bear
any direct relation to ruler and compass constructions. Here we present modifi-
cations of Tarski’s theory whose axioms correspond more closely to straightedge-
and-compass constructions. These theories can be considered either with intu-
itionistic (constructive) logic, or with ordinary (“classical”) logic. Both versions
are of interest.

In [3], we gave an axiomatization of constructive geometry based on a version
of Hilbert’s axioms (which contain no essential non-constructivities). In [5], we
obtained metamathematical results about constructive geometry, and showed
that those results do not depend on the details of the axiomatization. In this
paper, we focus on formulating constructive geometry in the language and style
that Tarski used for his well-known axiomatization of geometry. What is striking
about Tarski’s theory is its use of only one sort of variables, for points, and
the small number of axioms. Here we give what may be the shortest possible
axiomatization of constructive geometry, following Tarski’s example.1

In [5], we discussed Euclidean constructive geometry in general terms, and
worked informally with a theory that had three sorts of variables for points, lines,
and circles. Here, in the spirit of Tarski, we work with a one-sorted theory, with
variables for points only. In order to provide terms for points proved to exist, we
need some function symbols. Tarski’s axioms have existential quantifiers; we are
interested (both classically and constructively) in extensions of the language that
provide function symbols to construct points. Three of these symbols are Skolem
symbols that correspond immediately to ruler and compass constructions: one
for extending a segment ab by another segment cd, and two for the intersection
points of a line and circle. (In our previous work we also had function symbols
for the intersection points of two circles; here we will prove that these are not
needed, as the intersection points of two circles are already constructible.) Then
we need a way to construct certain intersection points of two lines. Such points

1Readers unfamiliar with Tarski’s geometry may want to read [31], which summarizes the
axioms of Tarski’s geometry and gives some of their history; but we do give a basic explanation
of Tarski’s axioms in this paper.
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are proved to exist by versions of Pasch’s axiom; so one obvious approach is just
to provide a Skolem symbol for a suitable version of Pasch’s axiom. (This has
been done for decades by people using theorem-provers with Tarski’s axioms.)

However, Tarski’s version of Pasch’s axiom allows “degenerate cases” in
which the “triangle” collapses to three points on a line, or the line through the
triangle coincides with a side of the triangle. In these cases, the point asserted
to exist is not really constructed by intersecting two lines and does not corre-
spond to a ruler and compass construction. Therefore, even with classical logic,
Tarski’s axioms need some modifications before they really correspond to ruler
and compass constructions. To start with, we require that the points in Pasch’s
axiom be not collinear. Then we have to “put back” the two fundamental axioms
about betweenness that Tarski originally had, but which were eliminated when
Tarski and his students realized that they followed from the degenerate cases of
Pasch. Finally, we have to restrict the segment-extension axiom to extending
non-null segments, i.e., ab with a 6= b, since extending a null segment is not done
by laying a straightedge between two points. More formally, the extension of
segment ab by a non-null segment cd will not depend continuously on a as a ap-
proaches b, while ruler and compass constructions should depend continuously
on parameters. The resulting modification of Tarski’s classical axioms we call
“continuous Tarski geometry”. If we add the function symbols mentioned above,
then all those function symbols correspond to ruler and compass constructions,
and Herbrand’s theorem then tells us that if we can prove ∀x∃y A(x, y), and A
is quantifier-free, then there are finitely many ruler and compass constructions
t1, . . . , tn such that for each x, one of the ti(x) constructs y such that A(x, y).

We said that ruler and compass constructions should depend continuously
on parameters, but there is a problem about that: we need to distinguish ax-
iomatically between the two intersection points of a line and a circle. Since lines
are given by two distinct points, our solution to this problem is to require that
the two intersection points of Line (a, b) and circle C occur in the same order
on L as a and b. Thus if a and b are interchanged, the intersection points given
by the two function symbols also are interchanged.

All the changes discussed above make sense and are desirable even with
classical logic. They connect the axioms of geometry with ruler and compass
constructions and, in the case of Pasch’s axiom, with its intuitive justification.
The degenerate cases of Pasch have nothing to do with triangles and lines; they
are really about betweenness relations between points on a single line, so it is
philosophically better to formulate the axioms as in continuous Tarski geometry.
Having the smallest possible number of axioms is not necessarily the criterion
for the best version of a theory.

There is also an issue regarding the best form of the parallel axiom. His-
torically, several versions have been considered for use with Tarski’s theories.
Two in particular are of interest: the axiom (A10) that Tarski eventually settled
upon, and the “triangle circumscription principle”, which says that given three
non-collinear points, there is a point e equidistant from all three (which is then
the center of a circle containing the three points). Classically, these two formu-
lations are equivalent, so it is just a matter of personal preference which to take
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as an axiom. Constructively, the two versions mentioned are also equivalent, as
follows from the results of [5] and this paper, but the proof is much lengthier
than with classical logic. Euclid’s own formulation of the parallel postulate,
“Euclid 5”, mentions angles, so it requires a reformulation to be expressed in
the “points only” language of Tarski’s theory; a points-only version of Euclid 5
is given in [5] and repeated below. In [5] it is proved that Euclid 5 is equivalent
to the triangle circumscription principle, which is considerably shorter than Eu-
clid 5. We follow Szmielew in adopting the triangle circumscription principle
as our parallel axiom, although our results show that we could have retained
Tarski’s version.

There is also “Playfair’s axiom”, which is the version of the parallel axiom
adopted by Hilbert in [15]. That version, unlike all the other versions, makes no
existence assertion at all, but only asserts that there cannot exist two different
lines parallel to a given line through a given point. This version, making no
existence assertion, appears to be constructively weaker than the others, and in
[5], it is proved that this is indeed the case.

Our aim in this paper is a constructive version of Tarski’s geometry. The
changes described above, however, make sense with classical logic and are the
primary changes that allow a connection between proofs from Tarski’s axioms
and ruler and compass constructions. If we still use classical logic, proofs in this
theory yield a finite number of ruler and compass constructions, to be used in
the different cases required in the proof. To make the theory constructive, we
do just two things more: (1) we use intuitionistic logic instead of classical logic,
and (2) we add “stability axioms”, allowing us to prove equality or inequality
of points by contradiction. The reasons for accepting the stability axioms are
discussed in §7.2 below.

It turns out that no more changes are needed. This theory is called “intu-
itionistic Tarski geometry”. As in classical geometry, we can consider it with or
without function symbols.

Even though this theory is constructively acceptable, one might not like the
fact that the Skolem symbols are total, i.e., they have some (undetermined)
value even in “undefined” cases, where they do not actually correspond to ruler
and compass constructions. Therefore we also consider a version of Tarski ge-
ometry in which the logic is further modified to use the “logic of partial terms”
LPT, permitting the use of undefined terms. In this theory, we replace the
Skolem function for Pasch’s axiom by a more natural term iℓ(a, b, c, d) for the
intersection point of Line (a, b) and Line (c, d).

The main difference between constructive and classical geometry is that,
in constructive geometry, one is not allowed to make a case distinction when
proving that something exists. For example, to prove that there always exists
a perpendicular to line L through point x, we may classically use two different
constructions, one of which works when x is not on L (a “dropped perpendic-
ular”), and a different construction that works when x is on L (an “erected
perpendicular”). But constructively, we need a single construction (a “uniform
perpendicular”) that handles both cases with one construction. In this paper
we show that such uniform constructions can be found, using the Tarski axioms,
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for perpendiculars, reflections, and rotations. Then the methods of [5] can be
used to define addition and multiplication geometrically, as was done classically
by Descartes and Hilbert. This shows that every model of the theory is a plane
over a Euclidean ordered field that can be explicitly constructed.

Having formulated intuitionistic Tarski geometry, we then study its meta-
mathematics using two logical tools: the Gödel double-negation interpretation,
and cut-elimination. The double-negation interpretation is just a formal way
of saying that, by pushing double negations inwards, we can convert a classical
proof of a basic statement like equality of two points, or incidence of a point
on a line, or a betweenness statement, to a constructive proof. (The same is of
course not true for statements asserting that something exists.) This provides
us with tools for the wholesale importation of certain types of theorems from
the long and careful formal development from Tarski’s classical axioms in [25].
But since we modified Tarski’s axioms, to make them correspond better to ruler
and compass, some care is required in this metatheorem.

Cut-elimination provides us with the theorem that things proved to exist in
intuitionistic Tarski geometry can be constructed by ruler and compass. The
point here is that they can be constructed by a uniform construction, i.e., a
single construction that works for all cases. We already mentioned the example
of dropped and erected perpendiculars in classical geometry, versus a uniform
perpendicular construction in constructive geometry. Using cut-elimination we
prove that this feature of constructive proofs, so evident from examples, is a
necessary feature of any existence proof in intuitionistic Tarski geometry: an
existence proof always provides a uniform construction.

On the other hand, our version of Tarski geometry with classical logic, which
we call “continuous Tarski geometry”, supports a similar theorem. If it proves
∀x∃y A(x, y), with A quantifier-free, then there are a finite number (not just
one) of ruler and compass constructions, given terms of the theory, such that
for every x, one of those constructions produces y such that A(x, y).

Readers not familiar with intuitionistic or constructive mathematics will find
additional introductory material in § 7.

I would like to thank Marvin J. Greenberg and Victor Pambuccian for con-
versations and emails on this subject, and the anonymous referees for their
detailed comments.

2. Hilbert and Tarski

It is not our purpose here to review in detail the (long, complicated, and
interesting) history of axiomatic geometry, but some history is helpful in under-
standing the variety of geometrical axiom systems. We begin by mentioning the
standard English translation of Euclid [9] and the beautiful commentary-free
edition [10]. Euclid is the touchstone against which axiomatizations are mea-
sured. We restrict our attention to the two most famous axiomatizations, those
of Hilbert and Tarski. Previous work on constructive geometry is discussed in
[5].
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2.1. Hilbert

Hilbert’s influential book [15] used the notion of betweenness and the axioms
for betweenness studied by Pasch [22]. Hilbert’s theory was what would today be
called “second-order”, in that sets were freely used in the axioms. Segments, for
example, were defined as sets of two points, so by definition AB = BA since the
set {A,B} does not depend on the order. Of course, this is a trivial departure
from first-order language; but Hilbert’s last two axioms, Archimedes’s axiom
and the continuity axiom, are not expressible in a first-order geometrical theory.
On the other hand, lines and planes were regarded not as sets of points, but as
(what today would be called) first-order objects, so incidence was an undefined
relation, not set-theoretic membership. At the time (1899) the concept of first-
order language had not yet been developed, and set theory was still fairly new.
Congruence was treated by Hilbert as a binary relation on sets of two points,
not as a 4-ary relation on points.

Early geometers thought that the purpose of axioms was to set down the
truth about space, so as to ensure accurate and correct reasoning about the one
true (or as we now would say, “intended”) model of those axioms. Hilbert’s
book promoted the idea that axioms may have many models; the axioms and
deductions from them should make sense if we read “tables, chairs, and beer
mugs” instead of “points, lines, and planes.” This is evident from the very first
sentence of Hilbert’s book:

Consider three distinct sets of objects. Let the objects of the first
set be called points . . .; let the objects of the second set be called
lines . . .; let the objects of the third set be called planes.

Hilbert defines segments as pairs of points (the endpoints), although lines
are primitive objects. On the other hand, a ray is the set of all points on the
ray, and angles are sets consisting of two rays. So an angle is a set of sets of
points. Hence technically Hilbert’s theory, which is often described as second
order, is at least third order. (We say “technically”, because it would not be
difficult to reduce Hilbert’s theory to an equivalent theory that would really be
second order.)

Hilbert’s language has a congruence relation for segments, and a separate
congruence relation for angles. Hilbert’s congruence axioms involve the concept
of angles: his fourth congruence axiom involves “angle transport” (constructing
an angle on a given base equal to a given angle), and his fifth congruence axiom
is the SAS triangle congruence principle.

Hilbert’s Chapter VII discusses geometric constructions with a limited set of
tools, a “segment transporter” and an “angle transporter”. These correspond
to the betweenness and congruence axioms. Hilbert does not discuss the special
cases of line-circle continuity and circle-circle continuity axioms that correspond
to ruler and compass constructions, despite the mention of “compass” in the
section titles of Chapter VII.

Hilbert’s geometry contained two axioms that go beyond first-order logic.
First, the axiom of Archimedes (which requires the notion of natural number),
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and second, an axiom of continuity, which (rephrased in modern terms) says
that Dedekind cuts are filled on any line. This axiom requires mentioning a
set of points, so Hilbert’s theory with this axiom included is not a “first-order
theory” in a language with variables only over points, lines, and circles.

2.2. Tarski

Later in the 20th century, when the concept of “first-order theory” was
widely understood, Tarski formulated his theory of elementary geometry, in
which Hilbert’s axiom of continuity was replaced with an axiom schemata. The
set variable in the continuity axiom was replaced by any first-order formula.
Tarski proved that this theory (unlike number theory) is complete: every state-
ment in the first-order language can be proved or refuted from Tarski’s axioms.
In addition to being a first-order theory, Tarski also made other simplifications.
He realized that lines, angles, circles, segments, and rays could all be treated
as auxiliary objects, merely enabling the construction of some new points from
some given points. Tarski’s axioms are stated using only variables for points.
He has only two relations: (non-strict) betweenness, “b is between a and c”,
and “equidistance”, E(a, b, c, d), which means what Euclid expressed as “ab is
congruent to segment cd”. We abbreviate E(a, b, c, d) informally as ab = cd. We
have listed Tarski’s axioms for reference in §4 of this paper, along with the ax-
ioms of our constructive version of Tarski geometry, adhering to the numbering
of [31], which has become standard.

Tarski replaced Hilbert’s fourth and fifth congruence axioms (angle transport
and SAS) with an elegant axiom, known as the five-segment axiom. This axiom
is best understood not through its formal statement, but through Fig. 1. The
5-segment axiom says that in Fig. 1, the length of the dashed segment cd is
determined by the lengths of the other four segments in the left-hand triangle.
Formally, if the four solid segments in the first triangle are pairwise congruent
to the corresponding segments in the second triangle, then the dashed segments
are also congruent.

Figure 1: Tarski’s 5-segment axiom. cd = CD.

d

a b c

D

A B C

Tarski’s 5-segment axiom is a thinly-disguised variant of the SAS criterion for
triangle congruence. To see this, refer to the figure. The triangles we are to
prove congruent are dbc and DBC. We are given that bc is congruent to BC
and db is congruent to DB. The congruence of angles dbc and DBC is expressed
in Tarski’s axiom by the congruence of triangles abd and ABD, whose sides are
pairwise equal. The conclusion, that cd is congruent to CD, give the congruence
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of triangles dbc and DBC. In Chapter 11 of [25], one can find a formal proof
of the SAS criterion from the 5-segment axiom. Borsuk-Szmielew also took this
as an axiom (see [6], p. 81, Axiom C-5).

An earlier version of Tarski’s theory included as an axiom the “triangle
construction theorem”, which says that if we are given triangle abc, and segment
AB congruent to ab, and a point x not on Line (A,B), then we can construct
a point C on the same side of Line (A,B) as x such that triangle ABC is
congruent to triangle abc. It was later realized2 that this axiom is provable. For
example, one can drop a perpendicular from c to Line (a, b), whose foot is the
point d on Line (a, b), and then find a corresponding point D on Line (A,B),
and then lay off dc on the perpendicular to Line (A,B) at D on the same side
of Line (A,B) as x, ending in the desired point C. Of course one must check
that this construction can be done and proved correct on the basis of the other
axioms. But as it stands, this construction demands a case distinction about
the order and possible identity of the points d, a, and c on Line (a, b). Hence, at
least this proof of the triangle construction theorem from the axioms of Tarski’s
theory is non-constructive.

Tarski’s early axiom systems also included axioms about betweenness and
congruence that were later shown [13] to be superfluous. The final version of
this theory appeared in [25]; for the full history see [31].3 The achievement of
Szmielew and Gupta (who are mainly responsible for Part I of [25]) is to develop
a really minimal set of axioms for betweenness and congruence.4 Hilbert’s intu-
itive axioms about betweenness disappeared, leaving only the axiom ¬B(a, b, a)
and the Pasch axiom and axioms to guarantee that congruence is an equivalence
relation.

2.3. Strict vs. non-strict betweenness and collinearity

The (strict) betweenness relation is written B(a, b, c). We read this “b is
between a and c”. The intended meaning is that that the three points are
collinear and distinct, and b is the middle one of the three.

Hilbert [15] and Greenberg [12] use strict betweenness, as we do. Tarski
[31] used non-strict betweenness. They all used the same letter B for the be-
tweenness relation, which is confusing. For clarity we always use B for strict
betweenness, and introduce T(a, b, c) for non-strict betweenness. Since T is

2 Acording to [31], Tarski included this principle as an axiom in his first two published
axiom sets, but then discovered in 1956-57 with the aid of Eva Kallin and Scott Taylor, that
it was derivable; so he did not include it in [30]. (See the footnote, p. 20 of [30].) But Tarski
did not publish the proof, and Borsuk-Szmielew take the principle as their Axiom C-7 [6].

3Note that the version mentioned in [1] is not the final version used in [25]; inner transitivity
for betweenness was eliminated in [25].

4We would like to emphasize the important contributions of Gupta, which are important
to the development in [25], and are credited appropriately there, but without a careful study
one might not realize how central Gupta’s results were. These results were apparently never
published under Gupta’s own name, and still languish in the Berkeley math library in his
doctoral dissertation [13]. However, you can get that thesis and others from the ProQuest
database, accessible from most university libraries.
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Tarski’s initial, and he used non-strict betweenness, that should be a memory
aid. The two notions are interdefinable (even constructively):

Definition 2.1. Non-strict betweenness is defined by

T(a, b, c) := ¬(a 6= b ∧ b 6= c ∧ ¬B(a, b, c))

In the other direction, B(a, b, c) can be defined as

T(a, b, c) ∧ a 6= b ∧ a 6= c.

If we express B(a, b, c) in terms of T(a, b, c), and then again express T in terms
of B, we obtain a formula that is equivalent to the original using only axioms
of classical propositional logic. We mention this point to emphasize that using
these definitions, Tarski could have taken either strict or non-strict betweenness
as primitive. In fact, to show that these definitions are “inverses” in the sense
mentioned, we need only intuitionistic logic plus the stability of equality and be-
tweenness. Therefore (since we do accept stability of equality and betweenness),
neither B nor T is inherently more constructive than the other.

Why then did Tarski choose to use non-strict betweenness, when Hilbert had
used strict betweenness? Possibly, as suggested by [31], because this allowed him
to both simplify the axioms, and reduce their number. By using T instead of
B, the axioms cover various “degenerate cases”, when diagrams collapse onto
lines, etc. Some of these degenerate cases were useful. From the point of view
of constructivity, however, this is not desirable. It renders Tarski’s axioms
prima facie non-constructive (as we will show below). Therefore the inclusion
of degenerate cases in the axioms is something that will need to be eliminated
in making a constructive version of Tarski’s theories. The same is true even if
our only aim is to connect the axioms with ruler and compass constructions,
while retaining classical logic.

We next want to give a constructive definition of collinearity. Classically we
would define this as T(p, a, b) ∨T(a, p, b) ∨T(a, b, p). That wouldn’t work as a
constructive definition of collinearity, because we have no way to decide in gen-
eral which alternative might hold, and the constructive meaning of disjunction
would require it. In other words, we can know that p lies on the line determined
by distinct points a and b without knowing its order relations with a and b. But
we can find a classically equivalent (yet constructively valid) form by using the
law that ¬¬(P ∨Q) is equivalent to ¬(¬P ∧¬Q). By that method we arrive at

Definition 2.2. Col(a, b, p) is the formula expressing that a, b, and p lie on a
line.

¬(¬T(p, a, b) ∧ ¬T(a, p, b) ∧ ¬T(a, b, p))

or equivalently, in terms of B,

¬(¬B(p, a, b) ∧ ¬B(a, p, b) ∧ ¬B(a, b, p) ∧ a 6= p ∧ b 6= p ∧ a 6= b)
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Informally, we use the notation Line (a, b) to stand for the line determined by
distinct points a and b, so “c lies on Line (a, b)” means a 6= b∧Col(a, b, p). Thus
Col(a, b, p) only expresses that p lies on Line (a, b) if we also specify a 6= b. We do
not put the condition a 6= b into the definition of Col(a, b, p) for two reasons: it
would destroy the symmetry between the three arguments, and more important,
it would cause confusion in comparing our work with the standard reference for
Tarski’s theories, namely [25].

2.4. Pasch’s axiom

Hilbert’s fourth betweenness axiom is often known as Pasch’s axiom, because
it was first studied by Pasch in 1882 [22]. It says that if line Lmeets (the interior
of) side AB of triangle ABC then it meets (the interior of) side AC or side BC
as well. But Tarski considered instead, two restricted versions of Pasch’s axioms
known as “inner Pasch” and “outer Pasch”, illustrated in Fig. 2.

Figure 2: Inner Pasch (left) and outer Pasch (right). Line pb meets triangle acq in one side.
The open circles show the points asserted to exist on the other side.
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Outer Pasch was an axiom (instead of, not in addition to, inner Pasch) in
versions of Tarski’s theories until 1965, when it was proved from inner Pasch
in Gupta’s thesis [13], Theorem 3.70, or Satz 9.6 in [25].5 Outer Pasch appears
as Satz 9.6 in [25]. The proof given in [25], applied to the formulation of outer
Pasch with strict betweenness, is constructive. The proof is complicated, how-
ever, in that it depends on the ability to drop a perpendicular to a line from a
point not on the line. As we shall discuss extensively, proving the existence of
such perpendiculars is problematic: easy constructions require either line-circle

5But apparently, judging from footnote 4 on p. 191 of [31], Tarski knew as early as 1956-57
that outer Pasch implies inner Pasch; in that footnote Tarski argues against replacing outer
Pasch with inner Pasch as an axiom, as Szmielew and Schwabhäuser chose to do. Also on
p. 196 of [31], Tarski attributes the idea for the proof of inner Pasch from outer Pasch to
specific other people; the history is too long to review here, but he credits only Gupta with
the derivation of outer Pasch from inner Pasch.
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continuity or the parallel axiom, and only with Gupta’s complicated proof do
we have dropped perpendiculars without either of those assumptions. In §12.1
we shall show how to use the double-negation interpretation (a metamathemat-
ical tool developed by Gödel) to ensure the constructivity of the proof of outer
Pasch without checking it line by line. The unsatisfied reader has the choice to
either check the proof directly, or look ahead to §12.1, which does not depend
on the intervening material. We will use outer Pasch as needed.

After Gupta proved outer Pasch from inner, Szmielew chose to take inner
Pasch as an axiom instead of outer Pasch, although a footnote in [31] shows
that Tarski disagreed with that choice (on grounds of how easy or difficult it is
to deduce other things). Gupta’s thesis also contains a proof that outer Pasch
implies inner Pasch.

It is not completely clear why Tarski wanted to restrict Pasch’s axiom in the
first place, but two good reasons come to mind. First, the restricted forms are
valid even in three-dimensional space, so they do not make an implicit dimen-
sional assertion, as the unrestricted Pasch axiom does (it fails in three-space).
Second, there is the simpler logical form of inner (or outer) Pasch: unrestricted
Pasch needs either a disjunction, or a universal quantifier in the hypothesis,
so the condition to be satisfied by the point whose existence is asserted is not
quantifier-free and disjunction-free, as it is with inner and outer Pasch. This
simplicity of logical form is important for our purposes in constructive geometry,
but for Tarski it may just have been a matter of “elegance.”

2.5. Sides of a line

The notions of “same side” and “opposite side” of a line will be needed
below, and are also of interest in comparing Hilbert’s and Tarski’s geometries.
One of Hilbert’s axioms was the plane separation axiom, according to which a
line separates a plane into (exactly) two regions. Two points a and b not on line
L are on opposite sides of L if a 6= b and there is a point of L between a and b,
i.e., the segment ab meets L.

Definition 2.3.

OppositeSide (a, b, L) := ∃x (on(x, L) ∧B(a, x, b))

Of course, in Tarski geometry, we cannot mention lines directly, so L has to be
replaced by two distinct points, yielding a 4-ary relation.

The definition of being on the same side is less straightforward. Hilbert’s
definition of SameSide (a, b, L) was that segment ab does not meet L. That
involves a universal quantifier:

∀x¬(B(a, x, b) ∧ on(x, L)).

One can get an existential quantifier instead of a universal quantifier by using
Tarski’s definition, illustrated in Fig. 3:
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Figure 3: Tarski’s definition: a and b are on the same side of line L, as witnessed by point c

on the other side.

L

b

a
b

b

b c

b
y

b
x

Definition 2.4. a and b are on the same side of L if there is some c such that
both a and b are on the opposite side of L from c. Formally:

SameSide (a, b, L) := ∃c, x, y (B(a, x, c) ∧B(b, y, c) ∧ on(x, L) ∧ on(y, L))

Another advantage of this definition is that it works in more than two dimen-
sions. It can be proved equivalent to Hilbert’s definition above (as is discussed
in section 2.7 below), if all points are restricted to lie in the same plane; but in
Tarski’s geometry, planes are a defined concept (using SameSide) rather than
a primitive concept.

Hilbert took it as axiomatic that a line divides a plane into two regions. In
Tarski’s system this becomes a fairly difficult theorem:

Theorem 2.5 (Plane separation theorem). If p and q are on the same side
of line L, and p and r are on opposite sides of L, then q and r are also on
opposite sides of L. Formally,

SameSide (a, b, L) ∧OppositeSide (a, c, L) → OppositeSide (b, c, L)

is provable in neutral constructive geometry (i.e., without using the parallel ax-
iom).

Proof. This is proved in Gupta [13], and also as Satz 9.8 of [25]. The proof follows
fairly easily from outer Pasch and the definition of SameSide , and occurs in [25]
right after the proof of outer Pasch. The proof (from outer Pasch) is completely
and unproblematically constructive.

2.6. The parallel axiom according to Hilbert and Tarski

As is well-known, there are many propositions equivalent to the parallel
postulate in classical geometry. The main point of [5] is to establish which of
these versions of the parallel postulate are equivalent in constructive geometry,
and which are not. Hilbert’s parallel axiom (Axiom IV, p. 25 of [15]) is the
version we call Playfair’s Axiom, introduced by Playfair in 1729: There cannot
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be more than one parallel to a given line through a point not on the line. Tarski’s
axiom A10 as published in [25] is a more complicated statement, classically
equivalent. Specifically, it says that if p is in the (closed) interior of angle α,
then there exist points x and y on the sides of α such that T(x, p, yt). Of course,
one cannot mention “interior of angle α” directly, so the formulation in Tarski’s
language is a bit more complex. Szmielew’s manuscript, on which Part I of [25]
is based, took instead the “triangle circumscription principle”, which says that
for every three non-collinear points a, b, c, there exists a point d equidistant
from all three (thus d is the center of a circle passing through a, b, and c, thus
circumscribing triangle abc).6

In [5], we considered the parallel axiom from the constructive point of view,
and gave a points-only version of Euclid’s parallel postulate, called “Euclid
5”, as well as a stronger version called the “strong parallel postulate.” These
turned out to be constructively equivalent, though the proof requires the prior
development of considerable “machinery” based on Euclid 5. We also showed
that the triangle circumscription principle is equivalent to the strong parallel
postulate, and hence to Euclid 5. In this paper (Theorems 9.2 and 9.3), we
show that Tarski’s parallel axiom is equivalent to Euclid 5, too. Hence all the
versions of the parallel postulate that make an existential assertion turn out to
be equivalent.

For the reason of simplicity, we follow Szmielew in using the triangle cir-
cumscription principle as the parallel axiom in Tarski’s theories.7 The center
of the circumscribed circle abc can be constructed with ruler and compass as
the intersection point of the perpendicular bisectors of ab and bc; the point of
the axiom is that these lines do indeed meet (which without some form of the
parallel axiom, they cannot be proved to do). The axiom lends itself well to
a points-only theory, since it does not actually mention circles. It merely says
there is a point equidistant from the three given points.

Tarski and Givant wrote a letter to Schwabhäuser “around 1978”, which was
published in 1998 [31] and has served, in the absence of an English translation
of [25], as a common reference for Tarski’s axioms and their history. The letter
mentions equivalent versions of the parallel axiom: the two mentioned above
and a “Third version of the parallel axiom”, which says that if one connects the
midpoints of two sides of a triangle, the connecting segment is congruent to half
the third side. In spite of the name “Third version of the parallel axiom”, the
letter makes no claim that the different versions are equivalent (in any theory at
all). One has to be careful when speaking about “versions of the parallel postu-

6The triangle circumscription principle is equivalent (with classical logic) to Euclid’s paral-
lel axiom. Euclid IV.5 proves the triangle circumscription principle; the converse implication
was first proved by Farkas Bolyai, father of Janos Bolyai, who thought he had proved Euclid’s
parallel postulate, but had actually assumed the triangle circumscription principle. See [12],
pp. 229–30 and p. 240.

7The change in the parallel axiom was apparently one of the “inessential changes”
Schwabhäuser introduced in publishing Szmielew’s work. I have not seen Szmielew’s
manuscript, but base what I say about it here on [31], page 190.
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late.” According to [29], p. 51, any statement that holds in Euclidean geometry
but not in the standard hyperbolic plane is (classically) equivalent to Euclid’s
parallel postulate in Tarski’s geometry with full first-order continuity axioms
(Axiom (A11) of [31]). In other words, there are only two complete extensions
of neutral geometry with full continuity. But no such thing is true in the theo-
ries considered here, which have only line-circle and circle-circle continuity (one
as an axiom, and one as a theorem).

Indeed, the “third version” mentioned above (which we here call M , for
“midline”) is not equivalent to the parallel postulate (in neutral geometry with
line-circle and circle-circle continuity), but instead to the weaker assertion that
the sum of the angles of every triangle is equal to two right angles. The non-
equivalence with the parallel axiom is proved as follows:

Theorem 2.6. No quantifier-free statement can be equivalent to the parallel
axiom in neutral geometry with circle-circle and line-circle continuity.

Proof. We give a model of neutral geometry in which M (or any quantifier-
free formula that is provable with the aid of the parallel axiom) holds, but
the parallel axiom fails. Let F be a non-Archimedean Euclidean field, and let
K be the finitely bounded elements of F, i.e., elements between −n and n for
some integer n. (Then K is Archimedean but is not a field, because it contains
“infinitesimal” elements whose inverses are in F but not in K.) The model is
K

2. This model is due to Max Dehn, and is described in Example 18.4.3 and
Exercise 18.4 of [14], where it is stated that K

2 is a Hilbert plane, and also
satisfies line-circle and circle-circle continuity, since the intersection points with
finitely bounded circles have finitely bounded coordinates.

Since F2 is a model of geometry including the parallel axiom,M holds there,
and sinceM is quantifier free, it holds also in K. Yet, K is not a Euclidean plane;
let L be the x-axis and let t be an infinitesimal. There are many lines through
(0, 1) that are parallel to L in K (all but one of them are restrictions to P of
lines in F 2 that meet the x-axis at some non finitely bounded point). That
completes the proof.

Discussion. As remarked above, it follows from Szmielew’s work [29], p. 51, that
M is equivalent to the parallel axiom in Tarski’s geometry with classical logic
and the full first-order continuity axiom (A11). The question then arises, how
exactly can we use elementary continuity to prove Euclid 5 from M? Here is a
proof: Assume, for proof by contradiction, the negation of Euclid 5. Then, by
elementary continuity, limiting parallels exist (see [12], p. 261). Then Aristotle’s
axiom holds, as proved in [14], Prop. 40.8, p. 380. ButM plus Aristotle’s axiom
implies Euclid 5 (see [12], p. 220), contradiction, QED.

This proof is interesting because it uses quite a bit of machinery from hyper-
bolic geometry to prove a result that, on the face of it, has nothing to do with
hyperbolic geometry. That is, of course, also true of the proof via Szmielew’s
metamathematics. Note that a non-quantifier-free instance of elementary conti-
nuity is needed to get the existence of limiting parallels directly; in the presence
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of Aristotle’s axiom, line-circle continuity suffices (see [12], p. 258), but Aristo-
tle’s axiom does not hold in P . Finally, the proof of Theorem 2.6 shows that the
use of a non-quantifier-free instance of continuity is essential, since quantifier-
free instances will hold in Dehn’s model (just like line-circle and circle-circle
continuity).

2.7. Interpreting Hilbert in Tarski

The fundamental results about betweenness discussed in section 5.3, along
with many pages of further work, enabled Szmielew to prove (interpretations
of) Hilbert’s axioms in Tarski’s theory. Neither she nor her (posthumous) co-
authors pointed this out explicitly in [25], but it is not difficult to find each
of Hilbert’s axioms among the theorems of [25] (this has been done explicitly,
with computer-checked proofs, in [7]). Here we illustrate by comparing Hilbert’s
betweenness axioms to Tarski’s: Both have symmetry. Hilbert’s II,3 is “Of any
three points on a line there exists no more than one that lies between the other
two.” We render that formally as

a 6= b ∧ b 6= c ∧ a 6= c ∧B(a, b, c) → ¬B(b, a, c) ∧ ¬B(a, c, b).

This can be proved from Tarski’s axioms as follows: suppose a, b, and c are
distinct, and B(a, b, c). Then ¬B(b, a, c), since if B(b, a, c) then B(a, b, a), by
inner transitivity and symmetry. (See §4 for the formulas mentioned by name
here.) Also, ¬B(a, c, b), since if B(a, b, c) and B(a, c, b), then B(a, b, a) by inner
transitivity and symmetry.

Hilbert has a “density” axiom (between two distinct points there is a third).
This is listed as (A22) in [31], but was never an axiom of Tarski’s theory. Den-
sity can be proved classically even without line-circle or circle-circle continuity:
Gupta ([13], or [25], Satz 8.22) showed that the midpoint of a segment can be
constructed without continuity. It is also possible to give a very short direct
proof of the density lemma:

Lemma 2.7 (Density). Given distinct points a and c, and point p not collinear
with a and c, there exists a point b with B(a, b, c).

Remark. The proof requires only an axiom stating that the order is unending
(here the extension axiom supplies that need), the inner form of the Pasch
axiom, and the existence of a point not on a given line. This theorem has been
known for sixty years [18, 19, 21], as it turns out, and rediscovered by Ben
Richert in 2014, whose proof is given here.

Proof. Extend ap by ac to point r, and extend rc by ac to point s. Apply inner
Pasch to scrap. The result is point b with B(a, b, c) (and B(p, b, s), but that is
irrelevant). That completes the proof.

As discussed above, one can prove in Tarski’s system (using the dimen-
sion axioms) that Hilbert’s and Tarski’s definitions of SameSide coincide; and
Hilbert’s plane separation axiom becomes a theorem in Tarski’s system.
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Hilbert’s theory has variables for angles; but in Tarski’s theory, angles are
given by ordered triples of non-collinear points, and the theory of congruence
and ordering of angles has to be developed, somewhat laboriously, but along
quite predictable lines, carried out in [25]. Some details of the Tarskian theory
of angles are discussed in §8.11 below; the upshot is that (even constructively)
one can construct a conservative extension of Tarski geometry that has variables
for angles and directly supports the kind of arguments one finds in Euclid.

It is sometimes possible to reduce theorems about angles directly; in partic-
ular it is not necessary to develop the theory of angle ordering to state Euclid’s
parallel postulate. In Fig. 4, we show how to translate the concept “equal
alternating interior angles” into Tarski’s language.

Figure 4: Transversal pq makes alternate interior angles equal with L and K, if pt = tq and
rt = st.
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3. Tarski’s theory of straightedge and compass geometry

Tarski’s theory is “elementary” only in the sense that it is first-order. It
still goes far beyond Euclid.8 To capture Euclid’s geometry, Tarski considered
the subtheory in which the continuity axiom is replaced by “segment-circle con-
tinuity”. This axiom asserts the existence of the intersection points of a line
segment and a circle, if some point on the segment lies inside the circle and
some point on the segment lies outside the circle.

It is this theory that we refer to in the title of this paper as “Tarski’s ge-
ometry”. In the section title, we mention “straightedge and compass”; but
henceforth we use the more common terminology “ruler and compass”, with
the same meaning.

3.1. Line-circle continuity

We now formulate the axiom of line-circle continuity. This tells us when
a line and a circle intersect–namely, when there is a point on the line closer

8It is confusing that in axiomatic geometry, “elementary” sometimes refers to the elemen-
tary constructions, and sometimes to the full first-order theory of Tarski. In this paper we
shall not refer again to the full first-order theory.
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(or equally close) to the center than the radius of the circle.9 But we have
not defined inequalities for segments yet, so the formal statement is a bit more
complex. Moreover, we have to include the case of a degenerate circle or a line
tangent to a circle, without making a case distinction.10 Therefore we must find
a way to express “p is inside the closed circle with center a passing through y”.
For that it suffices that there should be some x non-strictly between a and y
such that ax = ap. Since this will appear in the antecedent of the axiom, the
“some x” will not involve an existential quantifier.

Definition 3.1. ab < cd (or cd > ab) means ∃x(B(c, x, d) ∧ ax = ab)).
ab ≤ cd (or cd ≥ ab) means ∃x(T(c, x, d) ∧ ax = ab), where T is non-strict
betweenness.

Definition 3.2. Let C be a circle with center a. Then point p is strictly inside
C means there exists a point b on C such that ap < ab, and p is inside C, or
non-strictly inside C, means ap ≤ ab.

Replacing ‘<’ by ‘>’, we obtain the definition of outside. The version of line-
circle continuity given in [30] is better described as “segment-circle” continuity:

ax = ap ∧T(a, x, b) ∧T(a, b, y) ∧ ay = aq → ∃z (T(p, z, q) ∧ az = ab)

This axiom says that if p is inside circle C and q is outside C, then segment pq
meets circle C. See Fig. 5.

One may also consider a geometrically simpler formulation of line-circle con-
tinuity: if line L = Line (u, v) has a point p inside circle C, then there is a point
that lies on both L and C. See Fig. 6.

We consider two versions of this axiom. The weaker version (one-point line-
circle) only asserts the existence of one intersection point. The stronger version
(two-point line-circle) adds the extra assertion that if p 6= b (i.e., p is strictly
inside the circle) then there are two distinct intersection points.

Here are the formal expressions of these axioms. (The formula Col, for
collinearity, is given in Definition 2.2.)

Col(u, v, p) ∧ u 6= v ∧T(a, p, b) → (one-point line-circle)

∃z (Col(u, v, z) ∧ az = ab)

Col(u, v, p) ∧ u 6= v ∧T(a, p, b) → (two-point line-circle)

9Note that in spite of the use of the word “circle” the axiom, in the form that only asserts
the existence of an intersection point, is valid in n-dimensional Euclidean space, where it refers
to the intersections of lines and spheres.

10Avigad et. al. count only transverse intersection, not tangential intersection, as
“intersection.”
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Figure 5: Segment-circle continuity. p is inside the circle, q is outside, so L meets the segment
pq.
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∃y, z (az = ab ∧ ay = ab ∧T(y, p, z) ∧ (p 6= a → y 6= z))

Classically, we could take a shorter version of two-point line-circle:

Col(u, v, p) ∧ u 6= v ∧T(a, p, b) ∧ p 6= a → (classical two-point line-circle)

∃y, z (ay = ab ∧ az = ab ∧B(y, p, z))

This is classically equivalent to two-point line circle, since the case when p = a
is trivial; but constructively, we cannot make a case distinction whether p = a
or not. The longer form is necessary for a constructive version.

The equivalence of these three continuity axioms, relative to the other axioms
of Tarski geometry, is not at all obvious (even with classical logic), because

(i) in order to show line-circle implies segment-circle, we need to construct
points on the line outside the circle, which requires the triangle inequality. In
turn the triangle inequality requires perpendiculars.

(ii) in order to show one-point line-circle implies two-point line-circle, we
need to construct the second point somehow. To do that, we need to be able to
construct a perpendicular to the line through the center. Classically this requires
a dropped perpendicular from the center to the line (as the case when the
center is on the line is trivial); constructively it requires even more, a “uniform
perpendicular” construction that works without a case distinction. But even
the former is difficult.

Since two-point line-circle continuity corresponds directly to the uses made
(implicitly) of line-circle continuity in Euclid, we adopt it as an axiom of our
constructive version(s) of Tarski’s theory. We shall show eventually that all
three versions are in fact equivalent, using the other axioms of Tarski’s theory
(and not even using any form of the parallel axiom). But this proof rests on the
work of Gupta [13], which we will also discuss below.
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Figure 6: Line-circle continuity. p is inside the circle, so L meets the circle.
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3.2. Intersections of circles

We next give the principle known as circle–circle continuity. It should say that if
point p on circle K lies (non-strictly) inside circle C, and point q on K lies (non-
strictly) outside C, then both intersection points of the circles are defined. This
principle would be taken as an axiom, except that it turns out to be derivable
from line-circle continuity, so it is not necessary as an axiom. This implication
will be proved and discussed fully in § 8, where it will be shown to be true also
with intuitionistic logic.11

In Tarski’s points-only language, circles are given by specifying the center
and a point through which the circle passes. Informally, we write Circle(a, b) for
the circle with center a passing through point b. The case a = b (a “degenerate
circle”) is allowed. To express that p is non-strictly inside (or outside) a circle
C, we use the same technique as just above. Namely, p is inside C if ap = ax for
some x non-strictly between a and a point b on C. The situation is illustrated
in Fig. 7, where circle C is given by center a and point b, and circle K is given
by center c and point d.

We want this principle to apply even to degenerate circles, and to points that
are on C rather than strictly inside, so we must use T rather than B to allow
x = y or y = z, and we must even allow a = x = b = z. But we do not want it
to apply when C and K are the same circle, for then, although classically plenty
of intersection points exist, no special point is singled out by a “construction.”

11It is also true that circle-circle continuity implies line-circle continuity. See for example
[12], p. 201. Proofs of the equivalence of line-circle and circle-circle continuity using Hilbert’s
axioms (with no continuity and without even the parallel axiom) were found by Strommer
[28]. Since these axioms are derivable from (A1)-(A9), as shown by Gupta and Szmielew
[25, 7], the equivalence can be proved in (A1)-(A9) (with classical logic). We have not studied
the constructivity of Strommer’s proof.
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Figure 7: Circle-circle continuity. p is inside C and q is outside C, as witnessed by x and z,
so the intersection points 1 and 2 exist.
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In order to express this axiom using point variables only, we think of K as
Circle (c, d) and C as Circle (a, b). Then the axiom becomes

ap = ax ∧ aq = az ∧ cp = cd ∧ cq = cd ∧T(a, x, b) ∧ T(a, b, z) ∧ a 6= c
→ ∃z1, z2 (cz1 = cd ∧ az1 = ab ∧ cz2 = cd ∧ az2 = ab) (circle-circle)

The use of non-strict betweenness T allows for the cases when the circles are
tangent (either exterior or interior tangency).

It is not necessary to assert the existence of two distinct intersection points
when p is strictly inside C, since the second intersection point can be constructed
as the reflection of the first in the line connecting the two centers. Then, using
the plane separation theorem, one can prove the existence of an intersection
point on a given side of the line connecting the centers.

4. Listing of axioms for reference

In this section, we list the axioms of all theories used in this paper. It is
intended for reference, rather than as part of a first reading, but we follow
Tarski’s example and a referee’s advice in putting the axioms, in the referee’s
phrase, “front and center.”

In the following, ab = cd abbreviates E(a, b, c, d), and T(a, b, c) is non-strict
betweenness, while B(a, b, c) is strict betweenness.

4.1. Classical two-dimensional Tarski geometry

We give the version preferred by Szmielew. The version in [25] has (the classi-
cally equivalent) (A10) instead of (A103). We also give the Skolemized versions

23



here. Col(a, b, c) (collinearity) is an abbreviation for T(a, b, c) ∨ T(b, c, a) ∨
T(c, a, b).

ab = ba (A1) Reflexivity of equidistance
ab = pq ∧ ab = rs → pq = rs (A2) Transitivity of equidistance
ab = cc → a = b (A3) Identity of equidistance
∃x (T(q, a, x) ∧ ax = bc) (A4) Segment extension
T(q, a, ext(q, a, b, c)) ∧ E(q, ext(q, a, b, c), b, c) (A4), Skolemized
(a 6= b ∧T(a, b, c) ∧T(A,B,C) ∧ ab = AB ∧ bc = BC

ad = AD ∧ bd = BD) → cd = CD (A5) Five-segment axiom
T(a, b, a) → a = b (A6) Identity for betweenness
T(a, p, c) ∧T(b, q, c) → ∃x (T(p, x, b) ∧T(q, x, a)) (A7) inner Pasch
T(a, p, c) ∧T(b, q, c) →
T(p, ip(a, p, c, b, q), b) ∧T(q, ip(a, p, c, b, q), a) (A7), Skolemized

∃a, b, c¬Col(a, b, c) (A8), lower dimension
¬Col(α, β, γ) (A8), Skolemized
pa = pb ∧ qa = qb ∧ ra = rb → Col(a, b, c) (A9), upper dimension
¬Col(a, b, c) → ∃x (ax = bx ∧ ax = cx) (A103), triangle circumscription
ax = ap ∧T(a, x, b) ∧T(a, b, y) ∧ ay = aq → segment-circle continuity
∃z (T(p, z, q) ∧ az = ab)

In the Skolemized version of the triangle circumscription principle, x is given
by center(a, b, c). We make no use of a Skolemized version of segment-circle, so
we do not give one.

4.2. Intuitionistic Tarski geometry

This theory takes B as primitive rather than T, so T(a, b, c) is an abbre-
viation for ¬(a 6= b ∧ b 6= c ∧ ¬B(a, b, c)), and Col(a, b, c) is an abbreviation
for

a 6= b ∧ ¬(¬B(p, a, b) ∧ ¬B(a, p, b) ∧ ¬B(a, b, p) ∧ a 6= p ∧ b 6= p),

which is equivalent to the double negation of the classical definition ofCol(a, b, c)
together with a 6= b. In other words, Col(a, b, c) says c lies on Line (a, b). The
axioms (A1)-(A3) and (A5) are unchanged, except that now T is defined in
terms of B. It is inessential whether T or B is taken as primitive.

The differences between classical and intuitionistic Tarski geometry are

• (A4): Only non-null segments can be extended.

• Axiom (A6) becomes ¬B(a, b, a).

• inner Pasch (A7): The hypothesis T(a, p, c) is changed to B(a, p, c), and
the hypothesis ¬Col(a, b, c) is added, and although T is strengthened to
B in the conclusion. But the hypothesis T(b, q, c) is not changed.

• Symmetry and inner transitivity of betweenness (A14) and (A15) are
added.
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• A negative formula is used for collinearity in the dimension axioms and
the triangle circumscription principle.

• In line-circle continuity, the two points p and q determining the line are
assumed to be unequal, and we use two-point line-circle continuity instead
of segment-circle.

• We use intuitionistic logic and add the stability axioms.

Intuitionistic Tarski geometry plus classical logic is called “continuous Tarski
geometry”; we can have continuous Tarski geometry with or without Skolem
functions. The changed axioms are as follows:

q 6= a → ∃x (T(q, a, x) ∧ ax = bc) (A4-i) Segment extension
q 6= a → T(q, a, ext(q, a, b, c)) ∧ E(q, ext(q, a, b, c), b, c) (A4-i), Skolemized
¬B(a, b, a) (A6-i)
B(a, p, c) ∧T(b, q, c) ∧ ¬Col(a, b, c) →

∃x (B(p, x, b) ∧B(q, x, a)) (A7-i) strict inner Pasch
B(a, p, c) ∧T(b, q, c) ∧ ¬Col(a, b, c) →

B(p, ip(a, p, c, b, q), b) ∧B(q, ip(a, p, c, b, q), a) (A7-i), Skolemized
B(a, b, c) → B(c, b, a) (A14-i), symmetry of betweenness
B(a, b, d) ∧B(b, c, d) → B(a, b, c) (A15-i), inner transitivity
Col(u, v, p) ∧ u 6= v ∧T(a, p, b) → two-point line-circle
∃y, z (az = ab ∧ ay = ab ∧T(y, p, z) ∧ (p 6= a → y 6= z))

The axioms of stability are as follows:

¬¬B(a, b, c) → B(a, b, c)
¬¬E(a, b, c, d) → E(a, b, c, d)
¬a 6= b → a = b

For reference we also state the circle-circle continuity principle, which is not
an axiom but a theorem. The circles must have distinct centers but one of them
could be a null circle (zero radius). See Fig. 7.

ap = ax ∧ aq = az ∧ cp = cd ∧ cq = cd ∧T(a, x, b) ∧ T(a, b, z) ∧ a 6= c
→ ∃z1, z2 (cz1 = cd ∧ az1 = ab ∧ cz2 = cd ∧ az2 = ab) (circle-circle)

4.3. Ruler-and-compass Tarski geometry

This theory uses LPT (logic of partial terms) as given in [2], p. 97, which
allows a formal treatment of “undefined terms”. Its axioms are similar to intu-
itionistic Tarski geometry with Skolem functions, except that there is an addi-
tional 4-ary function symbol iℓ with the axioms

Col(a, b, x) ∧ Col(p, q, x) ∧ ¬ (Col(a, b, p) ∧ Col(a, b, q)) →
x = iℓ(a, b, p, q) Axiom iℓ-i

iℓ(a, b, p, q) ↓ → Col(a, b, iℓ(a, b, p, q)) ∧ Col(p, q, iℓ(a, b, p, q)) Axiom iℓ-ii

The Skolem term ip(a, p, c, b, q) is replaced in the Skolemized inner Pasch ax-
iom by iℓ(a, q, b, p). Point c does not occur in this term. The term center(a, b, c)
in the triangle circumscription axiom is not changed.
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5. Tarski’s axioms, continuity, and ruler and compass

Two of Tarski’s axioms have “degenerate cases”, in the sense that they in-
troduce points that do not depend continuously on the parameters of the axiom.
(The two axioms are segment extension, which permits extending a null segment,
and inner Pasch, which allows the diagram to collapse to a line.) Even using
classical logic, we consider this undesirable. We would like to have a formulation
of Tarski’s theory that would permit us to use Herbrand’s theorem to show that
if ∃y A(x, y) is provable (where x stands for several variables, not just one),
then there are finitely many ruler and compass constructions t1(x), . . . , tn(x)
such that for each x, one of the ti constructs the desired y, i.e., A(x, ti(x)). In
this section, we discuss how Tarski’s axioms can be slightly modified to eliminate
discontinuities. It may be worth pointing out that a reformulation is necessary,
as Tarski’s formulation definitely does not have this property: all ruler and
compass constructions produce points that depend continuously on parameters,
but as remarked above, the existential theorems of Tarski’s theory can produce
points that do not depend continuously on parameters.

5.1. Segment extension and Euclid I.2

(A4) is the segment construction axiom. Tarski’s version is ∃x (T(q, a, x) ∧
ax = bc). The degenerate case is extending a null segment, i.e., when q = a;
then the point x is not uniquely determined, and moreover, x does not depend
continuously on q as q approaches a. One might wonder if x = a, or in other
words b = c (extending by a null segment) is also a degenerate case, but we do
not consider it as degenerate, since there is no discontinuous dependence in that
case. Then to avoid degenerate cases, we could consider

q 6= a → ∃x (T(q, a, x) ∧ ax = bc) (A4-i)

Classically, disallowing q = a costs nothing, since to extend a null segment
aa by bc, we just pick any point d 6= a and extend the non-null segment da by
bc. Of course, this introduces a discontinuous dependence.

5.2. Degenerate cases of inner Pasch

(A7) is inner Pasch; please refer to Fig. 2. This has a degenerate case when
p = a and q = b, for as (p, q) approaches (a, b), the intersection point x does
not have a unique limit, but could approach any point on ab or not have a limit
at all, depending on how (p, q) approaches (a, b). If p = c or q = c, or if p = a
but q 6= b, or if q = b but p 6= a, then there is an obvious choice of x, so this
degenerate case can be removed simply by replacing T by B in inner Pasch. In
fact, it is enough to make this replacement on one side of the triangle, leaving
T on the other side.

Tarski’s version of inner Pasch allows the points a, b, and c to be collinear,
and this case is technically important, because it allows a number of funda-
mental theorems about betweenness to be derived that originally were taken
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as axioms.12 The point asserted to exist is unique when a, b, and c are not
collinear; the technical question arises, whether the point can be chosen contin-
uously in the five parameters a, b, c, p, and q, in case collinearity is allowed, but
the five points are required to be distinct. Some computations (not provided
here) show that indeed the point can be continuously chosen.

Nevertheless, we consider the case when a, b, and c are collinear to be ob-
jectionable, on philosophical grounds. Pasch’s axiom is supposed to justify the
construction of certain points by labeling the intersections of lines drawn with a
straightedge as actually “existing” points. In the case when the lines coincide,
the axiom has no conceptual connection with the idea of intersecting lines, and
hence would need some other justification to be accepted as an axiom. If the
justification is just that it provides a single axiom from which several intuitively
evident propositions about betweenness can be deduced, that is a distortion of
the meaning of the word “axiom.”

Whether or not one gives weight to this philosophical argument, there is a
related technical point: we consider below a version of geometry with terms
for the intersection points of lines, and we want to be able to use those terms
to construct the points shown to exist by Pasch’s axiom. In other words, the
problem with Tarski’s too-general version of inner Pasch is that it asserts the
existence of points for which there is no ruler and compass construction. In
that respect, it is unlike any of the other axioms (A1) to (A10), and also unlike
the line-circle and circle-circle continuity axioms. This issue reflects in a precise
mathematical way the philosophical issue about the collinear case of Pasch’s
axiom.

Therefore, we reformulate inner Pasch for continuity, and for constructivity
in the sense of ruler and compass constructions of the points asserted to exist,
as follows:

• We change T(a, p, c) to B(a, p, c).

• We add the hypothesis, ¬Col(a, b, c).

The resulting axiom is

T(a, p, c) ∧T(b, q, c) ∧ p 6= a ∧ ¬Col(a, b, c) →
∃x (B(p, x, b) ∧B(q, x, a)) (A7-i) strict inner Pasch

Note that we did not require both B(a, p, c) and B(b, q, c). Changing just
one of those from T to B is sufficient to allow a ruler and compass construction.
We do not need two versions, one with B(a, p, c) and one with B(b, q, c), by
symmetry. As it turns out, we could use B instead of T in all the parts of this
axiom and prove the same theorems, as is shown in Section 11.4 below.

12Tarski viewed it as a good thing when the number of axioms could be reduced by using
degenerate cases of remaining axioms. We note that in 2013, a further possible reduction in
the number of axioms was proved possible by Makarios [20]: interchanging two variables in the
conclusion of the five-segment allows the elimination of the symmetry axiom of congruence,
ab = ba.
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5.3. Inner Pasch and betweenness

Tarski’s final theory [31] had only one betweenness axiom, known as (A6) or
“the identity axiom for betweenness”:

T(a, b, a) → a = b.

In terms of strict betweenness, that becomes ¬B(a, x, a), or otherwise expressed,
B(a, b, c) → a 6= c. We also refer to this axiom as (A6). The original version
of Tarski’s theory had more betweenness axioms (see [31], p. 188). These were
all shown eventually to be superfluous in classical Tarski geometry, through the
work of Eva Kallin, Scott Taylor, Tarski himself, and especially Tarski’s student
H. N. Gupta [13]. These proofs appear in [25]. Here we give the axiom numbers
from [31], names by which they are known, and also the theorem numbers of
their proofs in [25]:

T(a, b, c) → T(c, b, a) (A14), symmetry, Satz 3.2
T(a, b, d) ∧T(b, c, d) → T(a, b, c) (A15), inner transitivity, Satz 3.5a
T(a, b, c) ∧T(b, c, d) ∧ b 6= c →

T(a, b, d) (A16), outer transitivity, Satz 3.7b
T(a, b, d) ∧T(a, c, d) →

T(a, b, c) ∨T(a, c, b) (A17), inner connectivity, Satz 5.3
T(a, b, c) ∧T(a, b, d) ∧ a 6= b →

T(a, c, d) ∨T(a, d, c) (A18), outer connectivity, Satz 5.1

The first of these (A14), is a consequence of inner Pasch, formulated with T,
but the proof uses a degenerate case of inner Pasch, so if we replace inner Pasch
by the non-degenerate form (strict inner Pasch), we will (apparently) have to
reinstate (A14) as an axiom. The question arises as to whether this is also true
of the others. Certainly these cases suffice:

Lemma 5.1. (A14) and (A15) suffice to prove the collinear case of Tarski’s
inner Pasch, using (A4-i) and (A7-i) instead of (A4) and (A7). That is,

Col(a, b, c) ∧ a 6= b ∧T(a, p, c) ∧T(b, q, c) → ∃x (T(p, x, b) ∧T(q, x, a)).

Proof. We first note that T(a, b, b) follows immediately from the definition of
T(a, b, c) in terms of B.

Since we checked above that the degenerate cases of (A7) are provable, we
can assume that all five of the given points are distinct. Since Col(a, b, c), we
have B(a, b, c) ∨B(a, c, b) ∨B(c, a, b).

Case 1,B(a, b, c). Then we take x = b. We have to proveT(p, b, b)∧T(q, b, a).
From T(a, b, c)∧T(b, q, c) we have T(a, b, q) by (A15). Then T(q, b, a) by (A14).
Since p 6= b we have T(p, b, b) as shown above. That completes Case 1.

Case 2, B(c, a, b). Then we take x = a. We have to prove T(p, a, b) ∧
T(q, a, a). Since q 6= a we have T(q, a, a) as shown above. By symmetry (A14)
we have T(a, p, c) and T(b, a, c), so by (A15) we have T(b, a, p), so by (A14)
again we have T(p, a, b) as desired. That completes Case 2.

Case 3,B(a, c, b). Then we take x = c. We have to proveT(p, c, b)∧T(q, c, a).
From T(a, c, b) and T(c, q, b) we have by (A15) T(a, c, q), whence by (A14),
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T(q, c, a). From T(a, c, b) by (A14), we have T(b, c, a). From T(a, p, c) by
(A14), we have T(c, p, a). From that and T(b, c, a) we have by (A15) T(b, c, p).
By (A14) we have T(p, c, b) as desired. That completes Case 3, and the proof
of the lemma.

6. Alternate formulations of Tarski’s theory

In this section we consider some reformulations of Tarski’s theories (still us-
ing classical logic) that (i) isolate and remove “degenerate cases” of the axioms,
and (ii) introduce Skolem functions to achieve a quantifier-free axiomatization,
and (iii) introduce additional axioms to make the intersection points of lines and
circles, or circles and circles, depend continuously on the (points determining
the) lines and circles.

6.1. Continuous Tarski geometry

Let “continuous Tarski geometry” refer to classical Tarski geometry with
two-point line-circle continuity, with the following modifications:

• (A4-i) instead of (A4) (extending non-null segments)

• (A7-i) (strict inner Pasch) instead of (A7). That is, use B instead of T in
two of the three occurrences of T in inner Pasch, and require ¬Col(a, b, c).

• Take (A14) and (A15) as axioms (symmetry and transitivity of between-
ness).

• Use the triangle circumscription principle (A103) for the parallel axiom.

The reason for the name “continuous Tarski geometry” will be apparent even-
tually, when we show what seems intuitively obvious: that Skolem functions for
these axioms can be implemented by ruler and compass constructions.

Theorem 6.1. Continuous Tarski geometry has the same theorems as Tarski
geometry.

Proof. To extend a null segment bb by cd, first select any point a different from
b, then extend ab by cd. Hence the restriction to (A4-i) costs nothing. By
Lemma 5.1, the restriction to the non-collinear and non-degenerate case of (A7)
is made up for by the inclusion of (A14) and (A15) as axioms. That completes
the proof of the theorem.

6.2. Skolemizing Tarski’s geometry

Since Tarski’s axioms are already in existential form, one can add Skolem
functions to make them quantifier-free. Perhaps the reason why Tarski did not
do so is his desire that there should be just one model of his theory over the
real plane R

2. If one introduces Skolem functions for the intersection points
of two circles, then those Skolem functions can be interpreted quite arbitrarily,
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unless one also adds further axioms to guarantee their continuity, and even
then, one has a problem because those Skolem functions will be meaningless
(have arbitrary values) when the circles do not intersect. Tarski did not have
circle-circle continuity, but the same problem arises with Skolem functions for
inner Pasch, when the hypotheses are not satisfied.

The problem can be seen in a simpler context, when we try to axiomatize
field theory with a function symbol i(x), the official version of x−1. The point
is that 0 has no multiplicative inverse, yet Skolem functions are total, so i(0)
has to denote something. We phrase the axiom as x 6= 0 → x · i(x) = 1, so we
can’t prove 0 · i(0) = 1, which is good, since we can prove 0 · i(0) = 0. In spite
of this difficulty, the theory with Skolem functions is a conservative extension
of the theory without Skolem functions, as one sees (for theories with classical
logic) from the fact that every model of the theory without can be expanded
by suitably interpreting the Skolem function symbols. We return below to the
question of how this works for intuitionistic theories in Lemma 7.4 below.

Papers on axiomatic geometry often use the phrase “constructive theory” to
mean one with enough function symbols to be formulated with quantifier-free
axioms. While this is not sufficient to imply that a theory is “constructive” in the
sense of being in accordance with Bishop’s constructive mathematics (or another
branch of constructive mathematics), it is a desirable feature, in the sense that
a constructive theory should provide terms to describe the objects it can prove
to exist. In finding a constructive version of Tarski’s theories, therefore, we
will wish to produce a version with function symbols corresponding to ruler
and compass constructions. In order to compare the constructive theory with
Tarski’s classical theory, we will first consider a Skolemized version of Tarski’s
theory, with classical logic.

6.3. Skolem functions for classical Tarski

One introduces Skolem functions and reformulates the axioms to be quantifier-
free. But we want these Skolem functions to be meaningful as ruler and compass
constructions. Hence, we do not Skolemize Tarski’s theory as he gave it, but
rather the modified version we called “continuous Tarski geometry.” The axioms
are listed for reference in §4; here we just give a list of the Skolem functions:

• ext(a, b, c, d) is a point x such that for a 6= b, we have T(a, b, x)∧ bx = cd.

• ip(a, p, c, b, q) is the point asserted to exist by inner Pasch (see Fig 2),
provided a, b, and c are not collinear, and B(a, p, c).

• Three constants α, β, and γ for three non-collinear points. (In this paper
we consider only plane geometry, for simplicity.)

• center(a, b, c) is a point equidistant from a, b, and c, provided a, b, and c
are not collinear.

• iℓc1(a, b, c, d) and iℓc2(a, b, c, d) for the two intersection points of Line (a, b)
and Circle (c, d), the circle with center c passing through d.
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The function center is needed to remove the existential quantifier in Szmielew’s
parallel axiom (A102), which says that if a, b, and c are not collinear, there exists
a circle through a, b, and c. For the version (A10) of the parallel axiom used
in [25], we would need two different Skolem functions. The points asserted to
exist by that version are not unique and do not correspond to any natural ruler
and compass construction, which is a reason to prefer triangle circumscription
as the parallel axiom.

The question arises, what do we do about “undefined terms”, e.g., iℓc1(a, b, c, d)
when the line and circle in question do not actually meet? One approach is to
modify the logic, using the “logic of partial terms”, introducing a new atomic
statement t ↓ (read “t is defined”) for each term t. In Tarski’s geometry as
described here, that is not necessary, since we can explicitly give the conditions
for each term to be defined. In that way, t ↓ can be regarded as an abbreviation
at the meta-level, rather than an official formula. We write the formula as (t ↓)◦
to avoid confusion and for consistency of notation with another section below.

Definition 6.2. When the arguments to the Skolem functions are variables or
constants, we have

(ext(a, b, c, d) ↓)◦ := a 6= b

(ip(a, p, c, b, q) ↓)◦ := B(a, p, c) ∧T(b, q, c) ∧ ¬Col(a, b, c)
(center(a, b, c) ↓)◦ := ¬Col(a, b, c)

If the arguments a, b, c, d are not variables or constants, then we need to add
(recursively) the formulas expressing their definedness on the right.

In addition to the obvious “Skolem axioms” involving these function symbols,
we need additional axioms to ensure that the two intersection points of a line
and circle are distinguished from each other (except when the intersection is of a
circle and a tangent line), and that the intersection points depend continuously
on the (points determining the) lines and circles.

We discuss the two points of intersection of Line (a, b) and Circle (c, d), which
are denoted by iℓc1(a, b, c, d) and iℓc2(a, b, c, d). We want an axiom asserting
that these two points occur on Line (a, b) in the same order as a and b do; that
axiom serves to distinguish the two points and ensure that they depend contin-
uously on a, b, c, and d. To that end we need to define SameOrder(a, b, c, d),
assuming a 6= b but allowing c = d. This can be done as follows:

SameOrder(a, b, c, d) := (T(c, a, b) → ¬B(d, c, a))

∧ (T(a, c, b) → ¬B(d, c, b))

∧ (T(a, b, c) → T(a, c, d))

The axiom in question is then

SameOrder(a, b, iℓc1(a, b, c, d), iℓc2(a, b, c, d)).
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6.4. Continuity of the Skolem functions

We will investigate what additional axioms are necessary to guarantee that
the Skolem functions are uniquely defined and continuous. Unless we are using
the logic of partial terms, technically Skolem functions are total, in which case
we cannot avoid some arbitrariness in their values, but when their “definedness
conditions” given above are satisfied, we expect them to be uniquely defined
and continuous. This will be important for metatheorems about the continuous
dependence on parameters of things proved constructively to exist; but we think
it is also of interest even to the classical geometer.

Evidently for this purpose we should use the version of the axioms that has
been sanitized of degenerate cases. Thus, ext only Skolemizes axiom (A4-i), for
extending non-degenerate segments, and ip only Skolemizes axiom (A7-i) rather
than A7. These Skolem functions will then be uniquely defined (and provably
so).

Continuity of a term t(x), where x can be several variables x1, . . . , xn, can
be defined in geometry: it means that for every circle C with t(x) as center,
where C is given by t(x) and a point p on C, there exist circles Ki about xi
such that if zi is inside Ki, for i = 1, . . . , n, then t(z) is inside C.

Lemma 6.3. The terms iℓc1(a, b, c, d) and iℓc2(a, b, c, d) are provably continu-
ous in a, b, c, and d (when their definedness conditions hold).

Proof. Once we have defined multiplication and addition, this proof can be
carried out within geometry, using ordinary algebraic calculations. It is very
much easier to believe that these (omitted) proofs can be carried out, than it
is to actually get a theorem-prover or proof-checker to do so. See [4] for a full
discussion of the issues involved.

Theorem 6.4 (Continuity of inner Pasch). Tarski’s geometry, using axioms
(A4-i) and (A7-i), proves the continuity of ip(a, p, c, b, q) as a function of its five
parameters, when the hypotheses of inner Pasch are satisfied.

Remark. If we use axiom (A7), without the modifications in (A7-i), then
ip(a, p, c, b, q) is not continuous as (p, q) approaches (a, b), as discussed above.

Proof. This also can be carried out by introducing coordinates and making
ordinary algebraic computations within Tarski geometry.

6.5. Continuity and the triangle circumscription principle

Above we have given the triangle circumscription principle with the hypoth-
esis that a, b, and c are non-collinear (and hence distinct) points. What happens
when that requirement is relaxed? If a and b are allowed to approach each other
without restriction on the direction of approach, then center(a, b, c) does not
depend continuously on its parameters. But if a and b are restricted to lie on a
fixed line L (as is the case when using triangle circumscription to define multi-
plication as Hilbert did), then as a approaches b (both remaining away from c),
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the circle through a, b, and c nicely approaches the circle through a and c that is
tangent to L at a. The strong triangle circumscription principle says that there
is a term C(a, b, c, p, q) such that when a and b lie on L = Line (p, q) and c does
not lie on L, then e = C(a, b, p, q) is equidistant from a, b, and c, and moreover,
if a = b then ea is perpendicular to L at a (i.e., the circle is tangent to L at
a). In [5], it is shown how to construct the term C, using segment extensions
and the uniform perpendicular; so this construction can be carried out in Tarski
geometry with Skolem functions.

7. A constructive version of Tarski’s theory

Finally we are ready to move from classical to intuitionistic logic. Our
plan is to give two intuitionistic versions of Tarski’s theory, one with function
symbols as in the Skolemized version above, and one with existential axioms as
in Tarski’s original theory. The underlying logic will be intuitionistic predicate
logic. We first give the specifically intuitionistic parts of our theory, which are
very few in number. We do not adopt decidable equality (a = b ∨ a 6= b), nor
even the substitute concept of “apartness” introduced by Brouwer and Heyting
(and discussed below), primarily because we aim to develop a system in which
definable terms (constructions) denote continuous functions, but also because
we wish to keep our system closely related to Euclid’s geometry, which contains
nothing like apartness.

7.1. Introduction to constructive geometry

Here we discuss some issues particular to geometry with intuitionistic logic.
The main point is that we must avoid case distinctions in existence proofs. What
one has to avoid in constructive geometry is not proofs of equality or inequality
by contradiction, but rather constructions (existence proofs) that make a case
distinction. For example, classically we have two different constructions of a
perpendicular through point p to line L, one for when p is not on L, and another
for when p is on L. Pushing a double negation through an implication, we only
get not-not a perpendicular exists, which is not enough. To constructivize the
theorem, we have to give a uniform construction of the perpendicular, which
works without a case distinction. (Two different such constructions are given in
this paper, one using line-circle continuity, but not the parallel axiom, and one
using the parallel axiom, but not line-circle.)

In particular, in order to show that the models of geometry are planes over
Euclidean fields, we need to define addition and multiplication by just such uni-
form constructions, without case distinctions about the sign of the arguments.
The classical definitions due to Descartes and Hilbert do depend on such case
distinctions; in [5] we have given uniform definitions; here we check that their
properties can be proved in intuitionistic Tarski geometry. To actually carry out
the complete development directly would be a project of about the length and
scope of Szmielew’s comparable development of classical geometry from Tarski’s
axioms, in Part I of [25]. Therefore it is important that the double-negation in-
terpretation can be made to carry the load.
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We mention here two principles which are not accepted by all constructivists,
at least in the context of real analysis. Here x < y refers to points on a fixed
line L, and can be defined in terms of betweenness.

¬¬x > 0 → x > 0 (Markov’s principle)
x 6= 0 → x < 0 ∨ x > 0 (two-sides)

We accept the former, but not the latter. Markov’s principle follows from the
stability of betweenness and is a fundamental principle of constructive geometry.
It allows us to avoid distinguishing more than one sense of inequality between
points. Geometry without it would be much more complicated.

The principle “two-sides” (which we do not accept) is closely related to “a
point not on a given line is on one side or the other of the line”. (Here the
“line” could be the y-axis, i.e., a line perpendicular to L at the point 0.) This
principle is not needed in the formalization of Euclid, or the development of the
geometrical theory of arithmetic, and as we will show, it is not a theorem of
intuitionistic Tarski geometry.

One might consider adopting two-sides as an axiom, on grounds similar to
those sometimes used to justify Markov’s principle or apartness, namely that if
we “compute x to sufficient accuracy we will see what sign it has.” That justifi-
cation applies only to the model of computable reals, not to various more general
intuitionistic models of sequences generated by free choices of approximations
to points. Brouwer argued against this principle in one of his later papers [8]
on those grounds; and our development of constructive geometry shows that
it is not needed for the usual theorems, including the geometric definitions of
addition and multiplication. In our opinion, not only is it unnecessary, it is also
constructively undesirable, as the choice of which disjunct holds cannot depend
continuously on x, so anyone claiming its validity must make some assump-
tions about how points are “given”, e.g. by a computable sequence of rational
approximations; we do not want to make such assumptions.

On the other hand, the following principle has been accepted by all con-
structivists in the past who considered geometry:

a < b → x < b ∨ a < x (apartness)

It turns out that apartness is completely unnecessary for the formalization
of Euclid, and is not a theorem of intuitionistic Tarski geometry. The desire
to use apartness probably arose from an unwillingness to accept the trichotomy
law of order, and to find some replacement for it. In our work, the law of
trichotomy of order is replaced by the stability of equality and betweenness. If
we want to formalize one of Euclid’s proofs where two points are proved equal by
contradiction (consider III.4 for a specific example), the proof in Euclid shows
¬a 6= b; in other words ¬¬a = b. What we need to formalize such proofs is the
principle

¬a 6= b → a = b

or, otherwise expressed, ¬¬a = b → a = b. This principle, already mentioned
in the introduction, is called the “stability of equality.” The trichotomy law can
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also be double negated, each case but one shown contradictory, and the final dou-
ble negation removed by the stability of betweenness, ¬¬B(a, b, c) → B(a, b, c).
That is the fundamental reason why apartness is not needed in constructive ge-
ometry.

7.2. Stability

The word “stable” is applied to a predicate Q if ¬¬Q → Q. Our intuition-
istic versions of Tarski geometry will all have axioms of stability for the basic
predicates. That is, we include the axioms

¬a 6= b → a = b

¬¬B(a, b, c) → B(a, b, c)

¬¬ab = cd → ab = cd

In this section we justify accepting these axioms. Our intuition is that there is
nothing asserting existence in the meaning of equality, congruence, or between-
ness; hence assertions of equality, congruence, or betweenness can be construc-
tively proved by contradiction. There are many examples in Euclid13 where
Euclid argues that two points, differently constructed, must coincide; such ex-
amples use the stability of equality. Similarly, if point x lies on Line (a, b), we
may wish to argue by cases as to its position on the line relative to a and b.
We double-negate the disjunction of the five possible positions, argue each case
independently, and arrive at the double negation of the desired conclusion. As
long as what we are proving is a betweenness, congruence, or equality, stability
allows us to remove the double negation and reach the desired conclusion.

We explain this point with more detail, for those inexperienced with intu-
itionistic reasoning: Suppose P → Q, and R → Q. Then (P ∨ R) → Q
(both classically and intuitionistically). Taking R to be ¬P , if P → Q and
¬P → Q, then P ∨ ¬P → Q. So, classically, Q holds. But intuitionistically,
we may not be able to prove that the cases P and ¬P are exhaustive; for ex-
ample we cannot assert in general that point p is on line L or it is not. But
intuitionistically, we still have ¬¬ (P ∨¬P ) → ¬¬Q, since if ¬Q then ¬P and
¬¬P , which is contradictory. Now if Q is stable we can still conclude Q, since
¬¬(P ∨ ¬P ) is intuitionistically valid.

What we are not allowed to do, constructively, is argue by cases for an exis-
tential conclusion, using a different construction for each case. (In the previous
paragraph, if Q begins with ∃, then Q will not be stable.) This observation
makes it apparent why the constructivization of geometry hinges on the suc-
cessful discovery of uniform constructions, continuous in parameters.

As we mentioned above, angles can be defined in Tarski’s theory, and one
can show that the equality and ordering of angles is stable. That is,

¬¬α < β → α < β

13Just to mention one, Euclid III.4
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for angles α and β. Thus, when Euclid wants to prove α = β, and says, if not,
then one of them is greater; let α > β, and so on, the reasoning is constructive,
because we have

¬¬(α < β ∨ α = β ∨ β < α)

and if α < β and β < α lead to contradictions, then ¬¬α = β, whence by
stability, α = β. Similarly if what is to be proved is an inequality of angles.

Julien Narboux pointed out that the stability of equality can be derived from
the stability of congruence:

Lemma 7.1. With the aid of axioms A1 and A3, stability of congruence implies
stability of equality.

Proof. Suppose ¬a 6= b. We want to prove a = b. By A3, it suffices to prove
ab = aa. By the stability of congruence, we may prove this by contradiction.
Suppose, for proof by contradiction, that ab 6= aa. We claim a 6= b. To prove
it, suppose a = b. Then from ab 6= aa we obtain ab 6= ab, contradicting A1.
Therefore a 6= b. But that contradicts the hypothesis ¬a 6= b from the first line
of the proof. That completes the proof of the lemma.

We could therefore drop stability of equality as an axiom, but we retain
it anyway, because of its fundamental character, and to emphasize that it is
perhaps even more fundamental than the facts expressed in A1 and A3.

Stability of incidence. Tarski’s theory has variables for points only, so when
we discuss lines, implicitly each line L is given by two points, L = Line (a, b).
When we say point x lies on line L, that abbreviates

¬¬ (T(x, a, b) ∨T(a, x, b) ∨T(a, b, x)).

Since logically, ¬¬¬P is equivalent to ¬P , the relation x lies on L is stable.
(Four negations is the same as two negations.) We refer to this as the “stability
of incidence.” When the definition of incidence is expanded, this is seen to be
a logical triviality, not even worth of the name “lemma.” But when working
in Tarski’s theories with less than complete formality, we do mention lines and
incidence and justify some proof steps by the “stability of incidence.” In other
words, we are allowed to prove that a point x lies on a line L by contradiction.

7.3. Strict and non-strict betweenness

Should we use strict or non-strict betweenness in constructive geometry?
The answer is, it doesn’t matter much, because of the stability of B. What we
do officially is use strict betweenness B, and regard T as defined by

T(a, b, c) := ¬(a 6= b ∧ b 6= c ∧ ¬B(a, b, c)).

We could also have taken T as primitive and defined B by

B(a, b, c) := T(a, b, c) ∧ a 6= b ∧ b 6= c.
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7.4. Intuitionistic Tarski geometry with existential axioms

The language of this theory takes strict betweenness B(a, b, c) as primitive,
and T(a, b, c) will then be a defined concept, given by Definition 2.1. Some
of the axioms will be “unmodified” from Tarski’s theory, by which we mean
that the only change is to define T in terms of B. The other modifications are
described in detail in §4.2, just before the listing of the modified axioms. Here
we summarize the modifications:

• Modify Axiom A4 (segment extension) so only non-degenerate segments
are extendable.

• Axiom (A6) becomes ¬B(a, b, a).

• Replace inner Pasch (A7) by (A7-i), which requires ¬Col(a, b, c) and re-
places two of the three occurrences of T by B.

• Add (A14-i) and (A15-i), the symmetry and inner transitivity axioms for
betweenness:

B(a, b, c) → B(c, b, a)

B(a, b, d) ∧B(b, c, d) → B(a, b, c)

• Use the triangle circumscription principle as the parallel postulate.

• Add two-point line-circle continuity (instead of segment-circle).

• Use intuitionistic logic only.

• add the stability of equality, betweenness, and congruence.

The resulting theory is called “intuitionistic Tarski geometry”, or “intuition-
istic Tarski geometry with existential axioms.” Another way of describing it is:
restrict continuous Tarski geometry to intuitionistic logic, and add the stability
axioms for equality, betweenness, and equidistance, use the triangle circumscrip-
tion principle for the parallel axiom, and add two-point line-circle continuity.
We use the phrase “intuitionistic Tarski geometry without any continuity” to
refer to the theory obtained by dropping the line-circle continuity axiom.

Theorem 7.2. Intuitionistic Tarski geometry plus classical logic is equivalent
to Tarski geometry (with or without line-circle continuity).

Proof. This follows from Theorem 6.1, Since intuitionistic Tarski geometry is
continuous Tarski geometry with intuitionistic logic and stability axioms, it is
classically equivalent to continuous Tarski geometry. But by Theorem 6.1, that
theory is classically equivalent to Tarski geometry. That completes the proof.
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7.5. Intuitionistic quantifier-free Tarski geometry

We can use the same Skolem functions as for the classical theory, since we
already made the necessary restrictions to the Skolem functions for segment ex-
tension and Pasch’s axioms. For the same reason, the conditions for definedness
of Skolem terms are not changed.

Lemma 7.3. For every term t of intuitionistic quantifier-free Tarski geometry,
the sentence ¬¬(t ↓)◦ → (t ↓)◦ is provable.

Proof. By induction on the complexity of t, using the stability of B, E, and
equality for the base case.

Since the conditions for the definedness of Skolem terms are definable, there
is no logical problem about using (total) Skolem functions in this intuition-
istic theory, without modifying the logic, which is the ordinary intuitionistic
first-order predicate calculus. However, there might be a philosophical prob-
lem, as one might ask, what is the intended interpretation of those total Skolem
symbols? One cannot specify a total (everywhere defined) construction to in-
terpret, for example, the Skolem symbol for inner Pasch. Therefore it is more
philosophically correct to use the “logic of partial terms”, which is explained in
another section below. However, it is possible to consider the Skolem symbols as
mere syntactic tools, which, even if not meaningful, at least cause no unwanted
deductions, according to the following lemma:

Lemma 7.4. [Conservativity of Skolem functions] Suppose intuitionistic Tarski
with Skolem functions proves a theorem φ that does not contain Skolem func-
tions. Then intuitionistic Tarski (with existential quantifiers and no Skolem
functions) also proves φ. In fact, the same is true of any intuitionistic theory
whose axioms before Skolemization have the form P (x) → ∃y Q(x, y), with P
quantifier-free.

Proof. Consider a Skolem symbol with axiom P (x) → Q(x, f(x)), Skolemizing
the axiom P (x) → ∃y Q(x, y). The corresponding lemma for classical theories
needs no restriction on the form of P ; one simply shows that every model of
the theory without Skolem functions can be expanded to a model of the theory
with Skolem functions. The interpretation of the values of a Skolem symbol,
say f(b) are just taken arbitrarily when P (b) is not satisfied. Then one appeals
to the completeness theorem. One can use the Kripke completeness theorem
to make a similar argument for theories with intuitionistic logic; but in general
one cannot define f(b) at a nodeM of a Kripke model where P (b) fails, because
P (b) might hold later on, and worse, there might be nodesM1 andM2 aboveM
at which different values of y are required, so there might be no way to define
f(b) at M . That cannot happen, however, if P is quantifier-free, since then, if
P (b) does not hold at M , it also doesn’t hold at any node aboveM . Hence if P
is quantifier free, we can complete the proof, using Kripke completeness instead
of Gödel completeness. (For an introduction to Kripke models and a proof of
the completeness theorem, see [32], Part V, pp. 324ff.)
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8. Perpendiculars, midpoints and circles

We have included two-point line-circle continuity in our axiom systems for
ruler and compass geometry, since this corresponds to the physical use of ruler
and compass. Tarski, on the other hand, had segment-circle continuity. In this
section, we will show how to construct perpendiculars and midpoints, using two-
point line-circle continuity. By definition, ab is perpendicular to bc if a 6= b and
abc is a right angle, which means that if da = ac and B(d, a, c) then ad = ac.
We sometimes write this as ab ⊥ bc. More generally, two lines K and L are
perpendicular at b if b lies on both lines, and there are points a and c on K and
L respectively such that ab ⊥ bc. We sometimes write this as K ⊥ L. It can be
shown that K ⊥ L if and only if L ⊥ K.

We will deal with “dropped perpendiculars” (perpendiculars from a point p
to a line L, assuming p is not on L), and also with “erected perpendiculars”
(perpendiculars to a line L at a point p on L). Our results are of equal interest
for classical and constructive geometry. As in [25], we abstain from the use of
the dimension axioms or the parallel axiom (except in one subsection, where we
mention our use of the parallel axiom explicitly); although these restrictions are
not stated in the lemmas they are adhered to in the proofs.

A fundamental fact about perpendiculars is the uniqueness of the dropped
perpendicular:

Lemma 8.1. Suppose p does not lie on line L, but a and b do lie on L, and
both pa and pb are perpendicular to L. Then a = b.

Proof. This is Satz 8.7 of [25]; the proof offered there is completely constructive,
but it does appeal to some earlier theorems. One can either check these proofs
directly, or appeal to the double-negation interpretation (Theorem 12.2 below).

We need to verify that the midpoint of a segment can be constructed by a
term in intuitionistic Tarski geometry with Skolem functions. If we were willing
to use the intersection points of circles, the problem might seem simple: we
could use the two circles drawn in Euclid’s Proposition I.1, and connect the two
intersection points. (This is not Euclid’s construction of midpoints, but still it
is commonly used.) This matter is not as simple as it first appears, as we shall
now explain.

We try to find the midpoint of segment pq. Let K be the circle with center
p passing through q, and let C be the circle with center q passing through p,
and let d and e be the two intersection points of these circles. Now the trick
would be to prove that de meets pq in a point f ; if that could be done, then it
is easy to prove f is the desired midpoint, by the congruence of triangles pef
and qef . But it seems at first that the full Pasch axiom is required to prove the
existence of f . True, full Pasch follows from inner Pasch and the other axioms,
at least classically, but we would have to verify that constructively using only
the axioms of intuitionistic Tarski, which does not seem trivial. In particular,
we will need the existence of midpoints of segments to do that! (Moreover, the
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dimension axiom would need to be used; without it, circle-circle continuity is
sphere-sphere continuity and not every two intersection points d and e of two
spheres will lie in the same plane as pq. Full Pasch fails in three dimensions,
while inner and outer Pasch hold.)

In fact, the existence of midpoints has been the subject of much research, and
it has been shown that one does not need circles and continuity at all! Gupta
[13] (in Chapter 3) showed that inner Pasch suffices to construct midpoints, i.e.,
classical Tarski proves the existence of midpoints. Piesyk (who was a student
of Szmielew) proved it [23], using outer Pasch instead of inner Pasch. Later
Rigby [24] reduced the assumptions further. At the end of this section, we
will give Gupta’s construction, but not his proof. Since the proof just proves
that the constructed point m satisfies ma = mb, by the stability of equality
(and the double-negation interpretation, technically, which we shall come to in
§12.1) we know that Gupta’s classical proof [13, 25] can be made constructive.
The simpler construction using line-circle continuity is adequate for most of our
purposes.

8.1. The base of an isosceles triangle has a midpoint

Euclid’s own midpoint construction is to construct an isosceles triangle on
pq and then bisect the vertex angle. One of Gupta’s simple lemmas enables
us to justify the second part of this Euclidean midpoint construction, and we
present that lemma next.

Lemma 8.2. [Gupta] Intuitionistic Tarski geometry with Skolem functions, and
without continuity, proves that for some term m(x, y, z), if y 6= z and x is
equidistant from y and z, with x, y, and z not collinear, then m(x, y, z) is the
midpoint of yz.

Figure 8: To construct the midpoint w of yz, given x with xz = xy, using two applications of
inner Pasch.
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Proof. See page 56 of [13]. But the proof is so simple and beautiful that we give
it here. Let α and β be two of the three distinct points guaranteed by Axiom
A8. Let

t = ext(x, y, α, β)

u = ext(x, z, α, β)
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v = ip(u, z, x, t, y)

w = ip(x, y, t, z, v)

Then w is the desired midpoint. The reader can easily check this; see Fig. 8 for
illustration. Thus we can define

m(x, y, z) = ip(x, y, t, z, v)

= ip(x, y, t, z, ip(u, z, x, t, y))

= ip(x, y, ext(x, y, α, β), z, ip(ext(x, z, α, β), z, x, ext(x, y, α, β), y))

That completes the proof.

Since circle-circle continuity enables us to construct an equilateral triangle
on any segment (via Euclid I.1), we have justified the existence of midpoints
and perpendiculars if circle-circle continuity is used. But that is insufficient for
our purposes, since intuitionistic Tarski geometry does not contain circle-circle
continuity as an axiom. (We show below that it is a theorem, but to prove it,
we need midpoints and perpendiculars, so they must be obtained some other
way.)

8.2. A lemma of interest only constructively

In erecting a perpendicular to line L at point a, we need to make use of a
point not on L (which occurs as a parameter in the construction). In fact, we
need a point c not on L such that ca is not perpendicular to L. Classically,
we can make the case distinction whether ca is perpendicular to L, and if it is,
there is “nothing to be proved”. But constructively, this case distinction is not
allowed, so we must first construct such a point c. Our first lemma does that.

Lemma 8.3. Let point a lie on line L, and point s not lie on line L. Then
there is a point c not on L such that ca is not perpendicular to L, and a point
b on L such that B(c, s, b).

Remark. Classically, this lemma is trivial, but constructively, there is something
to prove.

Proof. Let b be a point on L such that ab = as. (Such a point can be constructed
using only the segment extension axiom.) Then by Lemma 8.2, sb has a midpoint
c, and ac ⊥ bc. We claim that ac cannot be perpendicular to L; for it were,
then triangle cab would have two right angles, one at c and one at a. That
contradicts Lemma 8.1. That completes the proof.

8.3. Erected perpendiculars from triangle circumscription

Following Szmielew, we have taken as our form of the parallel axiom, the
axiom that given any three non-collinear points, there is another point equidis-
tant from all three. (That point is then the center of a circumscribed circle
containing the three given points.) An immediate corollary is the existence of
midpoints and perpendiculars.
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Lemma 8.4. Every segment has a midpoint and a perpendicular bisector. If p
is a point not on line L, then there is a point x on L with px ⊥ L.

Proof. Let ab be given with a 6= b. By Lemma 8.3, there is a point c such that
a, b, and c are not collinear. By triangle circumscription, there exists a point e
such that ea = eb = ec. Then eab is an isosceles triangle. By Lemma 8.2, ab has
a midpoint m. Since ea = eb, we have em ⊥ ab, by definition of perpendicular.
That completes the proof.

While this is formally pleasing, there is something unsatisfactory here, be-
cause we intend that the axioms of our theories should correspond to ruler and
compass constructions, and in order to construct the point required by the tri-
angle circumscription axiom, we need to construct the perpendicular bisectors of
ab and ac, and find the point of intersection (whose existence is the main point
of the axiom). So from the point of view of ruler and compass constructions,
our argument has been circular. Therefore the matter of perpendiculars cannot
be left here. We must consider how to construct them with ruler and compass.

8.4. Dropped perpendiculars from line-circle continuity

In this section we discuss the following method (from Euclid I.12) of dropping
a perpendicular from point p to line L: draw a large enough circle C with center
p that some point of L is strictly inside C. Then apply two-point line-circle
continuity to get two points u and v where C meets L. Then puv is an isosceles
triangle, so it has a midpoint and perpendicular bisector. This argument is
straightforwardly formalized in intuitionistic Tarski geometry:

Theorem 8.5 (Dropped perpendiculars from line-circle). One can drop
a perpendicular to line L from a point not on L by a ruler and compass construc-
tion (essentially the construction of Euclid I.12), and prove the construction
correct in intuitionistic Tarski geometry.

Proof. Let p be a point, and let L be the line through two distinct points a and
b. Suppose p is not on L. Let r = ext(p, a, a, b), so that pr is longer than pa.
Let C be the circle with center p passing through r. Then a is strictly inside C.
By line-circle continuity, there are two points x and y on L where L meets C,
i.e., px = py. Since by hypothesis p is not on L, the segment xy is the base of
an isosceles triangle, so by Lemma 8.2 it has a midpoint m. Then pm ⊥ L, by
definition of perpendicular. That completes the proof.

We note that the analogous lemmas with one-point line-circle or segment-
circle in place of two-point line-circle will not be proved so easily. In the case
of segment-circle, we would need to construct points outside C in order to
apply the segment-circle axiom; but to show those points are indeed outside
C, we would need the triangle inequality, which requires perpendiculars for its
proof. In the case of one-point line-circle, we would need to construct the other
intersection point, and the only apparent way to do that is to first have the
dropped perpendicular we are trying to construct.
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Of course, these difficulties are resolved if we are willing to use the 1965
discoveries of Gupta, who showed how to construct perpendiculars without any
use of circles. But that is beside the point here, since we are considering whether
our choice of axioms corresponds well to Euclid or not. Also, the use of the
triangle circumscription axiom is no help, since although we could prove the
existence (if not the construction) of erected perpendiculars, we cannot do the
same for dropped perpendiculars.

8.5. Reflection in a line is an isometry

Since we can drop perpendiculars, we can define reflection in a line (for
points not on the line). We need to know that reflection preserves betweenness
and equidistance. That reflection preserves equidistance (i.e., is an isometry),
is Satz 10.10 in [25], but the proof uses nothing but things proved before the
construction of perpendiculars and midpoints late in Chapter 8. Strangely, it
is not explicitly stated in [25] that reflection in a line preserves betweenness, so
we begin by proving that.

Lemma 8.6. Reflection in a line preserves betweenness.

Proof. Suppose B(a, b, c), and let p, q, r be the reflections of a, b, c in line L.
Since reflection is an isometry, we have pq = ab and qr = bc and pr = ac. We
wish to prove B(p, q, r). By the stability of betweenness, we may use proof by
contradiction, so assume ¬B(p, q, r). Since pq = ab < ac = pr, we do not have
B(p, r, q). Similarly we do not have B(q, p, r). Since a, b, c are distinct points,
the reflections p, q, r are also distinct. Therefore q is not on Line(p, r) (see the
discussion of stability of incidence after Lemma 7.1).

Therefore pqr is a triangle in which the sum of two sides pq and qr equals
the third side pr. By Lemma 8.5, we can drop a perpendicular from q to pr.
Let t be the foot of that perpendicular. Each of the two right triangles qtp and
qtr has its base less than its hypotenuse, so pr < pq + qr, contradiction. (We
did not assume B(p, t, r) in this argument.) That completes the proof of the
lemma.

8.6. Erected perpendiculars from dropped perpendiculars

Next we prove the existence of erected perpendiculars, assuming only that
we can drop perpendiculars, and without using any form of the parallel axiom.
Gupta’s proof, as presented in Satz 8.21 of [25], accomplished this. It is much
simpler than Gupta’s beautiful circle-free construction of dropped perpendic-
ulars, but still fairly complicated. Gupta uses his Krippenlemma. Below we
give a new proof, avoiding the use of the Krippenlemma, and using only simple
ideas that might have been known to Tarski in 1959. However, we do use both
inner and outer Pasch; but in 1959, Tarski knew that outer Pasch implies inner.
The proof of outer Pasch from inner given by Gupta relies on the existence
of dropped perpendiculars, but is far simpler than Gupta’s circle-free, parallel-
axiom-free construction of dropped perpendiculars. Therefore, the work in this
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section gives us simple constructions in intuitionistic Tarski of erected perpen-
diculars, assuming either the parallel axiom or line-circle. In other words, the
Skolem terms for the constructions below will involve either center or iℓc1 and
iℓc2 (the symbols for intersections of lines and circles), depending on how we
construct dropped perpendiculars; if we use Gupta’s construction, then we only
need the Skolem symbol ip for inner Pasch.

The proof we are about to give requires two lemmas, which we prove first.

Lemma 8.7 (Interior 5-segment lemma). The 5-segment axiom is valid if
we replace B(a, b, c) and B(A,B,C) by B(a, c, d) and B(A,C,B), respectively.
That is, in Fig. 9, if the corresponding solid segments are congruent, so are the
dashed segments.

Figure 9: The interior 5-segment lemma. cd = CD.
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Proof. This is Satz 4.2 in [25]. The proof is an immediate consequence of axioms
(A4) and (A6); we do not repeat it.

Theorem 8.8 (Erected perpendiculars). In intuitionistic Tarski geometry
with line-circle continuity but without circle-circle continuity and without the
parallel axiom, one can prove the following: Let L be a line; let a be a point on
L and let s be a point not on L. Then there exists a point p on the opposite side
of L from s such that pa ⊥ L.

The point r on L such that B(p, r, s), as well as the point p, are given by
terms of intuitionistic Tarski geometry with Skolem functions.

Remarks. No dimension axiom is used, and no parallel axiom. The point s and
line L determine a plane in which p lies. We need s constructively also because
we do not (yet) know how, without circle-circle continuity, to construct a point
not on L by a uniform construction. We need pa longer than the perpendicular
from s to L to avoid a case distinction in the construction of midpoints in the
next lemma.

Proof. By Lemma 8.3, we can find a point c not on L, and a point b 6= a on L,
such that ca is not perpendicular to L, and B(c, s, b).

By Lemma 8.5, let x be a point on L such that cx ⊥ L. Then x 6= a, since
ca is not perpendicular to L. We have c 6= x since c is not on L but x is on
L. Hence we can construct the reflection d of c in x, namely d = ext(c, x, c, x).
Similarly, c 6= a, so we can define e to be the reflection of c in a. Since angle
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dxa is a right angle, da = ca. Since ea = ca, we have da = ea. Then triangle
ade is isosceles, and hence segment de has a midpoint, by Lemma 8.2. Let p be
that midpoint. Let y be the reflection of x in a, and f the reflection of d in a.
Fig. 10 illustrates the situation.

Figure 10: Erecting a perpendicular to L at a, given b, s, and c.
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Since reflection preserves congruence, we have xd = xc = ey, and yf = xd =
xc = ey, and ca = da = fa. Since reflection preserves betweenness, we have
B(e, y, f). (Thus f is the reflection of e in y as well as the reflection of d in
a.) Let q be the reflection of p in a. Since ca = fa, angle aqf is a right angle.
Therefore pc = pf . Now consider the four-point configurations (c, x, d, p) and
(f, y, e, p). Of the five corresponding pairs of segments, four are congruent, so
by the interior 5-segment lemma (Lemma 8.7), px = py. Since xa = ya, angle
pax is a right angle and pa ⊥ L, as desired.

It remains to prove that p is on the other side of L from s. Fig. 11 illustrates
the situation.

Figure 11: p is on the other side of L from s, by constructing first t and then r.
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Segment xa connects two sides of triangle cde, and cp connects the vertex
c to the third side, so by the crossbar theorem (Satz 3.17 of [25], derived with
two applications of inner Pasch), there is a point t on xa (and hence on L) with
T(c, t, p). That is, p is on the other side of L from c. Using B(c, s, b), we can
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apply inner Pasch to the five points ptcbs, yielding a point r such that B(t, r, b)
and B(p, r, s). Since t and b lie on L, that shows that p and s are on opposite
sides of L. That completes the proof.

8.7. Construction of parallels

We take the opportunity to point out that even in neutral geometry (that is,
without any form of the parallel postulate) we can always construct a parallelK
to a given line L through a given point p not on L, by dropping a perpendicular
M to L through p and then erecting K perpendicular to M at p. In the sequel,
when a reference is made to “constructing a parallel to L through p”, this is
what is meant.

Using the uniform perpendicular construction to construct K permits a sim-
ilar “uniform parallel” construction, which, when given L and p, constructs a
line K through p such that if p is not on L, then K is parallel to L. (But K is
constructed anyway, whether or not p is on L; if p is on L, then K coincides with
L.) The uniform parallel construction is important in establishing the proper-
ties of coordinates, and then addition and multiplication, in [5], so the fact that
the uniform parallel can be defined in Tarski geometry permits the construction
of coordinates and arithmetic.

8.8. Midpoints from perpendiculars

Next we intend to construct the midpoint of a non-degenerate segment ab.
This is Satz 8.22 in [25]. That proof consists of a simple construction that
goes back to Hilbert [15] (Theorem 26), and a complicated proof that it really
constructs the midpoint. The proof of the correctness of Hilbert’s construction
from Tarski’s axioms given in [25] is complicated, appealing to Gupta’s “Krip-
penlemma”, whose proof is not easy. Here we give another proof, not relying
on the Krippenlemma. We do need to use the properties of reflection in a line.

Lemma 8.9. Let a 6= b, and suppose ap ⊥ ab and br ⊥ ab, and B(a,m, b) and
B(p,m, r) and br = ap, and p is not on Line(a, b). Then m is the midpoint of
ab, i.e., am = mb.

Proof. By the stability of equality, we may use classical logic to prove am = mb;
hence we may refer to the proof in [25], page 65 (Abb. 31) (which appeals to
the Krippenlemma, whose proof is complicated) without worrying whether it is
constructive. But in the interest of giving a self-contained and simple proof, we
will show how to finish the proof without appealing to the complicated proofs
of Gupta.

Let q and s be the reflections of p and r, respectively, in Line (a, b). Fig. 12
illustrates the construction.
Since ap ⊥ ab and br ⊥ ab we have B(q, a, p) and B(r, b, s). Since reflection in a
line preserves betweenness, and m is its own reflection since B(a,m, b), we have
B(q,m, s). Hencem is the intersection point of the diagonals of the quadrilateral
qpsr. Since reflection in a line is an isometry, we have qr = ps. Since qa = ap =
rb = bs, we have qp = rs. Hence the opposite sides of quadrilateral qpsr are
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Figure 12: Given ap ⊥ ab and br ⊥ ab and br = ap, and ab meets pr at m, then m is the
midpoint of ab.

ba b b

bp

bq

b

m

b r

b s

equal. By Satz 7.29, the diagonals bisect each other. Hence mp = mr and
mq = ms. Now by the inner five-segment lemma (Lemma 8.7), applied to the
configurations qapm and sbrm, we have ma = mb. Then m is the midpoint of
ab. That completes the proof.

Lemma 8.10 (Midpoint existence). In intuitionistic Tarski geometry with
only line-circle continuity, midpoints exist. More precisely, given segment ab
(with a 6= b) and point s not collinear with ab, one can construct the midpoint
m of ab.

Remark. The proof shows how to derive the existence of midpoints from the
existence of (erected) perpendiculars; we have shown above that line-circle con-
tinuity enables us to erect perpendiculars. But we use both inner and outer
Pasch.

Proof. The construction is illustrated in Fig. 13. Let segment ab be given along
with point s not on L = Line (a, b). Erect a perpendicular ap to ab at a (on the
opposite side of L from s). Then erect a perpendicular wb to L at b, with w
on the opposite side of L from p, by Lemma 8.8. Let q = ext(b, w, a, p). Then
B(b, w, q) and ap < qb. Since w is on the opposite side of L from p, there is a
point v on L between w and p. Applying outer Pasch to bwqpv, there exists a
point t with B(a, t, b) and B(p, t, q). Then, construct point r on segment qb so
that rb = ap, which is possible since ap < qb.

Applying inner Pasch to the five-point configuration ptqrb, we find a point
m such that B(a,m, b) and B(p,m, r). By Lemma 8.9, m is the midpoint of ab.
That completes the proof.

Constructions and terms. The above explicit construction corresponds to a
term of intuitionistic Tarski geometry, built up by composing the terms for the
construction steps. Such a term can be written explicitly, and we will explain
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Figure 13: Midpoint from erected perpendiculars; construct t and m by outer and inner Pasch.
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that point now. First, let Perp(a, b, s) and wit(a, b, s) be terms giving the
construction in Lemma 8.8; that is, the first is a point on the perpendicular and
the second is a witness that it is on the other side of Line (a, b). Let op and ip
be Skolem functions corresponding to outer Pasch and inner Pasch. Then the
following script corresponds to the proof above:

midpoint(a,b,s){

p = Perp(a,b,s)

w = Perp(b,a,p)

v = wit(b,a,p)

q = ext(b,w,a,p)

t = op(b,w,q,p,v)

r = ext(ext(w,b,w,b),b,a,p)

m = ip(b,r,q,p,t)

return m

}

Such a script can be converted to a (long) term by composing the right sides of
the equations, eliminating the variables on the left.

From Gupta’s proof of outer Pasch by means of inner Pasch, we can extract
a term built up from ip and ext to substitute for op; and if desired, the terms
Perp and wit, which here involve center or iℓc1 and iℓc2, can be replaced by
longer terms from Gupta’s perpendicular construction (discussed below), built
up from ext and ip only.

Regarding the role of s: Of course since the midpoint is unique, the value
does not depend on the parameter s. Nevertheless we will not know until
Lemma 12.9 below how to get rid of s in the term, as we need a point not
on Line (a, b) to construct a perpendicular to ab. That lemma gives us, in prin-
ciple, the means to replace s by a term in a and b, but that term will involve
center and rely on the parallel postulate for its correctness.
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Corollary 8.11. In intuitionistic Tarski geometry (with two-point line-circle
but without any parallel axiom) we can construct both dropped and erected per-
pendiculars, and midpoints.

Proof. We have justified Euclid I.12 for dropped perpendiculars, and shown
how to construct erected perpendiculars from dropped perpendiculars, and mid-
points from erected perpendiculars. That completes the proof.

That result is pleasing, but it leaves open the question of whether the axiom
system required can be weakened. It is not obvious how to weaken it even
to one-point line-circle or segment-circle continuity; but Gupta showed in 1965
that no continuity whatsoever is required. We discuss his construction in the
next section.

8.9. Gupta’s perpendicular construction

Here we give Gupta’s beautiful construction of a dropped perpendicular. It
can be found in his 1965 thesis [13] and again in [25], p. 61.

Figure 14: Gupta’s construction of a dropped perpendicular from c to ab.
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The initial data are two distinct points a and b, and a third point c not
collinear with ab. The construction goes as follows: Extend ba by ac to produce
point y. Then acy is an isosceles triangle, so by Lemma 8.2, we can construct
its midpoint p, and apc is a right angle. Now extend segment cy by ac to point
q, and extend ay by py to produce point z. Then reflect q in z to produce
q′. Then extend q′y by yc to produce point c′. By construction cyc′ is an
isosceles triangle, so its base cc′ has a midpoint x, which is the final result of
the construction. It is not immediately apparent either that x is collinear with
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ab or that cx ⊥ ax, but both can be proved. The proof occupies a couple of
pages, but it uses only (A1)-(A7); in other words, no continuity, no dimension
axioms, no parallel axiom. Is the proof constructive? That point is discussed
in §12.1 below, where it is shown in Corollary 12.5 that at least, Gupta’s proof
can be mechanically converted to a constructive proof.

8.10. Erected perpendiculars from line-circle and the parallel axiom

There is a very simple construction of an erected perpendicular based on
line-circle continuity and the parallel axiom. It has only two ruler and compass
steps, and is therefore surely the shortest possible construction of an erected
perpendicular.14 This construction is illustrated in Fig. 15.

Figure 15: Erecting a perpendicular to L at a, given c. First b and then e are constructed by
line-circle continuity.
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The construction starts with a line L, a point a on L, and a point c not on
L such that ca is not perpendicular to L. Then we draw the circle with center c
through a, and let b be the other point of intersection with L. Then the line bc
meets the circle at a point e, and ea is the desired perpendicular to L (although
we have not proved it here).

The correctness of this construction, i.e., that ea is indeed perpendicular to
L, is equivalent to Euclid III.31, which says an angle inscribed in a semicircle
is a right angle. Euclid’s proof uses I.29, which in turn depends on I.11, which
requires erecting a perpendicular. Since III.31 is certainly not valid in hyperbolic
geometry, we will need to use the parallel postulate in any proof of III.31, and
it seems extremely unlikely that we can prove III.31 without first having proved
the existence of erected perpendiculars. Thus, this construction cannot replace
the ones discussed above in the systematic development of geometry. Still, it is
of interest because it is the shortest possible ruler and compass construction.

14It has three steps if you count drawing the final perpendicular line, but that step constructs
no new points.
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Once we have perpendiculars, several basic theorems follow easily. The fol-
lowing can be proved without using the parallel axiom or any continuity, from
the assumption that dropped perpendiculars exist. Hence, without appealing
to Gupta’s construction, they can be proved in intuitionistic Tarski geometry
(using triangle circumscription).

8.11. Angles and congruence of angles

It is a curiosity that perpendicularity can be extensively studied without
needing to discuss angles in general. But angles are fundamental to Euclid and
Hilbert. Tarski’s method of treating angles as triples of points means that we
need a notion “abc and ABC are the same angle”. To define that notion, we
first define “x lies on Ray(b, a)” by ¬(¬T(b, x, a) ∧¬T(b, a, x)). Then “abc and
ABC are the same angle” means that the same points lie on Ray(b, a) as on
Ray(B,A) and the same points lie on Ray(b, c) as on Ray(B,C). Then there
are several ways of defining congruence of angles, all equivalent. Specifically,
two angles abc and ABC are congruent if by adjusting a and c on the same rays
we can make ab = AB and bc = BC and ac = AC; or equivalently, if the points
on all four rays can be so adjusted; or equivalently, if any adjustment of a and
b can be matched by an adjustment of A and B.

To avoid needing a quantifier, Tarski proceeds as follows: first extend ba by
BA and bc by BC. Then extend BA by ba and BC by bc. Now we have two
angles in the “same angle” relation to the original angles, whose corresponding
sides are congruent segments. Hence it suffices to define congruence for angles
abc and ABC with ab = AB and bc = BC. That definition is just ac = AC.
See [25], Chapter 11, for a formal development of the basic properties of angles
(which we do not use here).

The definition of angle ordering is given in [25], Definition 11.27, and the
well-definedness depends on an argument by cases using inner and outer Pasch.
It would appear on the face of the matter that one needs a more general version
of Pasch than inner and outer Pasch. However, that is not actually the case:
as soon as we have both inner and outer Pasch, we can derive any and every
conceivable version of Pasch. For example, to constructivize the theory of angle
congruence we need a version that combines inner and outer Pasch, in the
following sense.

Theorem 8.12 (Continuous Pasch). Using inner and outer Pasch, we can
derive the following: Suppose c 6= a, and suppose p is on the ray from a through
c (but we assume nothing about the order of p and c on that ray). Suppose that
b is not on Line(a, d) and B(c, q, b). Then bp meets the ray from a through q in
a point x such that B(b, x, p), and if B(a, p, c) then B(a, x, q), and if B(a, c, p)
then B(a, q, x).

Proof. Classically, we can simply argue by cases: if B(a, p, c), x exists by inner
Pasch, and if B(a, c, p), then x exists by outer Pasch. Constructively, this case
distinction is illegal. Instead we proceed as follows. First construct point d
such that B(a, p, d), for example by extending the non-null segment ac by ap
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Figure 16: Continuous Pasch. Point x exists regardless of which side of c point p is on.
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to get d. Then by outer Pasch, there exists a point r such that B(b, r, d) and
B(a, q, r). Then by inner Pasch there exists point x such that B(a, x, r) and
B(b, x, p). That is the desired point x. The additional properties of x follow
from inner and outer Pasch as in the classical argument. That completes the
proof of the theorem.

The SAS (side-angle-side) criterion for angle congruence is a postulate in
Hilbert, and Euclid’s failed “proof” in I.4 shows that he, too, should have taken
it as a postulate. The five-segment axiom in Tarski is in essence a version
of SAS, as discussed above where the axiom is introduced. But it should be
noted that the five-segment axiom does not immediately cover the case of two
right triangles with corresponding legs congruent. That requires in addition the
theorem that all right angles are congruent. This theorem is also needed to
prove the uniqueness of the perpendicular to a line at a given point.

Euclid took the congruence of all right angles as his Postulate 4. Hilbert
([15], p. 20) remarks that this was “unjustified”, and says that the proof of it
goes back to Proclus.

Lemma 8.13. All right angles are congruent. In other words, if abc and ABC
are right angles with ab = AB and bc = BC then ac = AC.

Proof. This is Satz 10.12 in [25]. However, the proof appeals only to the defini-
tion of angle congruence and simple theorems, such as the fact that reflections
in points and in lines are isometries.

Lemma 8.14. (i) An exterior angle of a triangle is greater than either of the
opposite interior angles.

(ii) The leg of a right triangle is less than the hypotenuse.

(iii) If a, b, and c are not collinear, the triangle inequality holds: ac < ab+bc.

(iv) Whether or not a, b, and c are collinear, we have ac ≤ ab+ bc.
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Proof. (i) is Satz 11.41 of [25]; (ii) is a special case of Satz 11.53. Neither of
these proofs uses anything but elementary betweenness and congruence, and the
existence of perpendiculars.

Turning to the triangle inequality, let the non-degenerate triangle abc be
given. Drop a perpendicular cx from c to Line (a, b). Since segment inequality
is stable, we are allowed to argue by cases on the position of x relative to a and b.
If T(a, x, b) then ab = ax+xb < ac+ bc by (ii). If B(a, b, x), then ab < ax < ac;
and similarly if B(x, a, b), then ab < bx < bc. Hence constructively not not
ab < ac+ bc; so ab < ac+ bc. That proves (iii).

Turning to (iv), we use the uniform perpendicular construction to get a per-
pendicular to Line(a, b) through c. Let x be the point where this perpendicular
meets Line (a, b), and proceed as for (iii), but with ≤ in place of <. That
completes the proof of the lemma.

The following lemma is presented, not for its intrinsic interest, but because
it is needed in what follows. We needed the exterior angle theorem to prove it.

Lemma 8.15. Let a, b, c, and d be distinct points, with ab ⊥ ad and cd ⊥ ad.
If bc meets Line(a, d), then the intersection point m is between a and d.

Proof. By the stability of betweenness, we may prove B(a,m, d) by contra-
diction, so suppose ¬B(a,m, b). Without loss of generality, we may assume
B(m, a, d). Then angle amb is an exterior angle of triangle mcd. This is less
than a right angle, since angle mab is a right angle, and the angles of a triangle
are less than two right angles. By the exterior angle theorem (Euclid I.16, or
Lemma 8.14 above, or Satz 11.41 in [25]), angle amb is greater than the interior
angle mdc, which is a right angle; contradiction. That completes the proof.

9. Other forms of the parallel axiom

Within neutral geometry (that is, geometry without any form of the parallel
postulate), we can consider the logical relations between various forms of the
parallel axiom. In [5], we considered the Playfair axiom, Euclid 5, and the strong
parallel axiom, which are all classically equivalent to Euclid 5. Constructively,
Playfair is weaker, as shown in [5]; a formal independence result confirms the
intuition that it should be weaker because it makes no existential assertion. The
other versions of the parallel postulate, which do make existential assertions,
each turn out to be fairly easy to prove equivalent to either Euclid 5 or the
strong parallel postulate. In [5], we prove that Euclid 5 and the strong parallel
postulate are actually constructively equivalent, although the proof requires first
developing the geometrical definitions of arithmetic using only Euclid 5.

In [5], we gave the proof that the triangle circumscription principle is equiv-
alent to the strong parallel axiom; below we prove that Tarski’s version of the
parallel postulate taken as axiom (A10) in [25], is equivalent to Euclid 5. Lem-
mas in this section are proved in neutral geometry, i.e., without any form of
the parallel postulate. It follows that all the known versions of the parallel
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postulate (that are equivalent in classical Tarski geometry with line-circle con-
tinuity) that make an existential assertion are also equivalent in constructive
Tarski geometry, although some of the proofs are much longer.

Lemma 9.1. Playfair’s axiom implies the alternate interior angle theorem, that
any line traversing a pair of parallel lines makes alternate interior angles equal.

Proof. Since ordering of angles is stable, we can argue by contradiction. Hence
the usual classical proof of the theorem applies.

9.1. Euclid 5 formulated in Tarski’s language

Here we give a formulation of Euclid’s parallel postulate, expressed in Tarski’s
points-only language. Euclid’s version mentions angles, and the concept of “cor-
responding interior angles” made by a transversal. The following is a points-only
version of Euclid 5. See Fig. 17.

Figure 17: Euclid 5. Transversal pq of lines M and L makes corresponding interior angles less
than two right angles, as witnessed by a. The shaded triangles are assumed congruent. Then
M meets L as indicated by the open circle.
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B(q, a, r) ∧B(p, t, q) ∧B(s, t, r) ∧ pr = qs ∧ pt = qt ∧ rt = st (Euclid 5)
∧¬Col(s, q, p) → ∃xB(p, a, x) ∧B(s, q, x)

9.2. Tarski’s parallel axiom

As mentioned above, Tarski in [30] and later [25] took a different form of
the parallel postulate, illustrated in Fig. 18.15 The following axiom is similar
to Tarski’s axiom, and we give it his name, but his axiom used non-strict be-
tweenness and did not include the hypothesis that a, b, and c are not collinear.
It is intended to say that if t is in the interior of angle bac, then there is a line
through t that meets both sides of the angle. To express this using variables for
points only, Tarski used the point d to witness that t is in the interior of the
angle. See Fig. 18.

15Technically, according to [31], the versions of the parallel axiom taken in the two cited
references differed in the order of arguments to the last betweenness statement, but that is of
no consequence.
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Figure 18: Tarski’s parallel axiom
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The degenerate cases are trivial: if a, b, and c are collinear, then we can
(classically, or with more work also constructively) find x and y without any
parallel axiom, and if (say) d = b then we can take x = t and y = c, etc. Hence
the following axiom is classically equivalent in neutral geometry to the one used
by Tarski:

B(a, d, t) ∧B(b, d, c) ∧ a 6= d (Tarski parallel axiom)
∧ (¬B(a, b, c) ∧ ¬B(b, c, a) ∧ ¬B(c, a, b) ∧ a 6= c)

→ ∃x∃y (B(a, b, x) ∧B(a, c, y) ∧B(x, t, y))

Something like this axiom was first considered by Legendre (see [12], p. 223),
but he required angle bac to be acute, so Legendre’s axiom is not exactly the
same as Tarski’s parallel axiom. The axiom says a bit more than just that
xy meets both sides of the angle, because of the betweenness conditions in the
conclusion; but it would be equivalent to demand just that x and y lie on the
rays forming angle bac, as can be shown using Pasch.

9.3. Euclid 5 implies Tarski’s parallel axiom

Theorem 9.2. Euclid 5 implies Tarski’s parallel axiom in neutral intuitionistic
Tarski geometry.

Proof. Assume the hypothesis of Tarski’s parallel axiom. Construct line M
parallel to Line (b, c) through t. Construct point e by extending segment dc by
dc; then ec = dc and B(d, c, e), as illustrated in Fig. 19. Let L be Line (a, c).
Then Line (d, t) meets L at a, and does not coincide with L since, if it did
coincide with L, then points d and c would be on L, and hence point b, which
is on Line (b, c), would lie on L by Axiom I3; but that would contradict the
hypothesis that a, b, and c are not collinear. Hence Line (d, t) meets L only
at a, by Axiom I3. Hence segment dt does not meet L. By outer Pasch (ap-
plied to adtec), there is a point f on L with B(e, f, t). Now we apply Euclid
5; the two parallel lines are Line (b, c) and M , and the conclusion is that L
meets M in some point, which we call y. Specifically we match the variables
(L,K,M, p, r, a, q) in Euclid 5 to the following terms in the present situation:
(M,Line (b, c),Line (a, c), c, e, f, t). Then all the hypotheses have been proved,
except that we have B(e, f, t) while what is required is B(t, f, e); but those are
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Figure 19: Constructive proof of Tarski’s parallel axiom from Euclid 5. M is constructed
parallel to Line (b, c) and cd = ce and bd = bg. Then x and y exist by Euclid 5.
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equivalent by the symmetry of betweenness. Hence Euclid 5 is indeed applicable
and we have proved the existence of point y on M and L.

Now, we do the same thing on the other side of angle bac, extending segment
db to point g with db = bg andB(g, d, b), and using the plane separation property
to show that gt meets Line (a, b) in a point h with B(g, h, t). Then Euclid 5
applies to give us a point x on M and Line (a, b).

It only remains to prove B(x, t, y). By outer Pasch applied to xbacd, there
exists a point u with B(x, u, c) and B(a, d, u) (the point u is not shown in
the figure.) Then by outer Pasch applied to acyxu, we obtain a point v with
B(a, u, v) and B(x, v, y). But then v = t, since both lie on the non-coincident
lines ad and xy. Hence B(x, t, y). That completes the proof of the theorem.

9.4. Tarski’s parallel axiom implies Euclid 5

Tarski proved16 that his parallel axiom implies Playfair’s axiom (see [25],
Satz 12.11, p. 123). Here we give a constructive proof that Tarski’s parallel
axiom implies the points-only version of Euclid 5. See Fig. 20.

Theorem 9.3. Tarski’s parallel axiom implies Euclid 5 in neutral intuitionistic
Tarski geometry.

Proof. Let L be a line, p a point not on L, M be another line through p, and
suppose points p, r, s, and q are as in the hypothesis of Euclid 5 (see Fig. 20).
In particular, because the shaded triangles are congruent, K is parallel to L and
makes alternate interior angles equal with transversal pq.

16The cited proof is in a book with two co-authors, but Tarski used this axiom from the
beginning of his work in geometry, and it seems certain that he had this proof before Szmielew
and Schwabhäuser were involved.
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Figure 20: Tarski’s parallel axiom implies Euclid 5. Points x and y are produced by Tarski’s
parallel axiom because q is in the interior of angle upa. Then apply Pasch to line L and
triangle xpy to get e.
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Let u be a point to the left of p on K, for example u = ext(r, p, α, β). We
can apply inner Pasch to the configuration uprqa, producing a point v such that
B(p, v, q) and B(u, v, a). (This is where we use the hypothesis B(r, a, q).) Then
v witnesses that q is in the interior of angle upa. By Tarski’s parallel axiom,
there exist points x and y with B(x, q, y), B(x, u, p) and B(p, a, y). Then line L
meets side xy of triangle xpy at q, and does not meet the closed side xp, since
K is parallel to L. Then x and y are on opposite sides of L, and x and p are on
the same side of L. By the Plane Separation Theorem (Theorem 2.5), p and y
are on opposite sides of L.

We next wish to prove B(p, a, e). By the stability of betweenness, we may
prove it by contradiction. By hypothesis, r does not lie on L, so a does not lie
on L. Hence a 6= e. Since L and K are parallel, e 6= p. Suppose B(p, e, a). Then
we can apply outer Pasch to parqe (that is, to triangle par with sequent qe),
obtaining a point lying both on Line(q, e) (which is L) and pr (which is part
of K), contradiction. Hence ¬B(p, e, a). Now suppose B(e, p, a). Then we can
apply outer Pasch to triangle eaq with secant rp, obtaining a point on segment
eq (part of L) and also on Line(p, r), which is K; contradiction. Also e cannot
be equal to a, since then r would lie on L and K; and e cannot be equal to
p since then e would lie on both K and L. The only remaining possibility is
B(p, a, e), which we set out to prove by contradiction. That completes the proof
of B(p, a, e).

We still must show B(s, q, e). Since we now have B(p, a, e), we can apply
outer Pasch to paest to construct a point q′ such that B(p, t, q′) and B(s, q′, e).
Then q′ lies on both Line(p, t) and L (which are distinct lines since p does not
lie on L); but q also lies on both those lines. Hence q′ = q. Hence B(s, q, e) as
desired. That completes the proof of the theorem.

57



10. Uniform perpendicular and uniform rotation

In classical geometry there are two different constructions, one for “dropping
a perpendicular” to line L from a point p not on L, and the other for “erecting a
perpendicular” to L at a point p on L. A “uniform perpendicular” construction
is a method of constructing, given three points a, b, and x, with a 6= b, a line
perpendicular to Line (a, b) and passing through x, without a case distinction
as to whether x lies on L or not.

In constructive geometry, it is not sufficient to have dropped and erected
perpendiculars; we need uniform perpendiculars. Similarly, we need uniform
rotations: to rotate a given point x on Line (c, a) clockwise about center c
until it lies on a given line through c, without a case distinction as to whether
B(x, c, a) or x = c or B(c, x, a). We also need uniform reflections: to be able to
reflect a point x in a line L without a case distinction whether x is on L or not.
It will turn out (not surprisingly) that the three problems of perpendiculars,
rotations, and reflections are closely related.

10.1. Uniform perpendicular using line-circle

In this section, we take up the construction of the uniform perpendicular.

Theorem 10.1. Uniform perpendiculars can be constructed in intuitionistic
Tarski geometry, using two-point line-circle continuity.

Figure 21: The simplest uniform perpendicular construction. M = Perp(x,L) is constructed
perpendicular to L without a case distinction whether x is on L or not. Draw a large enough
circle C about x. Then bisect pq and erect K at the midpoint. To draw C we use radius
ab+ ax > ax.
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Proof. Given distinct points a and b (defining L = Line(a, b)), and point x
(without being told whether x is or is not on L), we desire to construct a line
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K passing through x and perpendicular to L. The idea is simple: Draw a circle
C around x whose radius exceeds ax. Then by two-point line-circle continuity
there are distinct points p and q on L = Line (a, b) that lie on C. Then the
perpendicular bisector of segment pq is the desired perpendicular. The matter
is, however, trickier than the similar verification of Euclid I.2, because of the
requirement to find a point r through which to draw the circle C. We must
have xr > ax, but we are not allowed to make a case distinction whether x = a
or not, and since we are not allowed to extend a null segment, we cannot find
r by extending the (possibly null) segment ax. First we construct point c by
extending segment ab by ax. Since ab is not null, and we are allowed to extend
a non-null segment by a possibly null segment, this is legal. Then we make use
of the construction e2 corresponding to Euclid I.2, developed in Lemma 12.8.
We define r = e2(x, a, c). Then xr = ac and since ac > ax we have ar > ax.
Now draw the circle C with center x through r. Point r is not shown in the
figure, since its exact location depends on the construction given by e2, which
depends on the constant α. All we know about r is that xr = ac, so we can use
it to draw C with the desired radius.

Then a is inside C, so p and q exist by two-point line-circle continuity, and
we can complete the proof using any construction of the perpendicular bisector,
for example the one developed using two-point line circle continuity only, or
Gupta’s more complicated one.

It is not difficult to construct a script, and hence in principle a term, describ-
ing this construction. This term does require an “extra” parameter s, for a point
assumed to be not on the line L, in order to erect the required perpendicular.

10.2. Uniform perpendicular without any continuity

The above construction has one disadvantage: it relies on line-circle continu-
ity. Although our main interest is in intuitionistic Tarski geometry, nevertheless
it is of some interest to study the theory that results from deleting line-circle con-
tinuity as an axiom, i.e., the intuitionistic counterpart of Tarski’s (A1)-(A10).
It turns out, one can also construct a uniform perpendicular in that theory,
although of course, one must use Gupta’s perpendiculars. It turns out that we
also need the parallel axiom to construct uniform perpendiculars, although it is
not needed for Gupta’s perpendiculars.

We begin with some lemmas.17

Lemma 10.2. Let abcd be a quadrilateral with two adjacent right angles at a
and d, and two opposite sides equal, namely ab = cd. Suppose a and d are on
the same side of Line(b, c). Then also the other pair of opposite sides are equal
and abcd is a rectangle.

17Though these are fairly routine exercises in Euclidean geometry, we need to verify that
they are provable in intuitionistic Tarski geometry without any continuity. These theorems
do not occur in [25], and even if they had occurred, we would still need to check that they are
provable with triangle circumscription instead of Tarski’s parallel axiom. In fact we will use
Euclid 5, which is provable from triangle circumscription, as shown in [5].
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Remarks. The proof necessarily will require the parallel axiom, as the lemma
is false in hyperbolic geometry. The assumption that a and d are on the same
side of Line(b, c) ensures that the quadrilateral lies in a plane (we do not use
any dimension axiom in the proof).

Proof. We first claim that c is on the same side of ad as b. If not then by the
plane separation theorem, they are on opposite sides, so bc meets Line(a, d) in
a point m. By Lemma 8.15, B(a,m, d), contradicting the hypothesis that a and
d are on opposite sides of Line(b, c). That establishes that c is on the same side
of ad as b.

Let J be the perpendicular bisector of ad, meeting ad at its midpoint q.
Then q is the foot of the perpendicular from p to J . Since reflection in J
preserves congruence, collinearity, and right angles, the reflection b′ of b lies on
the perpendicular to ad at d, which is cd, and either b′ = c or b′ is the reflection
of c in d. The latter, however, contradicts the fact that c is on the same side of
ad as b. Therefore c is the reflection of b in J . Hence bc is perpendicular to J .

We next claim that ad and bc are parallel; that is, Line(a, d) and Line(b, c)
do not meet. Suppose they meet at point p. Then point p is not between a and
d, since a and d would then be on opposite sides of bc. Interchanging (a, b) and
(d, c) if necessary, we can assume without loss of generality that B(p, a, d). Now
pbc and pad are two distinct lines through p, both perpendicular to J . That is
a contradiction (as proved in the first part of Satz 8.18). That establishes the
claim that ad and bc are parallel.

Also ab and cd are parallel, since if they meet at a point u then there would
be two perpendiculars from u to Line (a, d). Hence abcd is a parallelogram.

Using the parallel postulate, we can prove that the angles at b and c are
right angles: since bc is parallel to ad, if the angle at b is not a right angle,
then the perpendicular to ab at b is a second, distinct, parallel to ad through
b, contradicting the parallel postulate (see [5]). Then triangles abd and cbd are
right triangles with one leg and the hypotenuse congruent; hence their other
legs ad and bc are congruent. That completes the proof of the theorem.

Lemma 10.3. (in intuitionistic Tarski geometry without continuity) Let abcd
be a quadrilateral whose diagonals ac and bd bisect each other at x. Then (i)
opposite sides of abcd are parallel, and (ii) the lines connecting midpoints of
opposite sides pass through x, and (iii) they are parallel to the other sides, as
shown in Fig. 22.

Proof. Since reflection (in point x) preserves betweenness and congruence (see
Satz 7.15 and Satz 7.16 of [25]), we have ab = cd and bc = ad, i.e., opposite
sides are equal. Let m be the midpoint of ab and k the reflection of m in x.
Since reflection preserves congruence, ck = kd. Since reflection in a point also
preserves betweenness, k lies on segment cd. Hence k is the midpoint of cd. Let
n be the midpoint of bc and ℓ the midpoint of ad. Then similarly nℓ passes
through x. That proves that the lines connecting midpoints of opposite sides
pass through x as claimed in (ii) of the theorem.

60



Figure 22: Given that ac and bd bisect each other at x. Then the lines that look parallel, are
parallel.
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Suppose point u lies on Line (a, d) and also on Line (b, c). Let v be the
reflection of u in x. Then since reflection preserves collinearity, by Lemma 8.6,
v also lies on both lines. But v 6= u, since if v = u then v = x = u, but m does
not lie on Line (a, d). Hence there are two distinct points u and v on Line (a, d)
and Line (b, c), contradiction. Hence those two lines are parallel, as claimed.
Similarly, the other two sides of the quadrilateral are parallel. That proves part
(i) of the theorem.

By the inner five-segment lemma (Lemma 8.7) applied to ambx and ckdx,
we have mx = xk. Therefore triangle ckx is congruent to triangle amx. Then
triangle ncx is congruent to triangle ℓax, since they have all three pairs of
corresponding sides equal.

We next claim that mk = ad. By the stability of equality, we may argue by
contradiction and cases. Drop a perpendicular from d to mk; let f be the foot.
Case 1, f = k. Then dk ⊥ mk, and by reflection in x, bm ⊥ mx, so ma ⊥ mk
and mkda has two adjacent right angles. Hence its opposite sides mk and ad
are equal, by Lemma 10.2, since a and d are on the same side of mk because
ab and bd both meet Line (m, k) (in m and x respectively). Case 2, B(m, f, k).
Then let g be the reflection of f in x, and h the reflection of g in m. Then the
triangles dfk, bgm, and ahm are congruent right triangles (by reflection), and
B(h,m, g). Then hm = mg = fk. Since hadf has two adjacent right angles, its
opposite sides hf and ad are equal, since again a and d are on the same side of
Line (h, f), so Lemma 10.2 applies. But hf = mk, since they differ by adjoining
and removing equal segments hm and fk. Hence mk = hf = ad, so mk = ad
as claimed. Case 3, B(m, k, f). Reflection in the line mk reduces this case to
Case 2. That completes the proof that mk = ad.

Now mkda is a parallelogram with opposite sides equal. Therefore, part (i)
of the theorem, which has already been proved, can be applied to it. Hence mk
is parallel to ad as claimed. That completes the proof.

Lemma 10.4. (in intuitionistic Tarski geometry without continuity) Let line J
be parallel to line M , and suppose M ⊥ L. Then J meets L in a point x and J
is perpendicular to L at x.

Proof. See Fig. 23. Let p be the point of intersection of M and L. Drop a
perpendicular from p to J ; let x be the foot of that perpendicular. Let m be
the midpoint of px (using Gupta’s midpoint to avoid any need for continuity).
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Figure 23: Given M ⊥ L and J parallel to M , show J ⊥ L and construct the intersection point
x of J and L by dropping a perpendicular from p to J . Construct r, t, and s by reflection.
Then ts is parallel to M and hence lies on J , and ts ⊥ L.

Lb
m

b
x

b
p

b r

b q

bs

bt

J M

Let q be any point other than p on M and let r be the reflection of q in p.
Then mq = mr since M ⊥ L. Let s and t be the reflections of q and r in m,
respectively. Since reflection preserves congruence, sx = pq. Then xs is parallel
to M , since if point u on M lies on Line (x, s), then the reflection of u in m is
another point on both lines, contradiction. Now J is by hypothesis parallel to
M , and J passes through x. But by the parallel axiom, there cannot be two
parallels to M through x. Hence the two coincide: J = Line (x, s). We have
ms = mq by reflection, mq = mr since M ⊥ L, and mr = mt by reflection;
hence ms = mt. Then Line(p, x) ⊥ J by the definition of perpendicular. We
now claim that Line(p, x) = L; for that we shall need the dimension axiom, since
otherwise L might be another perpendicular to M in the plane perpendicular to
M at p. We have mq = mr, so Line(p, x) ⊥M . Then xq = xr also. In order to
show that L coincides with Line(p, x), suppose w lies on L. Then since L ⊥M ,
we have wq = wr. Then w, x, and m are three points, each equidistant from q
and r. By the upper dimension axiom these three points are collinear. Hence
w lies on Line(m,x), which coincides with Line(p, x). Hence L coincides with
Line(p, x). Hence L ⊥ J . Hence J ⊥ L. That completes the proof.

Theorem 10.5. [Uniform perpendicular] Uniform perpendiculars can be con-
structed in intuitionistic Tarski geometry without any continuity axioms. Ex-
plicitly: there is a term Project(x, a, b, w) (“the projection of x on Line(a, b)”)
in intuitionistic Tarski with Skolem functions, such that if a 6= b and w is any
point not on L = Line (a, b), and f = Project(x, a, b, w), then Col(a, b, f), and
the erected perpendicular to L at f contains x.

Remark. The two main points of the lemma are that we do not need a case
distinction whether x is on L or not, and we do not use any continuity axiom.
But we do use the parallel axiom.

Proof. See Fig. 24. We begin by constructing a point p on L such that px is not
perpendicular to L (unless of course x lies on L, which is a degenerate case).
The existence of such a point x is trivial classically, but constructively, there
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Figure 24: Uniform perpendicular. Given L and x construct perpendicular J to L passing
through x, without a case distinction whether x is on L or not.
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is something to prove. The line L is given by two points a and b; let p be the
result of extending ab by ab to point r and then extending ar by xb to point
p. Then B(b, r, p) and rp = xb. (The idea is that, if a is to the left of b, then
p is far enough to the right that x cannot lie on the perpendicular to L at p.)
Now suppose that px ⊥ L; we will show that x lies on L. By the stability of
incidence, we may prove that by contradiction. If x does not lie on L, then bpx is
a triangle, and it has leg bp greater than the hypotenuse bx = rp, contradiction.
Therefore x is on L as claimed. Then px lies on L too, and p 6= x; hence px
is not perpendicular to x. That completes the preliminary construction of p.
Note that this part of the proof is not shown in the diagram; but it is needed
to show that the diagram does not degenerate to a single vertical line instead
of a parallelogram.

Erect a perpendicular qp to L at p. (For that we need the point w not on
L.) Let s be the reflection of q in x. Let t be the reflection of p in x. Then
tx = xp and sx = xq. By Lemma 10.3, stqp is a parallelogram whose diagonals
bisect each other. Let m be the midpoint of tq and k the midpoint of sp. By
Lemma 10.3, tq is parallel to sp, so m 6= k. We claim J = Line (k,m) is the
desired perpendicular to L. By Lemma 10.3, J is parallel to qp. But qp ⊥ L by
construction. By the parallel axiom, lines parallel to qp are also perpendicular
to L; so J ⊥ L. By Lemma 10.4, the intersection point f of J and L exists
and J ⊥ L. The point f is the value of Project(x, a, b, s). That completes the
proof.

Remark. We do not know how to construct uniform perpendiculars without
using either the parallel axiom or two-point line-circle, although either one suf-
fices, and any form of the parallel axiom suffices (because we just need a few
simple lemmas about parallelograms).
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10.3. Uniform reflection

Another construction from [5] that we need to check can be done with
Tarski’s Skolem symbols is the “uniform reflection”. The construction

Reflect (x, a, b, s)

gives the reflection of point x in L = Line (a, b), without a case distinction
as to whether x is on L or not. (The parameter s is some point not on L.)
First we note a difficulty: even though we can define f = Project(x, a, b, s), we
cannot just extend segment xf by xf , since xf might be a null segment, and in
constructive geometry, we can only extend non-null segments.

The solution given in [5] is to first define rotations, and then use the fact
that the reflection of x in Line (a, b) is the same as the result of two ninety-
degree rotations of x about f = Project(x, a, b, s). The construction given for
rotations in [5] only involves bisecting the angle in question, and dropping two
perpendiculars to the sides, none of which is problematic in Tarski’s theory.

10.4. Equivalence of line-circle and segment-circle continuity

Lemma 10.6. Two-point line-circle, one-point line-circle, and segment-circle
continuity are equivalent in (A1)-(A10).

Remark. This proof depends heavily on Gupta’s 1965 dissertation.

Proof. Because of Gupta, we have dropped perpendiculars, and we have shown
above that from dropped perpendiculars, erected perpendiculars, midpoints,
and uniform perpendiculars follow. Then one-point line-circle implies two-point
line-circle, by reflection in the uniform perpendicular from line L through the
center of the circle. Note that classically, the case when L passes through the
center is trivial, so a dropped perpendicular is enough, and the parallel axiom
is not required.

Two-point line-circle implies segment-circle immediately.
Next we will show that segment-circle implies one-point line-circle. Assume

the hypotheses of one-point line-circle: Let C be a circle with center a through
b, and let L be a line meeting closed segment ab at p. The desired conclusion
is the existence of a point x on L with ax = ab. To obtain that from segment-
circle, it suffices to construct a point q on L outside C (see Fig. 6 and Fig. 5).
(Then segment-circle will give us a point on C between p and q; since p and q
are on L, that point will be on L too.)

Inequality is defined between segments as follows:

uv < xy means ∃z (T(x, z, y) ∧ uv = xy ∧ z 6= y)

and
uv ≤ xy means ∃z (T(x, z, y) ∧ uv = xy).

Both strict and non-strict inequality can be shown to be stable, e.g.,

¬¬uv < xy → uv < xy,
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so inequalities can be proved by contradiction.
Here is how to construct q. Let z be any point on L different from p,

and define q by extending segment zp by three times the radius ab. Then
qa > ab− ap ≥ qp− ab, by the triangle inequality, Lemma 8.14. Then we have

qa > qp− ab > 3ab− 2ab > ab.

This apparently algebraic calculation represents a geometric proof of qa > ab.
In view of the definition of segment inequality, this implies the existence of a
“witness” point y such that B(y, b, a) and ay = aq. This point and q then
satisfy the hypothesis of segment-circle continuity (see Fig. 5). Segment-circle
continuity then yields a point on C between q and p, which is therefore on L.

We have now proved a circular chain of implications between the three as-
sertions of the lemma. That completes the proof.

Remark. One may wonder why Tarski chose segment-circle rather than line-
circle continuity as an axiom. It might be because segment-circle continuity
asserts the existence of something that turns out to be unique; but that con-
sideration did not bother Tarski when he chose (A10) as his parallel axiom.
More likely it was just shorter. Although the diagram for (either form of)
line-circle continuity is simpler, the formal expression as an axiom is longer, es-
pecially if collinearity is written out rather than abbreviated; and Tarski placed
importance on the fact that his axioms could be written intelligibly without
abbreviations.

10.5. Representation theorems

The following important theorem was stated in 1959 by Tarski [30]:

Theorem 10.7. (i) The models of classical Tarski geometry with segment-circle
continuity are the planes F 2 over a Euclidean field F .

(ii) The models of classical Tarski geometry with no continuity axioms are
the planes F 2 over a Pythagorean field F .18

Remark. Tarski wrote “ordered field” instead of “Pythagorean field” in (ii), but
one needs to be able to take

√
1 + x2 in F to verify the segment extension axiom

in F
2, as Tarski surely knew.

There is also a version of the representation theorem for intuitionistic Tarski
geometry. For that to make sense, we must define ordered fields and Euclidean
fields constructively. That is done in [5], as follows: We take as axioms the
stability of equality and “Markov’s principle” that ¬x ≤ 0 implies x > 0, which
is similar to the stability of betweenness in geometry. Then we require that

18A Pythagorean field is one in which sums of two squares always have square roots, or
equivalently,

√
1 + x2 always exists, as opposed to Euclidean in which all positive elements

have square roots.
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nonzero elements have multiplicative inverses; just as classically, a Euclidean
field is an ordered field in which positive elements have square roots (and a
Pythagorean field is one in which sums of two squares have square roots). Then
we have a constructive version of Tarski’s representation theorem:

Theorem 10.8. (i) The models of intuitionistic Tarski geometry with two-point
line-circle continuity are the planes F 2 over a Euclidean field F .

(ii) The models of intuitionistic Tarski geometry with no continuity axioms
are the planes F 2 over a Pythagorean field F .

(iii) Given a model of geometry, the field F and its operations can be explic-
itly and constructively defined.

Proof (of both theorems). Once we have (uniform) perpendiculars and mid-
points, the classical constructions of Descartes and Hilbert that define addition
and multiplication can be carried out. In this paper we have proved the existence
of (uniform) perpendiculars and midpoints in intuitionistic Tarski geometry, and
the definitions of (signed uniform) addition and (signed uniform) multiplication
are given in [5]. The field laws are proved for these definitions in [25]; since these
are quantifier free when expressed with Skolem functions, they are provable in
intuitionistic Tarski geometry (without any continuity axiom) by the double-
negation interpretation. The simple construction of the uniform perpendicular
suffices for (i), with two-point line-circle, but for (ii) we need the more com-
plicated construction given above, based on Gupta’s perpendiculars. Moreover,
even for Tarski’s (i), with segment-circle in place of two-point line-circle, we
need Gupta. That completes the proof.

With classical logic, the representation theorem gives a complete character-
ization of the consequences of the axioms, because according to Gödel’s com-
pleteness theorem, a sentence of geometry true in all models F 2 is provable in
the corresponding geometry. With intuitionistic logic, the completeness theo-
rem is not valid. The “correct” way to obtain a complete characterization of the
theorems of constructive geometry in terms of field theory is to exhibit explicit
interpretations mapping formulas of geometry to formulae of field theory, and
an “inverse” interpretation from field theory to geometry. We have actually
carried this program out, but it is highly technical due to the differences in the
two languages, and requires many pages, so we omit it here.

10.6. Historical Note

Tarski claimed in 1959 [30] (page 22, line 5) that (i) he could define addition
and multiplication geometrically, and (ii) prove the field laws, without using
his continuity axiom; hence all models of the axioms (excluding continuity) are
planes over ordered fields. The first published proof of these claims was in 1983
[25], and relies heavily on Gupta’s 1965 dissertation. In this note we consider
what Tarski may have had in mind in 1959.

To define multiplication, we need perpendiculars and midpoints, which were
constructed in (A1)-(A10) by Gupta in 1965. Tarski lectured in 1956 on ge-
ometry, but I have not found a copy of his lecture notes. He lectured again
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on geometry in 1963, but according to Gupta (in a telephone conversation in
September, 2014), Tarski did not base his lectures on his own axiom system (and
again there are apparently no surviving notes). The proofs in this section show
that he could well have defined addition and multiplication using only two-point
line-circle continuity, since we showed here how to construct perpendiculars and
midpoints from two-point line-circle continuity. But he made two claims that
we do not see how to prove without Gupta: that he could use segment-circle
continuity in (i), and that he could get by without any continuity in (ii).

These claims could not have been valid in 1959, since this was some years
before Gupta’s proofs. In 1959, there was no way known to construct dropped
perpendiculars using (A1)-(A10), even with the use of segment-circle continu-
ity; Tarski could not have justified Euclid I.12 on the basis of segment-circle
continuity, since it requires the triangle inequality, which requires perpendicu-
lars, and Tarski was not using the triangle circumscription axiom but his own
form of the parallel axiom, so he could not even prove that every segment has
a midpoint, as far as I can see.

Tarski did believe that line-circle continuity could be derived from a single
instance of the continuity schema. He explicitly claimed this in [30], page 26,
line 8. But the “obvious” derivation requires the triangle inequality, which in
turn seems to require perpendiculars.19 After Gupta, perpendiculars exist, and
the proof of the triangle inequality follows easily, so indeed line-circle continuity
follows from A11. But in 1959, there was no known way to get perpendiculars,
and so, no way to derive the triangle inequality, and hence, no way to derive
line-circle continuity from the continuity schema, or to justify Euclid I.12 to
get dropped perpendiculars from line-circle continuity. All these difficulties
disappeared once Gupta proved the existence of dropped perpendiculars in (A1)-
(A8). Thus Gupta’s work has a much more central place than is made apparent
in [25]. Tarski desperately needed perpendiculars.

It is possible that Tarski had in mind using two-point line-circle continu-
ity to justify dropped perpendiculars, and overlooked the difficulty of proving
two-point line-circle from segment-circle. Even so, to complete a proof of his
representation theorem about Euclidean fields, he would have had to duplicate
the results in this paper about getting erected perpendiculars and midpoints
from dropped perpendiculars. Part (ii) of his theorem, about what happens
with no continuity at all, flat-out requires Gupta’s work, which put everything
right, substantiating the claims of 1959. A discovery of Tarski’s missing 1956
lecture notes seem to be the only way to resolve the question of “what Tarski
knew and when he knew it.”

19It is straightforward to derive line-circle continuity from A11 together with the facts that
the interior and exterior of a circle are open, and the interior is convex. These facts in turn
are easy to derive from inner Pasch, Euclid III.2 (chord lies inside circle), the density lemma
(Lemma 2.7), and the triangle inequality.
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11. Geometry with terms for the intersections of lines

It seems more natural, when thinking of straightedge-and-compass construc-
tions, to include a symbol iℓ(a, b, c, d) for the (unique) intersection point of
Line (a, b) and Line (c, d). We say “unique” because we want the intersection
point of two coincident lines to be undefined; otherwise iℓ(a, b, c, d) will not be
continuous on its domain.

The difficulty with using this Skolem symbol is that the definedness condition
for iℓ(a, b, c, d) is not easily expressible in quantifier-free form. Of course we need
a 6= b ∧ c 6= d, and we want ¬(Col(a, b, c) ∧ Col(a, b, d)) as just explained. But
in addition there are parallel lines that do not meet. Using the strong parallel
postulate, one can indeed express the definedness condition for iℓ(a, b, c, d) in a
quantifier-free way, namely, iℓ(a, b, c, d) is defined if and only if there is a point
p collinear with a and b but not c and d, and a point q collinear with c and
d, such that the transversal pq of the Line (a, b) and Line (c, d) makes alternate
interior angles unequal. This condition can be expressed using points only, as
shown in Fig. 4 above. We can use the strong parallel axiom to prove stability:

¬¬iℓ(a, b, c, d) ↓ → iℓ(a, b, c, d) ↓ .
But one cannot do this for subtheories with no parallel postulate or other

versions of the parallel postulate. Therefore we prefer, when working with
iℓ(a, b, c, d) to use the Logic of Partial Terms (described below), in which t ↓ is
made into an official atomic formula for each term t, instead of an abbreviation
at the meta-level.

11.1. Logic of Partial Terms (LPT)

This is a modification of first-order logic, in which the formation rules for
formulas are extended by adding the following rule: If t is a term then t ↓
is a formula. Then in addition the quantifier rules are modified so instead of
∀xA(x) → A(t) we have ∀x(t ↓ ∧A(x)) → A(t), and instead of A(t) →
∃xA(x) we have A(t) ∧ t ↓ → ∃xA(x). Details of LPT can be found in [2],
p. 97.

LPT includes axioms c ↓ for all constants c of any theory formulated in
LPT; this is in accordance with the philosophy that terms denote things, and
while terms may fail to denote (as in “the King of France”), there is no such
thing as a non-existent thing. Thus 1/0 can be undefined, i.e., fail to denote,
but if a constant ∞ is used in LPT, it must denote something.

The meaning of t = s is that t and s are both defined and they are equal.
We write t ∼= s to express that if one of t or s is defined, then so is the other,
and they are equal.

Definition 11.1. For terms in any theory using the logic of partial terms, t ∼= q
means

(t ↓ → t = q) ∧ (q ↓ → t = q).

This is read t and q are equal if defined.
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Thus “∼=” is an abbreviation at the meta-level, rather than a symbol of the
language.

LPT contains the axioms of “strictness”, which are as follows (for each
function symbol f and relation symbol R in the language):

f(t1, . . . , tn) ↓ → t1 ↓ ∧ . . . ∧ tn ↓
R(t1, . . . , tn) → t1 ↓ ∧ . . . ∧ tn ↓

Note that in LPT, under a given “valuation” (assignment of elements of
a structure to variables), each formula has a definite truth value, i.e., we do
not use three-valued logic in the semantics. For example, if P is a formula of
field theory with a reciprocal operation 1/x, then P (1/0) is false, since 1/0 is
undefined. For the same reason ¬P (1/0) is false. Hence P (1/0) ∨ ¬P (1/0) is
false too; but that does not contradict the classical validity of ∀x(P (x)∨¬P (x))
since we are required to prove t ↓ before deducing an instance P (t) ∨ ¬P (t).

As an example of the use of LPT, we reformulate the theory of Euclidean
fields [5] using the logic of partial terms. The existential quantifiers associated
with the reciprocal axioms, with the axiom of additive inverse, and with the
square-root axiom of Euclidean field theory are replaced by a function symbol√
, a unary minus −, and a function symbol for “reciprocal”, which we write as

1/x instead of reciprocal(x). The changed axioms are

x+ (−x) = 0 (additive inverse)
x 6= 0 → x · (1/x) = 1 (EF1′)
P (x) → x · (1/x) = 1 (EF7′)
x+ y = 0 ∧ ¬P (y) → √

x · √x = x (EF5′)

11.2. A version of Tarski’s theory with terms for intersections of lines

This version of Tarski’s theory we call ruler and compass Tarski. It is for-
mulated as follows:

• It uses a function symbol iℓ(a, b, p, q) for the intersection point of Line (a, b)
and Line (p, q).

• It uses the logic of partial terms.

• If iℓ(a, b, p, q) is defined, then it is a point on both lines.

• If there is a point on Line (a, b) and Line (p, q), and those lines do not
coincide, then iℓ(a, b, p, q) is such a point.

• Formally, the axioms involving iℓ are

Col(a, b, x) ∧ Col(p, q, x) ∧ ¬(Col(a, b, p) ∧ Col(a, b, q)) → iℓ(a, b, p, q) ↓

iℓ(a, b, p, q) ↓→ a 6= b∧p 6= q∧Col(a, b, iℓ(a, b, p, q))∧Col(p, q, iℓ(a, b, p, q))
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• iℓ is used instead of separate Skolem functions for ip. Specifically, the term
ip(a, p, c, b, q) in the Skolemized inner Pasch axiom become iℓ(a, q, b, p).
The point c does not occur in this term.

• The Skolem functions ext (for segment extension) is not changed.

• The Skolem functions for intersections of lines and circles are not changed.

• Stability for equality, betweenness, and congruence, as before.

We could consider replacing Skolem terms center(a, b, c) with terms built up
from iℓ. The two lines to be intersected are the perpendicular bisectors of ab
and bc, where a, b, and c are three non-collinear points. We can define the
perpendicular bisector by the erected perpendicular at the midpoint, so it is
indeed possible to eliminate the symbol center; but there seems to be no special
reason to do so.

We did not include the stability of definedness; that is because it can be
proved. The following lemma is proved in [5]; here we give a different proof,
based on the triangle-circumscription form of the strong parallel axiom.

Lemma 11.2. [Stability of iℓ(a, b, c, d)] The strong parallel postulate is equiva-
lent (in ruler and compass Tarski minus the parallel postulate) to the stability
of iℓ(a, b, c, d) ↓:

¬¬il(a, b, c, d) ↓ → iℓ(a, b, c, d) ↓ .

Proof. (i) First suppose the strong parallel postulate and ¬¬iℓ(a, b, c, d) ↓. We
will show iℓ(a, b, c, d) ↓. Let L = Line (a, b) and K = Line (c, d). Then lines
K and L do not coincide, for then iℓ(a, b, c, d) would be undefined. Hence, by
the strong parallel postulate, we can find a point on L that is not on K. We
may assume without loss of generality that b is such a point. Construct point
f so that bf is parallel to K; more explicitly, K and bf and the transversal bc
make alternate interior angles equal. If a, b, and f are collinear, then ab and
cd are parallel, so iℓ(a, b, c, d) is undefined, contradiction. Hence a, b, and f are
not collinear. Then line M = Line (b, f) passes through point b and is parallel
to K, and line L also passes through b, and has a point a not on M . Then by
the strong parallel axiom, L meets K. In that case iℓ(a, b, c, d) is defined, as
claimed.

(ii) Conversely, suppose the stability of iℓ(a, b, c, d) ↓, and suppose a, b, and
c are not collinear. Let m be the midpoint of ab and n the midpoint of cd, with
pm the perpendicular bisector of ab and qn the perpendicular bisector of cd. We
must prove iℓ(m, p, n, q) ↓. By stability it suffices to derive a contradiction from
the assumption that it is not defined. If it is not defined then mp is parallel to nq
(as not meeting is the definition of parallel). But Line (a, b) and Line (b, c) are
perpendicular to mp and nq respectively; hence they cannot fail to be parallel or
coincident. But since they both contain point b, they are not parallel; hence they
are coincident. Hence a, b, and c are collinear, contradiction. That completes
the proof.
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Theorem 11.3 (Stability of definedness). For each term t of ruler and com-
pass Tarski, ¬¬t ↓ → t ↓ is provable.

Proof. By induction on the complexity of the term t. If t is a compound term
ts, and ¬¬ts ↓, then ¬¬t ↓ and ¬¬s ↓, so by induction hypothesis, t ↓ and
s ↓. Hence ts ↓. We may therefore suppose t is not a compound term. If the
functor is ic1, ic2, iℓc1, or iℓc2, then it is easy to prove that the conditions for
t to be defined are given geometrically, by the same formulas that were used to
define t ↓ in Tarski with Skolem functions (and without LPT). Hence stability
follows by the stability of equality, congruence, and betweenness. The stability
of iℓ(a, b, c, d) is equivalent to the strong parallel postulate, by the previous
lemma. That completes the proof.

11.3. Intersections of lines and the parallel axiom

In the proof of the first part of Lemma 11.2, we showed that if lines L and
M meet in a point x, then x can be made to appear as the center of a circle
circumscribed about suitably chosen points a, b, and c. In this section, we will
refine this construction to show that there is a single term t(a, b, c, d) in the
language of Tarski with Skolem functions that gives the intersection point of
Line (a, b) and Line (c, d), when it exists.

Lemma 11.4. Given two lines L and K that are neither coincident nor parallel,
one can construct a point p that lies on K but not on L. More precisely, inter-
preting L as Line (a, b) and K as Line (q, r), there is a single term t(a, b, q, r)
such that if ¬(Col(a, b, q)∧Col(a, b, r)) and for some x, Col(a, b, x)∧Col(q, r, x),
then e = t(a, b, q, r) satisfies Col(q, r, e) ∧ ¬Col(a, b, e).

Remarks. The point x cannot be used to construct e, which must depend
only on a, b, q, and r, and must be constructed by a single term, and hence
depend continuously on the four parameters. We will use the parallel postulate
to construct e; we do not know a construction that does not use the parallel
postulate.

Proof. LetM be the perpendicular to K passing through q. We are supposed to
construct M from a, b, q, and r alone. To construct M , we need not just p and
q, but also a point not on K; and a and b are useless here as they might lie on
K. We must appeal to Lemma 12.9 for the construction of some point not on
line K; thus this apparently innocent lemma requires the geometric definition of
arithmetic and the introduction of coordinates, and hence the parallel postulate.

The construction of M gives us one point u on M different from q. Let
v be the reflection of u in q. Then u and v are equidistant from q. Now,
using the uniform perpendicular construction we construct the line J through
u perpendicular to L. See Fig. 25.20

20 In a theory with Skolem functions for the intersection points of two circles, the construc-
tion of M and u becomes trivial (just use the Euclidean construction of a perpendicular), but
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Figure 25: Uniform construction of a point c = center(d, u, v) on K that is not on L. The
construction works whether or not q is on L, or u is on L. The dotted line bisects ud and
does not coincide with L.
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While we do not know whether u lies on L, the uniform perpendicular con-
struction (Theorem 10.5) provides two points determining J , namely

f = Project(u, a, b, c)

and
h = head(u, a, b, c),

where f is on L and c is not on L. Possibly u is equal to f or to h; we need
a point d on J that is definitely not equal to u or to the reflection of u in L.
To get one, our plan is to draw a circle of sufficiently large radius about u and
intersect it with J = Line (f, h). We use the uniform reflection construction
to define w = Reflect(u, a, b), the reflection of w in L. Then we extend the
non-null segment αβ by the (possibly null) segment uw to get a point z such
that αz > uw. Then we use αz as the “sufficiently large” radius. Here is the
construction:

z = ext(α, β, u, w)

d = iℓc1(f, c, u, e2(u, α, z))

axiomatizing the Skolem functions for the circle in such a way as to distinguish the points
of intersection (which is necessary to construct perpendiculars) requires the introduction of
coordinates. So using circle-circle does not obviate the need for coordinates in this lemma.
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Now d lies on J and is different from u, and it is also different from w since w
lies inside the circle centered at u of radius αz. Finally define

c = center(u, v, d).

The three points u, v, and d are not collinear, since then J and M would
coincide, and L and K would both be perpendicular to J , and hence parallel;
but L and K are by hypothesis not parallel. Since u, v, and d are not collinear,
c is equidistant from u, v, and d. Therefore c lies on the perpendicular bisector
of uv, which is K. Also c lies on the perpendicular bisector of ud, which is
parallel to L, since both are perpendicular to J . This perpendicular bisector
does not coincide with L, since d is not the reflection w of u in L. Therefore c
does not lie on L. Then c lies on K but not on L, as desired. That completes
the proof of the lemma.

Theorem 11.5. [Elimination of iℓ] There is a term t(a, b, p, r) of intuitionistic
Tarski with Skolem functions (so t contains ip and center but not iℓ) such that
the following is provable:

Col(a, b, x)∧Col(p, r, x)∧¬(Col(a, b, p)∧Col(a, b, r))∧p 6= r → x = t(a, b, p, r).

Less formally, t(a, b, p, r) gives the intersection point of Line (a, b) and Line (p, r).

Remark. The problem here is to explicitly produce the term t that is implicit in
the proof of Lemma 11.4. This is also closely related to the proof given in [5] that
in constructive neutral geometry, the triangle circumscription principle implies
the strong parallel axiom. But here we have to check that this construction
can be carried out in Tarski’s geometry, i.e., all the lines that are required to
intersect are proved to intersect using only inner Pasch; so there is definitely
something additional to check.

Proof. By Lemma 11.4, we may assume without loss of generality that p does
not lie on L. More explicitly, if we now produce a term t as in the lemma,
that works under the additional assumption that p is not on L, then we can
compose that term with the term given in Lemma 11.4, which produces a point
on Line (p, r) that is not on L, and the composed term will work without the
assumption that p is not on L.

Recall that Project(p, a, b) is the point w on Line (a, b) such that pw ⊥ ab,
and Project(p, a, b) is given by a term in Tarski with Skolem functions. There is
also a term erect(p, r) that produces a point j such that j is not on Line (p, r) and
jp ⊥ pr. (Since p is on Line (p, r), the uniform perpendicular construction is not
needed; the simple Euclidean construction will be enough.) Finally, there is a
term Reflect (x, a, b) that produces the reflection of x in Line (a, b); if we assume
x is not on Line (a, b) this is particularly easy: let q = Project(x, a, b) and take
Reflect (x, a, b) = ext(x, q, x, q). The requirement that x is not on Line (a, b)
means that we are extending a non-trivial segment, which is constructively
allowed.
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Figure 26: Triangle circumscription implies the strong parallel axiom. Given lines L and M ,
to construct their intersection point as the center e of an appropriate circle. y and z are
reflections of x in M and L.
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In Fig. 26, L = Line (a, b) and M = Line (p, r), and p does not lie on L.
First we claim that x does not lie on L. If x does lie on L, then pwx is a right
triangle, so the hypotenuse px is greater than the leg pw; but px = mp, which
is less than pw since m = midpoint(p, w), and p 6= w. Therefore Reflect (x, a, b)
can be defined using the easy construction given above.

Now we give a construction script corresponding to the figure:

w = Project(p, a, b)

m = midpoint(p, w)

j = erect(p, r)

x = iℓc1(j, p, p,m)

y = iℓc2(j, p, p,m)

z = Reflect (x, a, b)

e = center(x, y, z)

Composing the terms listed above we find a (rather long) term that produces e
from a, b, p, and r. We claim that e is the intersection point of Line (a, b) and
Line (p, r). By the stability of collinearity, we can argue by cases on whether
x, y, and z are collinear or not. (Here it is important that we are not proving
a statement with an existential quantifier, but a quantifier-free statement in-
volving a single term that constructs the desired point e.) In case x, y, and z
are not collinear, then center(x, y, z) produces a point e that is the center of a
circle containing x, y, and z. Then Euclid III.1 implies that L and M both pass
through e, and we are done. On the other hand, if x, y, and z are collinear,
then M and L are both perpendicular to Line (x, y), so M and L are parallel;
then there is no x as in the hypothesis of the formula that is alleged, so there is
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nothing more to prove. That completes the proof of the theorem.

11.4. Interpreting ruler and compass Tarski in intuitionistic Tarski

Ruler-and-compass Tarski clearly suffices to interpret intuitionistic Tarski
(with or without Skolem functions), because the points asserted to exist by
inner Pasch and the triangle circumscription principle are given as intersections
of lines. Conversely we may ask, whether ruler and compass Tarski can be
interpreted in intuitionistic Tarski with Skolem functions. That is, can terms in
iℓ be effectively replaced by terms built up from ip and center? The answer is
“yes”.

Theorem 11.6. Suppose ruler and compass Tarski geometry (with iℓ and other
Skolem functions) proves a theorem φ that does not contain iℓ. Then Tarski
geometry with Skolem functions proves φ. Moreover if φ contains no Skolem
functions, then Tarski geometry proves φ. These claims hold both for the theories
with intuitionistic logic and those with classical logic.

Proof. We assign to each term t of ruler and compass Tarski, a corresponding
term t◦ of Tarski with Skolem functions. Let iℓ◦(a, b, q, r) be the term given by
Theorem 11.5. The term t◦ is defined inductively by

x◦ = x where x is a variable or constant

iℓ(a, b, c, d)◦ = iℓ◦(a◦, b◦, c◦, d◦)

f(a, b, c, d) = f(a◦, b◦, c◦, d◦) where f is iℓc1, iℓc2, ic1, ic2, or ext

e(a)◦ = e(a◦)

Then we assign to each formula A of ruler and compass Tarski, a corresponding
formula A◦ of Tarski with Skolem functions. Namely, the map A 7→ A◦ com-
mutes with logical operations and quantifiers, and for atomic A not of the form
t ↓, we define

A(t1, . . . , tn)
◦ = A(t◦1, . . . , t

◦

n
).

For the case when A is t ↓, we define (t ↓)◦ to be t = t when t is a variable or
constant, and when it is a compound term, we use Definition 6.2. By induction
on the complexity of A, A◦[x := t◦] is provably equivalent to (A[x := t])◦.

Then by induction on the length of proofs in ruler and compass Tarski,
we show that if ruler and compass Tarski proves φ, then Tarski with Skolem
functions proves φ◦. A propositional axiom or inference remains one under
the interpretation, so it is not even vital to specify exactly which propositional
axioms we are using. In this direction (from LPT to ordinary logic), the quanti-
fier rules and axioms need no verification, as the extra conditions of definedness
needed in LPT are superfluous in ordinary logic. For example, one of those
axioms is ∀xA ∧ t ↓ → A[x := t]. That becomes ∀xA◦ ∧ (t ↓)◦ → A[x := t◦],
in which the t ↓ can just be dropped. There are some special axioms in LPT,
for example c ↓ for c a constant and x ↓ for x a variable.

We check the basic axioms for iℓc1. These say that (i) if iℓc1(a, b, c, d) is
defined, then it is a point on Line (a, b) and also on the circle with center c
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passing through d, and (ii) if there is a point x on both the line and circle, then
iℓc1(a, b, c, d) is defined. According to the definition of (iℓc1(a, b, c, d) ↓)◦, the
interpretation of “iℓc1 ↓” is “there is a point on the line inside the circle”, where
“inside” means not strictly inside. Since iℓc1 is not affected by the interpretation
(except in the atomic formula iℓc1(a, b, c, d) ↓), the interpretations of the basic
axioms for iℓc1 are equivalent to those same axioms. Similarly for iℓc2, ic1, and
ic2.

Now consider the axioms for iℓ(a, b, p, r). These say that if iℓ(a, b, p, r) ↓
then e = iℓ(a, b, p, r) is a point on Line (a, b) and also on Line (p, r), and if x
is any point on both lines and not both p and r lie on Line (a, b), then then
x = iℓ(a, b, p, r). Recall that (iℓ(a, b, p, r) ↓)◦ says there exists an x on both
lines, and not both p and r are on Line (a, b). Then the interpretation of these
axioms says that if Line (a, b) and Line (p, r) meet and not both p and r lie
on Line (a, b), then iℓ(a, b, p, r)0 is the intersection point. But that is exactly
Theorem 11.5. That completes the proof.

Corollary 11.7. Suppose (classical or intuitionistic) ruler and compass Tarski
geometry proves a theorem of the form P → Q(t), with P and Q negative.
Then (classical or intuitionistic) Tarski geometry proves P → ∃xQ(x).

Proof. Suppose P → Q(t) is provable in ruler and compass geometry. Then
P → ∃xQ(x) is provable, with one more inference. But that formula contains
no occurrences of iℓ. Then by Theorem 11.6, it is provable in classical Tarski
geometry. That completes the proof.
Remark. If we drop the strong parallel axiom (or triangle circumscription prin-
ciple), we obtain “neutral geometry with iℓ ”. It is an open question whether
neutral geometry with iℓ can be interpreted in neutral Tarski with Skolem func-
tions. In other words, can all terms for intersection points of lines that are
needed in proofs of theorems not mentioning iℓ be replaced by terms built up
from ip and ext? We used center in an essential way in the proof of Theo-
rem 11.5, but did we have to do so?

12. Relations between classical and constructive geometry

Our intuition about constructive geometry is this: You may argue classi-
cally for the equality or inequality of points, for the betweenness of points, for
collinearity, for the congruence of segments. But if you assert that something
exists, it must be constructed by a single, uniform construction, not by different
constructions applying in different cases. If you can give a uniform construction,
you may argue by cases that it works, but the construction itself cannot make a
case distinction. Thus the uniform perpendicular construction of a line through
x perpendicular to L works whether or not x is on L; if we wished, we could
argue for its correctness by cases, as we could always push a double negation
through the entire argument and use stability to eliminate it.

There is in Szmielew’s Part I of [25] an extensive development from Tarski’s
classical axioms, essentially deriving Hilbert’s axioms and the definitions and
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key properties of addition and multiplication. We would like to be able to
import arguments and results wholesale from this development into constructive
geometry. In this section we investigate to what extent this is possible.

It is certainly not completely possible to import results without modifying
Tarski’s axioms, since constructive proofs will produce points that depend con-
tinuously on parameters, while as we have discussed above, Tarski’s version of
inner Pasch and segment extension axioms do not have this property. Those de-
fects have been remedied above by formulating “continuous Tarski geometry”,
a theory classically equivalent to Tarski’s geometry.

12.1. The double-negation interpretation

The difference between intuitionistic and classical mathematics shows up in
the interpretations of existence (∃) and disjunction (∨).

Definition 12.1. A formula is called negative if it does not contain ∃ or ∨
(existential quantifiers or disjunction).

Intuitively, negative formulas make no existential claims, and hence have the
same meaning classically as constructively, at least in theories with stable atomic
formulas. Classically we can always express “exists” as “not for all not” and
express P ∨Q as ¬(¬P ∧¬Q). If we do this, then every classical theorem should
become intuitionistically meaningful: classical mathematics is, somewhat sur-
prisingly, contained in intuitionistic mathematics, although often intuitionistic
mathematics is considered as a restriction of classical mathematics.

Gödel made these considerations precise by introducing his double-negation
interpretation [11] , which assigns a negative formula A− to every formula A, by
replacing ∃ by ¬∀¬ and replacing A ∨B by ¬(¬A ∧ ¬B). For atomic formulae,
A− is defined to be ¬¬A. The rules of intuitionistic logic are such that if A
is classically provable (in predicate logic) then A− is intuitionistically provable.
Hence, if we have a theory T with classical logic, and another theory S with
intuitionistic logic, whose language includes that of T , and for every axiom A of
T , S proves A−, then S also proves A− for every theorem A of T . In case the
atomic formulas in the language of T are stable in S, i.e., equivalent to their
double negations, then of course we can drop the double negations on atomic
formulas in A−.

In [3] we applied this theorem to a version of constructive geometry based on
Hilbert’s axioms. Given the extensive almost-formal development of geometry
from Tarski’s axioms in [25], one might like to use the double-negation inter-
pretation with T taken to be Tarski’s theory, and S taken to be some suitable
constructive version of Tarski’s theory. We now investigate this possibility.

A double-negation interpretation from a classical theory to a constructive
version of that theory becomes a better theorem if it applies to the Skolemized
versions of the theories, because in the un-Skolemized version, an existential
quantifier is double-negated, while the corresponding formula of the Skolemized
theory may replace the existentially quantified variable by a term, so no dou-
ble negated quantifier is involved, and no constructive content is lost. But if we
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Skolemize Tarski’s version of inner Pasch, we get an essentially non-constructive
axiom, as shown above. Hence there is no double-negation interpretation for
that theory. However, it works fine if we replace Tarski’s axioms by the (classi-
cally equivalent) axioms of continuous Tarski with Skolem functions:

Theorem 12.2. Let T be intuitionistic Tarski geometry with Skolem functions.
If T plus classical logic proves φ, then T proves the double-negation interpreta-
tion φ−.

Proof. It suffices to verify that the double-negation interpretations of the axioms
are provable. But the axioms are negative and quantifier-free, so they are their
own double-negation interpretations. That completes the proof.

Corollary 12.3. If φ is negative, and classical Tarski geometry without Skolem
functions proves φ, then intuitionistic Tarski geometry proves φ.

Proof. Suppose φ is provable in classical Tarski geometry (with or without
Skolem functions). Then since φ itself has no Skolem functions, φ is provable in
classical Tarski geometry without Skolem functions, and hence by Theorem 7.2,
it is provable in intuitionistic Tarski geometry with Skolem functions. Hence,
by Theorem 12.2, φ− is provable. Since φ is negative, it is equivalent to φ−.
That completes the proof.

12.2. Applications of the double-negation interpretation

We illustrate the use of Theorem 12.2 by importing the work of Eva Kallin,
Scott Taylor, H. N. Gupta, and Tarski mentioned in Section 2.7.

Corollary 12.4. The formulas (A16) through (A18), which were once axioms
of Tarski’s theory, but were shown classically provable from the remaining ax-
ioms, are also provable in intuitionistic Tarski without Skolem functions.

Proof. By Corollary 12.3.

We would like to emphasize something has been achieved with the double-
negation theorem even for negative theorems, as it would be quite laborious to
check the long proofs of (A16)-(A18) directly to verify that they are constructive.
For example, (A18) is Satz 5.1 in [25]. Let us consider trying to check directly if
this proof is constructive. You can see that the proof proceeds by contradiction,
which is permissible by stability; in the crucial part of the proof, inner Pasch
is applied to a triangle which ultimately must collapse (as the contradiction is
reached) to a single point. Therefore we can constructivize this part provided the
non-collinearity hypothesis is satisfied for the application of Pasch. By stability,
we may assume that the vertices of this triangle are actually collinear. But
can we finish the proof in that case? It looks plausible that (A15) or similar
propositions might apply, but it is far from clear. Yet the double-negation
interpretation applies, and we do not need to settle the issue by hand. We had
to assume (A15), but we do not have to assume (A18), because it is already
provable.
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Corollary 12.5. The correctness of Gupta’s perpendicular construction given
in 14 is provable in intuitionistic Tarski geometry.

Proof. Please refer to Fig. 14 and the discussion in § 8.9. Two conclusions are
to be proved: (i) that x lies on Line(a, b), and (ii) that cx ⊥ ax. We will show
that both of these are equivalent to negative formulas; hence the double-negation
interpretation applies.

Ad (i): The statement that x lies on Line(a, b) is informal; its exact formal
meaning is

¬¬ (T(x, a, b) ∨T(a, x, b) ∨T(a, b, x)).

(See the discussion after Lemma 7.1). Pushing inner negation sign through the
disjunction we see that this is equivalent to a negative sentence.

Ad (ii): By the definition of perpendicularity, and the theorem that L ⊥ K
if and only if K ⊥ L, and the fact that x is by definition the midpoint of cc′,
cx ⊥ ax is equivalent to ac = ac′, which is negative. Hence the double-negation
interpretation applies to that conclusion.

It follows from the double-negation interpretation that the correctness of
Gupta’s construction is provable in intuitionistic Tarski geometry. That com-
pletes the proof.

The following theorems (numbered as in [25]) have proofs simple enough to
check directly (as we did before developing the double negation interpretation),
but with the aid of the double negation interpretation, we do not need to check
them directly.

Lemma 12.6. The following basic properties of betweenness are provable in
intuitionistic Tarski geometry. Note that T(a, b, c) is a defined concept; B(a, b, c)
is primitive. The theorem numbers refer to [25].

T(a, b, b) Satz 3.1
T(a, b, c) → T(c, b, a) Satz 3.2
T(a, a, b) Satz 3.3
T(a, b, c) ∧T(b, a, c) → a = b Satz 3.4
T(a, b, d) ∧T(b, c, d) → T(a, b, c) Satz 3.5a
T(a, b, c) ∧T(a, c, d) → T(b, c, d) Satz 3.6a
T(a, b, c) ∧T(b, c, d) ∧ b 6= c → T(a, c, d) Satz 3.7a
T(a, b, d) ∧T(b, c, d) → T(a, c, d) Satz 3.5b
T(a, b, c) ∧T(a, c, d) → T(a, b, d) Satz 3.6b
T(a, b, c) ∧T(b, c, d) ∧ b 6= c → T(a, b, d) Satz 3.7b

Proof. By the double negation interpretation, since each of these theorems is
negative.

Does the double negation interpretation help us to be able to “import”
proofs of existential theorems from [25] to intuitionistic Tarski? It gives us the
following recipe: Given an existential theorem proved in classical Tarski, we
examine the proof to see if we can construct a Skolem term (or terms) for the
point(s) asserted to exist. If the proof constructs points using inner Pasch, we
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need to verify whether degenerate cases or a possibly collinear case are used. If
they are not used then the strict inner Pasch axiom (A7-i) suffices. The crucial
question is whether the point alleged to exist can be constructed by a single
term, or whether the proof is an argument by cases in which different terms are
used for different cases. In the latter case, the proof is not constructive (though
the theorem might still be, with a different proof). But in the former case, the
double-negation interpretation will apply.

Thus the double-negation interpretation fully justifies the claim that the
essence of constructive geometry is the avoidance of arguments by cases, pro-
viding instead uniform constructions depending continuously on parameters.

12.3. Euclid I.2 revisited

Consider the first axiom of Tarski’s geometry, which says any segment (null
or not) can be extended: ∃d (T(a, b, d) ∧ bd = bc). Clearly d cannot depend
continuously on a as a approaches b while b and c remain fixed, since as a spirals
in towards b, d circles around b outside a fixed circle. Therefore Axiom (A4) of
Tarski’s (classical) geometry is essentially non-constructive; the modification to
(A4-i) that we made in order to pass to a constructive version was essential.

Euclid I.2 says that given three points a, b, c, there exists a point d such that
ad = bc. Euclid gave a clever proof that works when the three points are distinct,
and classically a simple argument by cases completes the proof. Constructively,
that does not work, since when b and c remain fixed and a approaches b, d from
Euclid’s construction does not depend continuously on a. We will show in this
section that it is only Euclid’s proof that is non-constructive; the theorem itself
is provable in intuitionistic Tarski geometry, by a different proof.

Lemma 12.7. Intuitionistic Tarski geometry proves

(i) T(a, b, c) and T(p, q, r) and ac = pr and bc = qr implies ab = pq.
(ii) a segment ac cannot be congruent to (a proper subsegment) bc with

B(a, b, c).

Proof. We first show (ii) follows from (i). Suppose ac = bc and B(a, b, c). Then
in (i) take p = q = a and r = c. Then (i) implies ab = aa , contrary to axiom
(A3). Hence (i) implies (ii) as claimed.

Now (i) is Satz 4.3 in [25], and since it is negative, we can conclude from the
double negation interpretation that it is constructively provable. That completes
the proof.

Lemma 12.8. In intuitionistic Tarski geometry, null segments can be extended,
and Euclid I.2 is provable. Indeed, there is a term (using Skolem functions) e(x)
such that e(x) 6= x is provable, and a term e2 corresponding to Euclid I.2, such
that if d = e2(a, b, c), then ad = bc.

Remarks. Thus, it is only Euclid’s proof of I.2 that is non-constructive, as
discussed in [5], not the theorem itself. Note that a constructive proof of the
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theorem should produce a continuous vector field on the plane, so the construc-
tive content of ∀x∃y (y 6= x) is nontrivial. Notice how the proof fulfills this
prediction.

Proof. Let α and β be two of the three constants used in the dimension axioms,
and define

e(x) = ext(α, β, α, x)

Since α 6= β, axiom (A4) applies. Let d = e(x); we claim d 6= x. By (A4)
we have T(α, β, d) and βd = αd. Then the subsegment βd is congruent to the
whole segment αd, contrary to Lemma 12.7. That completes the proof that
e(x) 6= x.

Define
e2(a, b, c) := ext(e(a), a, b, c).

Then the segment with endpoints e(a) and a is not a null segment, so e2(a, b, c)
is everywhere defined, and if d = e2(a, b, c), we have ad = bc by (A4). That
completes the proof.

12.4. Constructing a point not on a given line

Consider the proposition that for every line L there exists a point c not on
L. In Tarski’s language that becomes

∀a, b(a 6= b → ∃c (¬Col(a, b, c))).

Classically, the theorem is a trivial consequence of the lower dimension axiom
(A8), which gives us three non-collinear points α, β, and γ. One of those points
will do for c. But that argument is not constructively valid, since it uses a case
distinction to consider whether a and b both lie on Line (α, β) or not. It is an
interesting example, because it illustrates in a simple situation exactly what
more is required for a constructive proof than for a non-constructive proof.
For a constructive proof, we would need to find a uniform ruler and compass
construction that applies to any two points a and b (determining a line L), and
produces a point not on L.

If we could erect a perpendicular to line L at a, then (since lines are given by
two points) we would already have constructed a point off L. Gupta constructs
perpendiculars without circles: maybe he has solved the problem? No, as it
turns out. Gupta’s construction has to start with a given point p not on L. He
shows how to construct a perpendicular to L at a, but the first step is to draw
the line ap. The same is true for all the constructions of erected perpendiculars
discussed above.

Lemma 12.9. Given a 6= b, there exists a point c not collinear with a and b.

Remarks. We do not know a direct construction; the proof we give uses the in-
troduction of coordinates. It does in principle provide a geometric construction,
but it will be very complicated and not visualizable. If we assume circle-circle
continuity, we have an easy solution: by the method of Euclid I.1 we produce
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an equilateral triangle abc, whose vertex c can be shown not to lie on line L.
But we note that the proof of circle-circle continuity that we give below via the
radical axis requires a point not on the line connecting the centers to get started,
so cannot be used to prove this lemma. In order to prove circle-circle continuity
without assuming an “extra” point, we also need to introduce coordinates.

Proof. Let α, β, and γ be the three pairwise non-collinear points guaranteed
by (A8). Let Line (α, β) be called the x-axis. Let 0 be another name for α
and 1 another name for β. Since γ does not lie on the x-axis, we can use it
to erect a perpendicular 0p to the x-axis at 0, on the other side of the x-axis
from γ. Call that line the y-axis. Let i = ext(p, 0, 0, 1). (Then i is on the same
side of the x-axis as γ.) Using the uniform perpendicular construction, and the
point i not lying on the x-axis, we define X(p) to be the point on the x axis
such that the perpendicular to the x-axis at X(p) passes through p. Similarly
we define Y (p) using the point 1 not on the y-axis. As shown in [5], using the
parallel axiom we can define a point p = (x, y) given points x and y on the
x-axis and y-axis, such that X(p) = x and Y (p) = y, and define addition and
multiplication on the X-axis and prove their field properties. Then coordinate
algebra can be used in geometry. Given distinct points with coordinates (a, b)
and (p, q) determining line L, we can calculate the coordinates of a point not
on L, for example (a, b) + (b− q, p− a). That completes the proof.

Applying our metatheorems below to this lemma, we see that there is a
term t(a, b) such that A(a, b, t(a, b)) is provable. Of course, since the theorem
is classically provable, by Herbrand’s theorem there must be a finite number of
terms, such that in each case one of those terms will work, and indeed, the three
constants α, β, and γ illustrate Herbrand’s theorem in this case:

a 6= b → ¬Col(a, b, α) ∨ ¬Col(a, b, β) ∨ ¬Col(a, b, γ).

But constructively, the matter is much more delicate.

12.5. Hilbert planes and constructive geometry

In this paper, we have considered line-circle as an axiom. Classically, there
is a tradition of studying the consequences of (A1)-(A9) alone, which is known
as the theory of Hilbert planes; this theory corresponds to Hilbert’s axioms
without any form of continuity and without the parallel axiom. The question to
be considered here is whether there is an interesting constructive geometry of
Hilbert planes. There should be such a theory, with ruler and compass replaced
by “Hilbert’s tools”, which permit one to extend line segments and “transport
angles”, i.e., to construct a copy of a given angle with specified vertex b on a
specified side of a given line L. That “tool” corresponds to a Skolem function
for Hilbert’s axiom C3.

Indeed, most of the development in [25] from A1-A9 is perfectly constructive.
In particular, we can prove Hilbert’s C3 and the related “triangle construction
theorem” enabling us to copy a triangle on a specified side of a line, where the
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side is specified by giving a point not on the line. Hence, there is a viable con-
structive theory of Hilbert planes. Developing that theory, however, is beyond
the scope of this paper; even the classical theory of Hilbert planes is a difficult
subject.

It is curious that if Hilbert’s C3 is classically weakened by removing the (clas-
sically) superfluous hypothesis about “a specified side of the line”, so that it just
requires being able to copy a triangle abc to a congruent triangle ABC with AB
on L and A given, then it becomes much more difficult to prove constructively,
because we first have to construct a point not on L, which (apparently) requires
the introduction of coordinates, and hence the parallel axiom. We do not know
whether A1-A9 can prove that for every line L, we can construct a point not
on L; we do know that coordinates cannot be introduced on the basis of A1-A9
alone, so the proof that works for A1-A10 fails for A1-A9.

13. Metatheorems

In this section, we prove some metatheorems about the two Skolemized
constructive theories of Tarski geometry, i.e., either intuitionistic Tarski with
Skolem functions, or ruler and compass Tarski. Both theories have line-circle
and circle-continuity with terms for the intersections, and a Skolem function
symbol center for the triangle circumscription principle; ruler and compass
Tarski has the logic of partial terms and a symbol iℓ(a, b, c, d) for the inter-
section point of two lines, while intuitionistic Tarski with Skolem functions has
a Skolem function symbol ip for inner Pasch. Straightedge and compass con-
structions correspond to terms of ruler and compass Tarski; we have shown that
these can all be imitated by terms of intuitionistic Tarski with Skolem functions,
i.e., iℓ is eliminable.

13.1. Things proved to exist can be constructed

In this section we take up our plan of doing for constructive geometry what
cut-elimination and recursive realizability did for intuitionistic arithmetic and
analysis, namely, to show that existence proofs lead to programs (or terms)
producing the object whose existence is proved. In the case of constructive
geometry, we want to produce geometrical constructions, not just recursive con-
structions (which could already be produced by known techniques, since geome-
try is interpretable in Heyting’s arithmetic of finite types, using pairs of Cauchy
sequences of rational numbers as points).

Theorem 13.1 (Constructions extracted from proofs). Suppose intuition-
istic Tarski geometry with Skolem functions proves

P (x) → ∃y φ(x, y)

where P is negative. Then there is a term t(x) of intuitionistic Tarski geometry
with Skolem functions such that

P (x) → φ(x, t(x))
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is provable.

Remark. We emphasize that there is a single term t(x). That corresponds to a
uniform construction, that applies without case distinctions on x. We shall see in
the next theorem that things proved to exist classically can also be constructed
(under appropriate conditions), but that several different constructions may be
needed, for different cases on x.

Proof. We use cut-elimination. Readers unfamiliar with cut-elimination, or
desiring a specific axiomatization, are referred to Chapter XV of [16]. Cut-
elimination works with “sequents”, which we write Γ ⇒ ∆. (Kleene wrote
Γ → ∆, but we use → for implication.) Γ and ∆ are finite lists of formulas;
for intuitionistic systems, ∆ contains at most one formula φ, so we also write
Γ ⇒ φ.

Since our axiomatization is quantifier-free, if ψ ⇒ ∃y φ is provable, then there
is a list Γ of quantifier-free axioms such that Γ, ψ ⇒ ∃y φ is provable by a cut-free
(hence quantifier-free) proof. If the existential quantifier is introduced at the
last step of that proof, then we obtain the desired proof just by omitting the last
step of the proof. Hence (as always in such applications of cut-elimination) we
need to be able to permute the inferences until the existential quantifier is indeed
introduced at the last step. This issue was studied in a fundamental paper by
Kleene [17], who verified that the desired permutations are possible except for
a few combinations of connectives, all involving disjunction or ∃. Hence, if the
axioms are purely universal and disjunction-free, and P is negative, we do not
have a problem on the left side of the sequent. Certain occurrences of ∃ also do
not make trouble, and in first position on the right side of the proved sequent
is one of the harmless cases. Hence, by [17], we can permute the inferences as
desired. That completes the proof. The hard part of the work was in arranging
the axiom system to be quantifier-free and disjunction-free.

Remark. To see that inferences cannot always be permuted, consider the
example of proving that there is a perpendicular to line L through point p,
with the left side Γ of the sequent saying that p is either on L or not. Using
the separate dropped-perpendicular and erected-perpendicular constructions we
can prove both cases, and then finish the proof, introducing ∨ on the left at
the last step. Explicitly, if ψ says that p is not on L, and φ says Line(p, q)
is perpendicular to L and contains p, then both sequents ψ ⇒ ∃p, q φ and
¬ψ ⇒ ∃p, q φ are provable, and hence ψ ∨ ¬ψ ⇒ ∃p, q φ is provable. But this
proof obviously does not produce a single construction that works in either case,
so we would not expect to be able to permute the introduction of ∃ on the right
with the introduction of ∨ on the left.

The term t(x) in the preceding theorem represents a geometrical construc-
tion, but the points constructed by intersecting lines are always given either by
center or ip terms, so the construction contains a “justification” for the fact
that the lines intersect. On the other hand, the construction cannot be read
literally as a construction script, but requires extra steps to construct the lines
implicit in the center and ip constructions. Moreover, there is nothing in the
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theorem itself to guarantee that the “definedness conditions” for t(x) are met,
since the Skolem functions are total. The following theorem about ruler and
compass Tarski geometry does not have that defect, since that theory uses the
logic of partial terms.

Theorem 13.2 (Constructions extracted from proofs). Suppose intuition-
istic ruler-and-compass Tarski geometry proves

P (x) → ∃y φ(x, y)

where P is negative (does not contain ∃ or ∨). Then there is a term t(x) of
intuitionistic ruler and compass Tarski geometry such that

P (x) → φ(x, t(x))

is also provable. Moreover, if the proof of P (x) → ∃y φ(x, y) does not use
certain axioms, then the term t(x) does not involve the Skolem symbols for the
unused axioms.

Remark. If the formula P (x) → ∃y φ(x, y) does not contain any Skolem
function symbols at all, i.e., it lies in Tarski’s original language, then it lies
in both Tarski geometry with Skolem symbols and ruler-and-compass Tarski
geometry. Thus we have a choice whether to realize the existential quantifiers
using the symbols ip and center, as in the former theory, or using the symbol
iℓ.

Proof. We have a choice of two proofs. We could use cut-elimination directly,
but then we need it for the logic of partial terms and not just for ordinary
intuitionistic predicate calculus. The details of the cut-elimination theorem for
such logics have not been published, but they are not significantly different from
Gentzen’s formulation for first-order logic. While we are explaining this point,
it is no more complicated to explain it for multi-sorted theories with LPT,
which were used in [3] with axioms for Hilbert-style geometry. Specifically,
we reduce such theories to ordinary predicate calculus as follows: introduce a
unary predicate for each sort, and then if t is a term of sort P , interpret t ↓ as
P (t). Now we have a theory in first-order one-sorted predicate calculus, which is
quantifier-free and disjunction-free if the original theory was, and we can apply
ordinary cut-elimination, as in the proof of Theorem 13.1.

Alternately, we can avoid using cut-elimination for LPT, by first translating
the original formula from ruler and compass Tarski to intuitionistic Tarski with
Skolem functions using Theorem 11.5. Then the resulting construction term t
involves the function symbol ip; but it is easy to express ip in terms if iℓ if that
is desired, i.e., to interpret intuitionistic Tarski with Skolem functions into ruler
and compass Tarski. That completes the proof.
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13.2. Extracting constructions from classical proofs

The following theorem illustrates the essential difference between construc-
tive and classical (non-constructive) geometry: in a constructive existence the-
orem, we must supply a single (uniform) construction of the point(s) whose
existence is asserted, but in a classical theorem, there can be several cases, with
a different construction in each case.

Theorem 13.3 (Constructions extracted from classical proofs). Suppose
classical Tarski geometry with Skolem functions proves

P (x) → ∃y φ(x, y)

where P is quantifier-free and disjunction-free. Then there are terms ti(x) such
that

P (x) → φ(x, t1(x)) ∨ . . . ∨ φ(x, tn(x))
is also provable.

Proof. This is a special case of Herbrand’s theorem.

Example 1. There exists a perpendicular to line L through point p. Classically,
one argues by cases: if p is on L, then we can “erect” the perpendicular, and
if p is not on L then we can “drop” the perpendicular. So the proof provides
two constructions, t1 and t2. This is not a constructive proof. In this paper, we
have given a construction (in fact two different constructions) of the “uniform
perpendicular”. This constructive proof of the existence of a perpendicular to
L through p provides a single term for the construction, instead of two terms
(one of which works in each case).

Example 2. Euclid’s proof of Book I, Proposition 2 provides us with two such
constructions, t1(a, b, c) = c and t2(a, b, c) the result of Euclid’s construction of
a point d with ad = bc, valid if a 6= b. Classically we have ∀a, b, c ∃d(ad = bc),
but we need two terms t1 and t2 to cover all cases.

Example 3. Let p and q be distinct points and L a given line, and a, b, and c
points on L, with a and b on the same side of L as c. Then there exists a point
d which is equal to p if b is between a and c and equal to q if a is between b and
c. The two terms t1 and t2 for this example can be taken to be the variables p
and q. One term will not suffice, since d cannot depend continuously on a and
b, but all constructed points do depend continuously on their parameters. This
classical theorem is therefore not constructively provable.

13.3. Disjunction properties

We mentioned above that intuitionistic Tarski geometry cannot prove any
non-trivial disjunctive theorem. That is a simple consequence of the fact that
its axioms contain no disjunction. We now spell this out:

Theorem 13.4 (No nontrivial disjunctive theorems). Suppose intuition-
istic Tarski geometry proves H(x) → P (x)∨Q(x), where H is negative. Then
either H(x) → P (x) or H(x) → Q(x) is also provable. (This result depends
only on the lack of disjunction in the axioms.)
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Proof. Consider a cut-free proof of Γ, H(x) → P (x) ∨ Q(x), where Γ is a list
of some axioms. Tracing the disjunction upwards in the proof, if we reach a
place where the disjunction was introduced on the right before reaching a leaf
of the proof tree, then we can erase the other disjunct below that introduction,
obtaining a proof of one disjunct as required. If we reach a leaf of the proof tree
with P (x) ∨Q(x) still present on the right, then it occurs on the left, where it
appears positively. Its descendants will also be positive, so it cannot participate
in application of the rule for proof by cases (which introduces ∨ in the left side of
a sequent); and it cannot reach left side of the bottom sequent, namely Γ, H(x),
as these formulas contain no disjunction. But a glance at the rules of cut-free
proof, e.g. on p. 442 of [17], will show that these are the only possibilities. That
completes the proof.

We note that order on a fixed line L can be defined using betweenness, so it
makes sense to discuss the provability of statements about order.

Corollary 13.5. Intuitionistic Tarski geometry does not prove apartness

a < b → x < b ∨ a < x.

Proof. The statement in question is a disjunctive theorem, so Theorem 13.4
applies.

Corollary 13.6. Intuitionistic Tarski geometry does not prove the principle
x 6= 0 → x < 0 ∨ x > 0 or the equivalent principle that if point p does not
lie on line L, then any other point x is either on the same side of L as p or the
other side.

Proof. The statement in question is a disjunctive theorem, so Theorem 13.4
applies.

13.4. Interpretation of Euclidean field theory

A Euclidean field is defined constructively as an ordered ring in which
nonzero elements have reciprocals. The relation a < b is primitive; a ≤ b
abbreviates ¬b < a. The axioms of Euclidean field theory include stability of
equality and order. Stability of order, that is ¬b ≤ a → a < b, is also known as
Markov’s principle. Classically, the models of ruler and compass geometry are
planes over Euclidean fields. We showed in [5] that a plane over a Euclidean field
is a model of ruler-and- compass geometry, when ruler and compass geometry
is defined in any sensible way; constructively, this theorem takes the form of an
interpretation φ 7→ φ̄ from some geometric formal theory to the theory EF of
Euclidean fields.

The converse direction is much more difficult; we have to show that any
model of geometry is a plane over a Euclidean field F . To do that, we fix a
line F to serve as the x-axis (and the domain of the field); fix a point 0 on that
line, erect a perpendicular Y to F at 0 to serve as the y-axis. Given any pair
of points (x, y) on F , we rotate y by ninety degrees to a point y′ on the y-axis,
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and then erect perpendiculars at x to F and at y′ to Y . These perpendiculars
should meet at a point MakePoint (x, y). It is possible to show by the strong
parallel axiom that they do meet. This construction is the starting point for
the following theorem:

Theorem 13.7. Every model of intuitionistic Tarski geometry is a plane over
a Euclidean field. Moreover, there is an interpretation φ 7→ φ◦ from the theory
of Euclidean fields to intuitionistic Tarski geometry.

Proof. In addition to introducing coordinates as discussed above, one also has
to define addition and multiplication geometrically in order to interpret the
addition and multiplication symbols of Euclidean field theory. It has been shown
in [5] how to do this; the proofs there can be formalized in intuitionistic Tarski
geometry, so we obtain a model-theoretic characterization of the models of that
theory.

Moreover, our work with the double-negation interpretation above can now
be put to good use. For example, the definition of multiplication can be given
directly following Hilbert’s definition, which is based on the triangle circum-
scription principle. It is easy to give a term HilbertMultiply (a, b) that takes two
points a and b on a fixed line (the “x-axis”) and produces their product (also a
point on the x-axis), using center and the uniform rotation construction. (See
[5] for details.) But once that term is given, the assertions that it satisfies the
associative and commutative laws are quantifier-free, and hence, the proofs in
[25] are “importable.” Technically, one must check that the degenerate cases
of inner Pasch are not used, but that is all that one has to check by hand. In
[5], there is a definition of “uniform addition”, i.e., without a case distinction
on the signs of the addends. A term Add (x, y) defining the sum of x and y is
given in [5]. Again, once the term is given, we can be assured by the double-
negation interpretation that its properties are provable in intuitionistic Tarski
with Skolem functions, if we just check [25] to make sure the degenerate cases
of inner Pasch are not used.

The terms Add and HilbertMultiply can then be used to define a syntactic
interpretation φ 7→ φ◦ from the theory of Euclidean fields to intuitionistic Tarski
geometry. That completes the proof of the theorem.

14. Circle-circle continuity

In this section we show that circle-circle continuity is a theorem of intuition-
istic Tarski geometry; that is, we can derive the existence of the intersection
points of two circles (under the appropriate hypotheses). The similar theorem
for classical Tarski geometry can be derived indirectly, using the representation
theorem (Theorem 10.7) and Gödel’s completeness theorem; but for intuitionis-
tic Tarski geometry, we must actually exhibit a construction for the intersection
points of two circles, and prove constructively that it works. This question relies
on Euclid III.35, a theorem about how two chords of a circle divide each other
into proportional segments, and III.36, a similar theorem, and constructively it

88



requires a combined version of those two propositions without a case distinction
as to which applies (i.e., two lines cross inside or outside a circle). Aside from
those theorems, it uses only very straightforward geometry.

Theorem 14.1. In intuitionistic Tarski geometry with only line-circle continu-
ity: given two circles C and K satisfying the hypotheses of circle-circle conti-
nuity, and a point not on the line L connecting their centers, we can construct
the point(s) of intersection of C and K.

A point not on L can of course be constructed, by Lemma 12.9, but to do
so we have to introduce coordinates, which we wish to avoid here for esthetic
reasons, so here we just leave that point as a parameter of the construction.

There are two approaches to proving this theorem, which we will discuss
separately. The first method proceeds by introducing coordinates and reducing
the problem to algebraic calculations by analytic geometry. While in principle
this does produce an ultimately purely geometric proof, one cannot visualize
the lengthy sequence of constructions required. For esthetic reasons, therefore,
we also give a second proof, which avoids the use of coordinates by the use of a
well-known construction called the “radical axis.” In this more geometric proof,
essential use is made of the “extra point” in the hypothesis.21

14.1. Circle-circle continuity via analytic geometry

Given two circles C and K with distinct centers s and t, let L be the line
through the centers. Given a point not on L, we can erect a perpendicular to
L at s, and introduce coordinates in the manner of Descartes and Hilbert, with
constructive extension to negative arguments as developed in [5]. We can choose
the point t as 1. Now the tools of analytic geometry are available. Let r be the
radius of circle C and R the radius of circle K, and calculate the equations of
C and K and solve for a point (x, y) lying on both circles. It turns out that
some crucial terms cancel, and we can solve the equations using only square
roots, which means that we can solve them geometrically using the methods of
Descartes and Hilbert, with the constructive modifications op. cit. To derive
circle- circle continuity, we must show that the hypothesis that circle C has a
point inside circle K makes the quantities under the square root non-negative,
and the extra hypothesis that the circle C has a point strictly inside K makes
the two solutions of the equation distinct.

A similar theorem is proved classically in [14], p. 144, but a few details are
missing there. The issue is that it is not enough to observe that the equations
for the intersection points are quadratic. One has to translate the hypothesis
that one circle has a point inside and a point outside the other circle into algebra

21 Both these proofs use the parallel axiom essentially. There is a proof in the literature that
line-circle continuity implies circle-circle continuity without the use of the parallel axiom [28].
It is based on Hilbert’s axioms rather than Tarski’s, and we do not know if it is constructively
justifiable or not. But we have no reason to avoid the parallel axiom for present purposes.
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and show algebraically that this implies the equations for the intersection are
solvable.

This is a fairly routine exercise and is all perfectly constructive; but it is a
bit long, and besides, it is somewhat unsatisfying to have to resort to coordi-
nates. One would like to see a direct geometric construction of the points of
intersection of two circles, using only a few steps, rather than the dozens or
perhaps hundreds of not-visualizable steps required to geometrize an algebraic
calculation. There is indeed such a geometric construction, using the “radical
axis” of the two circles. Below we verify that the radical axis construction can
be carried out constructively (i.e., does not require any case distinctions in its
definition), and that the correctness proof can be carried out in intuitionistic
Tarski geometry. Although the construction itself is easy to visualize (it is only
a few steps with ruler and compass), the correctness proof in Tarski geometry
is more complicated.

14.2. Euclid Book III in Tarski geometry

The correctness proof of the radical axis construction requires the last two
propositions of Euclid Book III; and moreover the formalization of Book III in
Tarski geometry is of independent interest.

Book III of Euclid can be formalized in intuitionistic Tarski geometry, but
since most of the theorems mention angles, we need to use the developments of
Chapter 11 of [25], where angles, angle congruence, etc. are developed. However,
some propositions can be proved quite simply, for example III.31 (an angle
inscribed in a semicircle is right), which goes back to I.29 and I.11 and hence
to the construction of perpendiculars (and not to Book II at all). We also will
need a related proposition that might have been (but does not seem to be) in
Euclid:

Lemma 14.2. (in Tarski geometry with segment-circle continuity) If axb is a
right angle and ab is a diameter of a circle C then x lies on C.

Proof. By segment-circle continuity, we can find a point y on C and on the
ray from a through x. Then by Euclid III.30, ayb is a right angle, so if y 6= x
then xb and yb are two perpendiculars to ay through b, contradiction. By the
stability of equality we have y = x, so x lies on C. That completes the proof.

We present here another proposition from Euclid Book III that can be proved
directly from the Tarski axioms.

Lemma 14.3 (Euclid III.18). Suppose line L meets circle C with center c in
exactly one point a. Then ca ⊥ L.

Remark. We need dropped perpendiculars to prove this lemma, but we already
derived the existence of dropped perpendiculars from line-circle continuity, so
that is not a problem. The proof uses Euclid’s idea, but Tarski’s definition of
perpendicular.
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Proof. Drop a perpendicular cb from c to line L, which can be done by Lemma 8.5.
We want to prove b = a. By the stability of equality, we can proceed by con-
tradiction, so suppose b 6= a. Point b is outside the circle (i.e., there is a point
e on C with B(c, e, b)), since otherwise by line-circle continuity, L meets C in a
second point. Let e be the reflection of a in b; then ab = be, and since ce ⊥ L,
we have ca = ce. That is, e lies on circle C as well as line L, contradicting the
hypothesis that L meets C only once. That completes the proof.

Despite these examples, the radical axis construction that we use makes
use of some developments of Euclid Book III that are not so straightforward,
because they rest on the theory of proportionality in Euclid Book II. We want
to make sense of the phrase

ab · cd = pq · rs.

In Euclid, this is written “the rectangle contained by ab and cd is equal to the
rectangle contained by pq and rs.” But Euclid has no concept of “area” as
represented by (the length of) a segment. To define this relation geometrically,
we could use a definition of similar triangles, involving two right triangles with
sides ab, pq and cd, rs respectively. Book II of Euclid develops (quadratic)
algebra on that basis.

There is another way to define the notion ab ·cd = pq ·rs. Namely, introduce
coordinates, define multiplication geometrically, and interpret ab · cd as multi-
plication of segments on the x-axis congruent to ab and cd. This is not actually
so different from the first (Euclidean) interpretation, since similar triangles are
used in defining multiplication. For the modern analysis of Euclid’s notion of
equality for “figures” see page 197 of [14], and for the connection to geometric
multiplication see page 206. There it is proved that equality in Euclid’s sense
corresponds to algebraic equality using geometric arithmetic; in particular, the
two definitions of ab · cd = pq · rs are provably equivalent.

To carry out the radical axis construction constructively, we need to extend
the notion ab · cd to allow signed segments. To do this directly using similar
triangles would be to duplicate the effort of defining signed multiplication in [5].
Therefore we use the geometric-multiplication definition, following [14].

Either definition can be expressed in a quantifier-free way using intuitionistic
Tarski geometry with Skolem functions, so the two notions are provably equiva-
lent in intuitionistic Tarski geometry if and only if they are provably equivalent
in classical Tarski geometry. Since Hartshorne op. cit. proves them equivalent
in classical Hilbert geometry (and without using circle-circle continuity), and
since Hilbert’s axioms (except continuity) are provable in classical Tarski geom-
etry (without continuity) (as shown in [25]), it follows that the two definitions
are provably equivalent in intuitionistic Tarski geometry.

We need to define the notion of the power of a point in intuitionistic Tarski
geometry, and check that its principal properties can be proved there. That
notion is usually defined as follows, when b is not the center of C: Let c be the
center of C, and x the point of intersection of Line (b, c) with C that is on the
same side of c as b, and y the other point of intersection. Then the power of b
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with respect to C is bx·by. If we interpret the dot as (signed) multiplication (see
[5]) of (directed) segments on the x-axis of points congruent to the segments
mentioned, then this definition makes sense in intuitionistic Tarski geometry. It
does, however, have the disadvantage that the power of the center of the circle
is not defined; and we cannot just define it to be −1, as we could classically,
because constructively we cannot make the case distinction whether b is or is not
the center. This definition can be fixed constructively as follows. Fix a diameter
pq of circle C, whose center is c. Then given any point b, extend segment pc by
bc to produce point B. (If b = c, this is still legal and produces c.) Then the
power of b with respect to C is Bq · Bp, where the dot is signed multiplication
(so that Bq and Bp have opposite signs when b is inside C.) This gives the
same answer as the usual definition when b is not the center.

The following lemma shows that the power of p with respect to C can be
computed from any chord, not just from the diameter. See Fig. 27, which shows
separately the cases when b is inside or outside C.

Figure 27: The power of b with respect to c can be computed from any chord, because
ba · bc = bd · be.
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Lemma 14.4. In Tarski geometry with only line-circle continuity: Let C be a
circle and let b be any point. Let L be any line through b meeting C in points a
and c. Then the power of C with respect to C is ba · bc.

Remark. For the case when b is inside C (first part of Fig. 27), this is Euclid
III.35, and for b outside it is III.36. The general case is mentioned in Heath’s
commentary on III.35 [9] as a corollary of III.35 and III.36. It also occurs as
Exercise 20.3 in [14]. The proof implicitly suggested there by Exercise 20.2 is
the same one suggested in Heath’s commentary.

Proof. Hilbert multiplication can be defined by Skolem terms in intuitionistic
Tarski geometry, without circle-circle continuity, as the constructions in [5] show.
To recap: multiplication is defined by using the triangle circumscription axiom
to draw a circle, and then the product is given by the intersection of that
circle with a line. In addition there are some rotations involved, which also can
be defined by terms. When formulated in intuitionistic Tarski geometry with
Skolem functions, the statement of the lemma is quantifier-free. By the double-
negation interpretation, it is provable constructively if and only if it is classically
provable. And it is classically provable, cf. the exercise mentioned in the remark.
Of course, the textbook containing the exercise is based on Hilbert’s axioms,
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but [25] derives all of Hilbert’s axioms from Tarski’s (classically), so once you
solve Exercise 20.3 op. cit., it follows that the result is provable in intuitionistic
Tarski geometry with Skolem functions.

14.3. The radical axis

In this section, we discuss the construction of the “radical axis” of two circles,
with attention to constructivity. In the next section we will use the radical axis
to give a second proof that line-circle continuity implies circle-circle continuity.

The “radical axis” of two circles is a line, defined whether or not the circles
intersect, such that if they do intersect, the line passes through the points of in-
tersection (and if they are tangent, it is the common tangent line). On page 182
of [14], a ruler and compass construction of the radical axis is given. Fig. 28
illustrates the construction, for the benefit of readers who do not have [14] at
hand.22

Figure 28: Construction of the radical axis.
m = midpoint(a, b); draw sm and mt and drop perpendiculars from a to sm and from b to
mt. Their intersection is p and the radical axis is perpendicular to st through p.
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22The radical axis was already old in 1826 [26], although there it is constructed from the
intersection points of circles, rather than the other way around. I do not know the origin of
the ruler and compass construction used here.
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The initial data are the centers s and t of the two circles, with s 6= t, and two
points a and b on the circles, such that a 6= b and ab does not meet the line
joining the centers. (That hypothesis allows one of the circles to be a null circle
(zero radius), but not both). The construction is as follows: First define m as
the midpoint of ab. Then B(a,m, b). If s = m or t = m then ab meets st,
contrary to hypothesis. Hence we can construct the lines sm and tm. Then
construct perpendiculars to those lines through a and b respectively (using the
uniform perpendicular, so we do not need to worry if a and b are on those
lines or not). Then p is to be the intersection of these two perpendiculars, and
the radical axis is the perpendicular to st through p, again using the uniform
perpendicular.

Lemma 14.5. Given two circles C and K, the radical axis as constructed above
does not depend on the particular points a and b chosen, and can be constructed
from the two circles and one additional point not lying on the line joining the
centers.

Remark. The “extra point” is a necessary parameter. The circles are presumed
given by center and point, but the points giving the circles might happen to lie
on the center line.

Proof. Let the two circles C and K have centers s and t, and let a and b be
distinct points on C and K, respectively, such that the midpoint m of ab does
not lie on the line L containing the centers s and t. We need a point r not on L
to be able to choose a and b. For example, we can use r to erect a perpendicular
to L at s, and let a be one of its intersections with C, and then construct a
perpendicular to L at t, on the same side of L as a, and let b be the intersection
of this perpendicular with K.

We wish to construct the radical axis R of C and K. The first step is
to construct the midpoint m of ab, which can be done using only line-circle
continuity by Lemma 8.10. Then ms and mt are not null segments, since m
does not lie on L (since s and t are on the same side of L, so not on opposite
sides of it). Then we need to construct perpendiculars to sm and mt that
pass through p. By the uniform perpendicular construction, we can do that
without worrying about whether p lies on Line(s,m) or not, or whether p lies
on Line(m, t) or not. But we do have to worry about whether the intersection
p of those perpendiculars exists. By the strong parallel axiom, it will exist if
the two perpendiculars are not parallel or coincident. That can only happen if
m, s, and t are collinear, but we have chosen a and b so that b does not lie on
L; hence indeed p exists. Then define line R as the (uniform) perpendicular to
L through p.

Now we will prove (constructively and using only line-circle continuity) that
every point x on R has equal powers with respect to C and Q. Suppose x is on
the radical axis R. Define circle M to be the circle with center m and passing
through a and b. See Fig. 29.
Let z be the intersection of M with Line (a, p), and let y be the intersection of
M with Line (b, x). Then the power of x with respect to C, namely xz · ax (by
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Figure 29: The power of p with respect to each of C and K is equal to the power of p with
respect to M .
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Lemma 14.4) is equal to the power of x with respect to M . Similarly, the power
of x with respect to K is yx ·yb, which is also the power of x with respect toM .
Since the powers of x with respect to C and to K are both equal to the power
of x with respect to M , they are equal. That completes the proof.

14.4. Circle-circle continuity via the radical axis

We observe that the power of x with respect to circle C is negative when x
is inside C, zero when x is on C, and positive when x is outside C. Intuitively,
the radical axis of two intersecting circles is the line joining the two intersection
points. In this section we use this idea to prove circle-circle continuity. One
more idea is necessary: the “radical center.”
Second proof of Theorem 14.1. Let circles C and K be given, satisfying the
hypothesis of the circle-circle continuity axiom. That is, K has a point (say b)
outside C and a point (say x) inside C. We will use b as one of the points to start
the radical axis construction, and we will choose the other point a very carefully.
Construct the perpendicular to xb at x. Since x is inside C, by segment-circle
continuity that perpendicular meets C in some point a such that the interior
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of ab does not meet Line (s, t). In other words, a and b lie on the same side of
Line (s, t) unless b already lies on Line (s, t).

Now use a and b as starting points for the radical axis construction; let the
constructed point be p. By construction of a, if x 6= b, then angle axb is a right
angle with a and x at the ends of a diameter of circle M ; that is the result of
choosing a as we did. See Fig. 30. Therefore the vertex x of this right angle lies
on circle M , by Lemma 14.2. On the other hand, if x = b (that is vb is tangent
to K) then x also lies on M ; by the stability of equality, x lies on M (that is
xt = bt) whether or not x = b.

Figure 30: b and x are given on K with b outside C and x inside C. Then a is chosen so
ax ⊥ xb. Then it turns out that x lies on M , and the constructed point p is inside both circles.
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By segment-circle continuity, there is a point v on C with B(v, x, p). We
claim T(v, p, b). By the stability of betweenness we can prove this by contra-
diction. Since ¬¬(A ∨ B) is equivalent to ¬(¬A ∧ ¬B), we can argue by cases
for the contradiction. There are two cases to consider: B(p, v, b) and B(v, b, p).
Let y be the other point of intersection (besides v) of Line(b, x) with C. Then
B(v, x, y) since x is inside C.

Case 1: B(p, v, b). We will show that the power of p with respect to C is
less than the power of p with respect to K. The former is pv · py, the latter is
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px · pb, and because T(v, x, y) we have pv ≤ px and because T(p, y, b) we have
py ≤ pb. Therefore pv · py ≤ px · pb. For equality to hold, we would need v = x
and y = b, but we have arranged x 6= v. Hence the power of p with respect to
C is strictly less than the power of p with respect to K, contradiction.

Case 2: B(v, b, p). We similarly can show that the power of p with respect
to K is less than the power of p with respect to C. Hence both cases are
contradictory. Hence T(v, p, b) as claimed.

SinceT(v, p, b) andT(v, x, y) andT(x, p, b), it follows classically thatT(v, p, y)
or T(y, p, b). In the first case, p is inside C; in the second case, p is inside K.
But since the power of p with respect to C is equal to the power of p with
respect to K, p is inside C if and only if it is inside K. Double-negating each
step of the argument, we find that p is not not inside C; but by the stability of
“inside”, p is inside C.

Then by line-circle continuity, since p lies on the radical axis R, R meets C
in a point x. Since x lies on C, the power of x with respect to C is zero. Since
x lies on R, the power of x with respect to K is equal to the power of x with
respect to C, which is zero. Hence x lies on K as well as on C. That completes
the proof.

We have shown that points on the radical axis have equal powers with respect
to both circles. The following lemma is the converse. We do not need it, but
the proof is short and pretty.

Lemma 14.6. Let C and K be distinct circles. If they meet, then the radical
axis of C and K consists of exactly those points whose powers with respect to C
and K are equal.

Remark. The lemma is true even if the circles do not meet, but I do not know
a simple geometric proof.

Proof. We have already proved that points on the radical axis have equal powers.
It suffices to prove the converse. Suppose that u has equal powers with respect
to C and K. We must prove u lies on the radical axis. Let v lie on both circles.
When we compute the powers of u with respect to both C and K using the
line uv, we get different answers unless u lies on the radical axis (so that the
endpoints on C and K are the same). That completes the proof.

14.5. Skolem functions for circle-circle continuity

Terms of Tarski geometry (intuitionistic or continuous, which has classical
logic) correspond to (certain) ruler and compass constructions; in effect, to con-
structions in which you can form the intersection of lines that must intersect
by inner Pasch, and intersections of lines and circles. Since inner Pasch implies
outer Pasch (in the presence of other axioms) the points formed by outer Pasch
are also given by terms; of course those terms will involve the complicated con-
structions of Gupta’s perpendiculars. That is, the Skolem function for outer
Pasch, defined in terms of the Skolem function for inner Pasch, is very compli-
cated. Similarly, since circle-circle continuity is implied by line-circle continuity,
then there must be terms for constructing those intersection points as well.
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But there is an issue to consider, in that the terms for erected and uniform
perpendiculars have an extra parameter, a point not on the line; and the radical
axis construction also has an extra parameter for a point not on the center line.
Examination of those constructions reveals that if the “extra” point is changed
to the other side of the line, then the “head” of the perpendicular changes sides
too; and in the radical axis construction, the result is that the two intersection
points of the two circles switch places. If we then fix that choice once and for
all by using Lemma 11.4, we can construct terms that give the two intersection
points of two circles continuously. However, those terms will be complicated,
because the term for constructing a point not on a line involves coordinates and
cross products.

In previous work on constructive geometry, we had circle-circle continuity
as an axiom, and built-in function symbols for the intersection points. It was
a point of difficulty to distinguish the two, which we wanted to do by saying
whether the triple of points from the center of one circle to the other center
to the point of intersection was a “right turn” or a “left turn”. The concepts
Right (a, b, c) and Left (a, b, c) had to be defined, either by a complicated set of
axioms, or by introducing coordinates and using cross products as in [5]. Here
we can recover those same terms, but now the coordinates and cross products
are at least no longer in the axioms! If we perform a complex conjugation (i.e.,
reflect in the x-axis) then the two terms for the intersection points of two circles
change places, exactly as in [5].

If one wishes (for example for connecting these theories to computer graph-
ics) to have explicit function symbols for circle-circle continuity, of course they
can be conservatively added.

15. Conclusion

We have exhibited a constructive version of Tarski’s Euclidean geometry.
Because of the double-negation interpretation, it can prove at least some ver-
sion of each classical theorem. Using the uniform perpendicular, rotation, and
reflection constructions given in this paper, it is possible (by the methods of
[5]) to give geometric definitions of addition and multiplication, without case
distinctions as to the sign of the arguments, and proofs of their properties, so
that coordinates in a Euclidean field provably exist. Hence the theory has not
omitted anything essential. To achieve these results, we had to modify Tarski’s
axioms to eliminate degenerate cases, and add back some former axioms that
Tarski had eliminated using those degenerate cases. Even with classical logic,
this theory now connects nicely with ruler-and- compass constructions, since
each of the points asserted to exist can be constructed with ruler and compass.

By cut-elimination, things proved to exist (under a negative hypothesis, as
is always the case in Euclid) can be constructed, by a uniform straightedge-
and-compass construction. Even stronger, these constructions need not involve
taking the intersections of arbitrary lines, but only those lines that have to
intersect by the strong parallel axiom or inner Pasch.
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By contrast, in Tarski’s (classical) theory, we obtain (by Herbrand’s theorem)
a similar result but without uniformity, i.e., there are several constructions (not
necessarily just one), such that for every choice of the “given points”, one of
the constructions will work. (The classical result (unlike the constructive one)
holds only for formulas ∀x∃y A(x, y), where A is quantifier-free.)

These points-only axiom system have conservative extensions with variables
for lines and circles, and further conservative extensions with variables for an-
gles, segments, and arcs, which can serve for the direct constructive formaliza-
tion of Euclidean geometry using Hilbert’s primitives (as in [3]). Therefore, this
points-only theory, with its short list of axioms, can be said to provide the log-
ical foundations of constructive Euclidean geometry. In particular, it supplies
one detailed example of a formalization of constructive geometry, to which the
independence results about the parallel postulate of [5] apply.
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