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Abstract

Euclidean geometry, as presented by Euclid, consists of straightedge-and-compass construc-
tions and rigorous reasoning about the results of those constructions. A consideration of the
relation of the Euclidean “constructions” to “constructive mathematics” leads to the develop-
ment of a first-order theory ECG of the “Euclidean Constructive Geometry”, which can serve as
an axiomatization of Euclid rather close in spirit to the Elements of Euclid. ECG is axiomatized
in a quantifier-free, disjunction-free way. Unlike previous intuitionistic geometries, it does not
have apartness. Unlike previous algebraic theories of geometric constructions, it does not have a
test-for-equality construction. We show that ECG is a good geometric theory, in the sense that
with classical logic it is equivalent to textbook theories, and its models are (intuitionistically)
planes over Euclidean fields. We then apply the methods of modern metamathematics to this
theory, showing that if ECG proves an existential theorem, then the object proved to exist can
be constructed from parameters, using the basic constructions of ECG (which correspond to
the Euclidean straightedge-and-compass constructions). In particular, objects proved to exist
in ECG depend continuously on parameters. We also study the formal relationships between
several versions of Euclid’s parallel postulate, and show that each corresponds to a natural
axiom system for Euclidean fields.1

1 Introduction

Euclid’s geometry, written down about 300 BCE, has been extraordinarily influential in the
development of mathematics, and prior to the twentieth century was regarded as a paradigmatic
example of pure reasoning. But during those 2300 years, most people thought that Euclid’s
theory was about something. What was it about? Some may have answered that it was about
points, lines, and planes, and their relationships. Others may have said that it was about
methods for constructing points, lines, and planes with certain specified relationships to given
points, lines, and planes, for example, constructing an equilateral triangle with a given side.
In these two answers, we see the viewpoints of pure (classical) mathematics and of algorithmic
mathematics represented. Hilbert’s 1899 reworking of the theory [11] gave another answer,
surprising at the time: Euclid’s theories were not about anything at all. Instead of “points,
lines, and planes”, one should be able to read “tables, chairs, and beer mugs.” All the reasoning
should still be valid. The names of the “entities” were just place holders. That was the viewpoint
of twentieth-century axiomatics.

In the late twentieth century, contemporaneously with the flowering of computer science,
there was a new surge of vigor in algorithmic, or constructive, mathematics, beginning with
Bishop’s book [4]. In algorithmic mathematics, one tries to reduce every “existence theorem”
to an assertion that a certain algorithm has a certain result. In the terminology of computer

1We would like to thank Jeremy Avigad and Freek Wiedijk for productive and interesting discussions, and for
careful reading and useful suggestions.
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science, existence theorems should become correctness proofs of algorithms. The proof theory
of arithmetic has provided many beautiful theorems to show that indeed, existence theorems in
number theory (when constructively proved) contain algorithms that can be “extracted” from
the proofs. In particular we mention the techniques of recursive realizability, the Dialectica
interpretation of Gödel, and the extraction of algorithms from cut-free proofs as well-known
examples of the phenomenon.

In this paper, we re-examine Euclidean geometry from the viewpoint of constructive math-
ematics. The phrase “constructive geometry” suggests, on the one hand, that “constructive”
refers to geometrical constructions with straightedge and compass. On the other hand, the word
“constructive” may suggest the use of intuitionistic logic. We investigate the connections be-
tween these two meanings of the word. Our method is to proceed by analogy with the extensive
body of work that has been done on number theory and analysis, applying the relevant method-
ologies to the weaker theories of geometry. The basis for the work described here is the idea
that in geometry, we can take “algorithm” in the restricted sense of “geometric construction.”
That is, we pursue the analogy

formal number theory

Turing computable functions
=

intuitionistic geometry

geometric constructions

To carry out this program, we need a suitable formal theory for intuitionistic geometry.
It should be a theory with terms for the geometric constructions, so that there will be terms
available to denote the means of constructing things that have been proved to exist. This leads
us to look for a quantifier-free axiomatization. In formulating a suitable theory of geometry,
another important consideration was the principle that “constructive proof implies continuity in
parameters”. This principle is familiar to those who have studied constructive mathematics; but
it is easy to understand on an intuitive basis. If we wish to allow an interpretation of geometry
in which points are given by approximations (as accurate as one may demand), for example, if
they are given as pairs of real numbers (x, y), and we (constructively) prove ∀x∃y A(x, y), then
we ought to be able to produce approximations to y when we are given approximations to x.
This idea led us to look at the continuity of the Euclidean constructions. We looked for (and
found) an axiom system ECG with intuitionistic logic, such that when an existential theorem
is proved in ECG, the object asserted to exist can be constructed by straightedge and compass,
continuously in parameters.

Decision functions, such as whether two points are equal or whether a given point lies on
a given line, are discontinuous. Past work on the algebraic approach to constructions (see for
example [15]) has always assumed decision functions, probably because they seem to be needed
to define projection of a point on a line, which is needed in order to introduce coordinates in
the Euclidean plane and connect geometry to field theory. But projection itself is continuous.
In an early version of our theory ECG, we took it as a fundamental operation. In the version
presented here, that operation is not necessary, because projection can be defined in terms of
the operations of ECG, and its essential properties proved using the axioms of ECG.

Our interest in this subject began with a computer animation of Euclid’s constructions that
permits the user to drag the starting points, and see how the construction depends on the
changed starting points. The results for Euclid’s Book I, Proposition 2, were surprising and
interesting. In Book I, Proposition 2, Euclid attempted to show that a rigid compass could
be simulated by a collapsible compass. This famous construction shows how to use the rigid
compass to construct a point D = e(A,B,C) such that whenever B 6= C and A 6= B then
AD = BC. The first problem with this construction is that it does not work when A = C. Of
course, in that case we can just take D = B; but that case distinction requires classical logic.
And the computer animation reveals that when we drag point C close to A, and then around
A in a small circle, then the constructed point D moves around A in a circle of radius close to
BC. Hence D does not depend continuously on C. This discontinuity, together with the need
for a case distinction just mentioned, makes it clear that from the intuitionistic point of view,
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there are two different versions of Euclid I.2: the version in which (in addition to B 6= C) we
take A 6= C as a hypothesis, or the “uniform” version in which we do not assume A 6= C, but
assert that D can be constructed, whatever the values of A, B, and C, as long as B 6= C. Which
version of Euclid I.2 is provable with intuitionistic logic turns out to depend on whether we take
(a formalism corresponding to) a rigid compass, or Euclid’s collapsible compass.

Past work on axiomatizations of constructive (intuitionistic) geometry, such [10] and [17],
has replaced the law of the excluded middle by “apartness” (which is explained in the body
of the paper). One can introduce an apartness “construction”, but it is also not continuous.2

Therefore we work in theories without apartness.
We are able to obtain the main metatheorem we want using cut-elimination; no new proof-

theoretic techniques are developed here, so this paper should be accessible to geometers, not
only to logicians.

Geometry is an ancient subject, but it is very much alive. There are a number of avenues of
current research that are related to this work, but not dealt with in this paper; and rather than
undertake to survey them, we prefer to stick to the specific aims outlined above. Similarly, there
is a long history of axiomatizations of geometry. For a review of some of these, see [19]. Here
we explain only how our axiomatization is different from others: (i) it uses constructive logic,
rather than classical, which distinguishes it from all previous axiomatizations except Heyting’s,
and (ii) it does not use apartness, which enables it to have the property that points proved to
exist can be constructed by Euclid’s (continuous) constructions.

2 Euclid’s constructions as algorithms

Euclid’s five books present 48 two-dimensional constructions and about a dozen three-dimensional
constructions. (For simplicity, we will not discuss the three-dimensional part of Euclid, con-
tained mostly in Book 5). We consider the 48 two-dimensional constructions to be the world’s
first systematic collection of algorithms. (We do not say, “the world’s first algorithms”, because
there certainly were a few number-theoretic algorithms known in China and India much earlier.)

If the constructions are considered as algorithms, then Euclid’s Elements contained the first
proofs of correctness of algorithms.

Euclid presents his readers with both “postulates” and “axioms”. Modern mathematicians
often treat these words as synonyms. For Euclid and his contemporaries, however, they had
quite different meanings. Here is the difference, as explained by Pambuccian [20], p. 12.

For Proclus, who relates a view held by Geminus, a postulate prescribes that we
construct or provide some simple or easily grasped object for the exhibition of a
character, while an axiom asserts some inherent attribute that is known at once to
one’s auditors. And just as a problem differs from a theorem, so a postulate differs
from an axiom, even though both of them are undemonstrated; the one is assumed
because it is easy to construct, the other accepted because it is easy to know. That is,
postulates ask for the production, the poesis of something not yet given . . ., whereas
axioms refer to the gnosis of a given, to insight into the validity of certain relationships
that hold between given notions.

Euclid’s famous “parallel postulate” states that if two lines L and M are traversed by another
line T , forming adjacent interior angles on one side of T adding up to less than two right angles,
then L and M will intersect on that side of T . Stated this way, the postulate can be viewed as a

2Even though apartness is intuitionistically acceptable, an apartness “constructor” must make use of the idea
that points are not given “all at once” but by a sequence of approximations. The same point can be given by
different sequences, and though an apartness constructor can be continuous in the approximating sequences, it cannot
be continuous in the geometric topology on the points. Hence an apartness constructor needs algorithms beyond
the Euclidean constructions. In other words, geometry with apartness goes beyond Euclid. We have extended our
metamathematical work to theories with apartness, but we have not presented those extensions in this paper.
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construction method for producing certain triangles. Nowadays, the parallel postulate is often
stated as an axiom: Given a line L, and a point P not on L, there exists exactly one parallel
to L through P . (Parallel lines are by definition lines that do not meet.) Written this way, the
parallel postulate does not directly assert the existence of any specific point.3

3 The algebraic approach to constructions

The geometrical theory that we shall eventually formulate is quantifier-free, with terms to denote
the geometrical constructions. A model of such a theory can be regarded as a many-sorted
algebra with partial functions representing the basic geometric constructions. Specifically, the
sorts include at least Point, Line, and Circle, and they may possibly include Arc, Ray, Triangle,
and Square. We have constants and variables of each sort. This collection of data types is almost
adequate to cover the return types and argument types of the 48 plane Euclidean constructions.
The obvious exception is the construction of a regular pentagon or hexagon. More generally,
some of the later constructions use the word “figure”, which apparently means something like
what a modern mathematician would call a “closed polygon”. Some small fixed number of
sides would suffice for the Euclidean constructions. In Euclid, no figure with more sides than
an octagon is constructed, and no figure with more than four sides is an input to another
construction, except for constructions that work on any “figure.” The general concept of a
closed polygon of any number of sides may be logically problematic as it drags the concept of
integer into geometry.

Our algebras include function symbols for the basic constructors and accessors:

Line (Point B,Point B) A and B lie on this line

pointOn1(Line L) The points from which L was originally constructed

pointOn2(Line L)

Circle (Point A,Point B) A is the center, and the circle passes through B

center (Circle C)

pointOnCircle(Circle C) A point on circle C,

and for the “elementary constructions” (each of which has type Point ):

IntersectLines(Line K,Line L)

IntersectLineCircle1(Line L,Circle C)

IntersectLineCircle2(Line L,Circle C)

IntersectCircles1(Circle C,Circle K)

IntersectCircles2(Circle C,Circle K)

Each of these has several “overloaded” variants, which can be defined from these using con-
structors and accessors. For example,

IntersectLines(Point A,Point B,Point C,Point D)

= IntersectLines(Line (A,B),Line (C,D))

IntersectLineCircle1(Point A,Point B,Point C,Point D)

= IntersectLineCircle1(Line (A,B),Circle (C,D))

IntersectLineCircle1(Point A,Point B,Circle C)

= IntersectLineCircle1(Line (A,B), C)

3For example, it is not immediately clear whether this version implies the first version using only intuitionistic
(constructive) logic, although of course it does in classical logic. This question is settled (in the negative) in [3].
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As these three examples illustrate, one can regard circles and lines as mere intermediaries; points
are ultimately constructed from other points. In a lemma at the end of this section, we state
and prove this principle precisely.

We can distinguish the study of such many-sorted algebras from the study of axiomatic first-
order theories containing symbols for these algebraic operations. Some questions can be taken
up without the consideration of axioms or logical inferences. We shall discuss a few of these.

There is a second constructor for circles, which we can describe for short as “circle from
center and radius”, as opposed to the first constructor above, “circle from center and point.”
Specifically Circle3 (A,B,C) constructs a circle of radius BC and center A, provided B 6= C.
These two constructors for circles correspond to a “collapsible compass” and a “rigid compass”
respectively. The compass of Euclid was a collapsible compass: you cannot use it to “hold”
the length BC while you move one point of the compass to A. You can only use it to hold
the radius AB while one point of the compass is fixed at A, so in that sense it corresponds to
Circle (A,B). The second constructor Circle3 corresponds to a rigid compass.4 In the next
section we will have more to say about the relationship between these two constructors.

We introduce here a first example of a “construction” not considered by Euclid, the test-for-
equality construction. This “construction” D takes four points, and tests its first two arguments
for equality, producing the third or fourth argument depending on the outcome:

D(a, b, c, d) =

{

c if a = b

d if a 6= b

The algebraic approach to constructions was pioneered by Kijne [15], but all the systems he
considered contained “decision functions” such as test-for-equality or test-for-incidence. In this
paper we will not study systems containing decision functions.

We note in the following lemma that, as far as constructing points goes, the other types are
mere conveniences. The elementary constructions can be expressed, as we have noted, in several
ways using variables of different types. For example, we could have IntersectLines(K,L) where
K and L have type Line , or IntersectLines(A,B,C,D), where A, B, C, and D have type Point,
and

IntersectLines(Line(A,B), Line(C,D) = IntersectLines(A,B,C,D).

Lemma 1 Let t be a term of type Point, whose variables are all of type Point. Then there is a
term t∗ with the same variables as t, also of type Point, such that in the standard plane t and t∗

determine the same function, and t∗ contains only function symbols of type Point having Point
arguments.

Proof. By induction on the complexity of t. Suppose that t has the form IntersectLines(r, s)
where r and s are terms of type Line . None of the elementary constructions has type Line ,
and r and s cannot be variables (since all variables in t are of type Point ), so r must have the
form Line (p, q) for some terms p and q, and s must have the form Line (u, v) for some terms u
and v. Then t∗ can be taken to be Line (p∗, q∗, u∗, v∗). The other elementary constructions are
treated similarly. The basis case, when t is a variable or constant, is treated by taking t∗ = t.

4 Models of the elementary constructions

The algebraic approach allows us to consider “models” without (yet) having formulated any
axioms or logical theories. There are several interesting models, of which we now mention four.
To define these models, we assume there are three constants α, β, and γ of type Point .

4There is a word in Dutch, passer, for this type of compass, which was used in navigation in the seventeenth
century. But there seems to be no single word in English that distinguishes either of the two types of compass from
the other.
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The standard plane is R2. Points, lines, and circles (as well as segments, arcs, triangles,
squares, etc., in extended algebras in which such objects are considered) are interpreted as the
objects that usually bear those names in the Euclidean plane. More formally, the interpretation
of the type symbol “Point ” is the set of points, the interpretation of “Line ” is the set of
lines, etc. In particular we must choose three specific non-collinear points to serve as the
interpretations of α, β, and γ. Let us choose α = (0, 1), β = (1, 0), and γ = (1, 0). The
constructor and accessor functions listed above also have standard and obvious interpretations.
It is when we come to the five operations for intersecting lines and circles that we must be more
specific. There are three issues to decide:

• when there are two intersection points, which one is denoted by which term?

• In degenerate situations, such as Line (P,P ), what do we do?

• When the indicated lines and/or circles do not intersect, what do we do about the term(s)
for their intersection point(s)?

We take up the last item first. When, for example, line L does not meet circle C, we say that the
term IntersectLineCircle1(L,C) is undefined. In other words, the operations of these “algebras”
do not have to be defined on all values of their arguments. The same issue, of course, arises
in many other algebraic contexts, for example, division is not defined when the denominator is
zero, and

√
x is not defined (when doing real arithmetic) when x is negative.

Regarding the “which is which” issue, our guiding principle is continuity. We therefore make
the following definitions: IntersectCircles1(C,K) is the intersection point P such that the angle
from center (C) to center (K) to P makes a “left turn”. This is defined as in computer graphics,
using the sign of the cross product. Specifically, let A = center (C) and B = center (K). Then
the sign of (A − B) × (P − B) determines whether angle ABP is a “left turn” or a “right
turn”. Thus αβγ is a left turn and γβα is a right turn. In case the two intersection points are
different, one of these cases must apply. This explanation has used a case distinction as well as
the cross product; later we will show how to define “left turn” and “right turn” using only the
axioms of Euclidean geometry and intuitionistic logic. For now we simply note that this notion
is constructively appealing, because of continuity: there exists a unique continuous function of
C and K that satisfies the stated handedness condition for IntersectCircles1 when C and K
have two distinct intersection points, and is defined whenever C and K intersect (at all).

The principle of continuity leads us to make IntersectCircles1(C,K) and IntersectCircles2(C,K)
undefined in the “degenerate situation” when circles C and K coincide, i.e. have the same center
and radius. Otherwise, as the center of C passes through the center of K , there is a discon-
tinuity. It makes sense, anyway, to have them undefined when C andK coincide, as the usual
formulas for computing them get zero denominators, and there is no natural way to select two
of the infinitely many intersection points.

We still need to settle the “which is which” issue for IntersectLineCircle1(Line (A,B), C)
and IntersectLineCircle2(Line (A,B), C). Here the rule is that these two points must occur in
the same order on Line (A,B) as A and B do. Again, we require continuity of the function

IntersectLineCircle1(A,B, P,Q)

with four Point variables, i.e.

IntersectLineCircle1(Line (A,B),Circle (P,Q)).

There is a unique continuous extension from the set of (A,B, P,Q) where there are two inter-
section points to the set where there is at least one intersection point; that extension is the
interpretation of IntersectLineCircle1 .

Regarding the degenerate forms Line (P,P ), we say that the term is undefined. With re-
spect to degenerate circles, Circle (A,A), continuity and computability do not present the same
obstacles as in the case of degenerate lines Line (A,A). Thus we have a choice to allow degen-
erate segments and circles, without destroying the continuity of the elementary constructions.
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We may choose to allow them or not. In the “standard model” R2 we take Circle (A,A) to be
defined, i.e. circles of zero radius are allowed. There is only one point on such a circle. Then
IntersectLineCircle1(L,Circle(A,A)) is defined if A is on line L, and is equal to A. We also
consider (briefly) the model R2− in which degenerate circles are not allowed, so Circle (A,A) is
undefined.

The recursive plane Rrec

2 consists of points in the plane whose coordinates are given by
“recursive reals”. We write {e}(n) for the result, if any, of the e-th Turing machine at input
n. Rational numbers are coded as certain integers, and modulo this coding we can speak of
recursive functions from N to Q. A “recursive real number” x is the index of a Turing machine
e such that |{e}(n) − x| ≤ 1/n for each n ∈ N. The real number to which the approximations
{x}(n) converge is sometimes also called a “recursive real number”, but we call it the “value
of x”. It is a routine exercise to show that the recursive points in the plane are closed under
the Euclidean constructions. In particular, given approximations to two circles (or to a circle
and a line), we can compute approximations to their “intersection points”, even though it may
turn out that when we compute better approximations to the circles, we see that they do not
intersect at all.

In the recursive plane, there is no computable test-for-equality function, that is, no com-
putable function D that operates on two Turing machine indices x and y, and produces 0 when
x and y are recursive real numbers with the same value, and 1 when they are recursive real
numbers with different values. Proof, if we had such a D, we could solve the halting problem by
applying D to the point (E(x), 0), where {E(x)}(n) = 1/n if Turing machine x does not halt at
input x in fewer than n steps, and {E(x)}(n) = 1/k otherwise, where x halts in exactly k steps.
Namely, {x}(x) halts if and only if the value of E(x) is not zero, if and only if D(Z,E(x)) 6= 0,
where Z is an index of the constant function whose value is the (number coding the) rational
number zero.

Readers familiar with recursion theory may realize that there are several ways to define
computable functions of real numbers. The model we have just described is essentially the
plane version of the “effective operations”. It is a well-known theorem of Tseitin, Kreisel,
LaCombe, and Shoenfield, known traditionally as KLS (and easily adapted to the plane) that
effective operations are continuous. Of course, in the case at hand we can check the continuity
of the elementary constructions directly.

The algebraic plane consists of points in the plane whose coordinates are algebraic. Since
intersection points of circles and lines are given by solutions of algebraic equations, the algebraic
plane is also closed under these constructions. Since algebraic numbers can be computed, this
is a submodel of the recursive plane.

In the algebraic plane, there is a computable test-for-equality function D. We assume
algebraic numbers are given by means of a rational interval (a, b) and a square-free polynomial
f ∈ Q[x] such that f has only one root in (a, b). To determine if (a, b) and f determine the same
or a different real number than (p, q) and g, first check if the two rational intervals overlap. If
not, the two reals are different. If so, let (r, s) be the intersection. Now we have to determine
if f and g have a common zero on (r, s). There is a simple recursive algorithm to do that: Say
g has degree greater than or equal to that of f . Then write f = gh + r with r of lower degree
than g. Then f and g have a common zero on (r, s) if and only if f and r have a common zero.
Recurse until both polynomials are linear, when the decision is very easy to make.

The Tarksi model is K ×K , where K = Q(
√

) is the least subfield of the reals containing
the rationals and closed under taking the square root of positive elements. This is a submodel
of the algebraic plane.

In such models, the elementary constructions are interpreted as functions from M to M ,
and of course M must be closed under those functions, but they may also have other interesting
properties. For example, in the examples given above, the (interpretations of the) elementary
constructions are all computable functions; indeed they are algebraic functions of low degree. In
particular, they are all continuous on their domains. Hence, for example, there is no algebraic
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test-for-equality function in the algebraic plane, even though there is a computable one (since
a test-for-equality function would enable us to define a function f(x) such that f(0) = 0 but
f(x) = 1 when x 6= 0; since f is not continuous, it cannot be algebraic).

5 Euclid’s Book I, Proposition 2

Book I, Proposition 2 has been discussed in the introduction. The question it addresses concerns
the constructor Circle3 (A,B,C), which constructs a circle with center A and radius BC. As
discussed in the introduction, Euclid gives a term that accomplishes this aim under the assump-
tions, not only that B 6= C, but also that A 6= C ∨B 6= C. We consider the stronger theorem
“uniform Euclid I.2”, which asserts that for every A and BC with B 6= C, there exists a D with
AD = BC. The “uniformity” refers to the missing assumption A 6= B. To “realize” uniform
Euclid I.2, we would need a term e(A,B,C) that produces D uniformly, whether A = B or not.
If we had such an e, then of course we could define

Circle3 (A,B,C) = Circle (A, e(A,B,C)).

Conversely, such an e can be defined from Circle3 like this:

e(A,B,C) = pointOnCircle(Circle3 (A,B,C))

But the mere fact that Euclid’s own construction does not suffice to define Circle3 does not
show that some other construction won’t do the job. However, we are able to prove that no
other construction can define Circle3 , as a corollary to the following theorem, which shows that
without Circle3 , no total function is definable, at least if we insist that Circle (x,x) is undefined.

Theorem 1 (with Freek Wiedijk) No total unary point-valued function (other than the iden-
tity) is definable in the standard model R2− (with degenerate circles undefined) from the ele-
mentary geometrical constructions excluding Circle3 . More precisely, let t be a compound term
containing exactly one variable A of type Point, and no other variables, but possibly containing
some constants α, β, . . . of type Point. Suppose that t does not contain Circle3. Let the constants
be interpreted as certain (fixed) distinct points in the standard plane. Then for some value of
A, t is not defined in the standard plane. In fact, we can make t undefined by assigning A the
same value as any constant occurring in t, or if t has no constants, t is always undefined.

Proof. We start by eliminating the “overloaded” versions of the elementary constructions from
t. For instance, if t contains a subterm IntersectLine(a, b, c, d), we replace it by a term using
the “fundamental” form of the construction, IntersectLines(Line (a, b),Line (c, d)). The result
of such replacements is a term with the same value as t under any assignment of a value to the
variable A, and containing no variables of types other than Point .

We proceed by induction on the complexity of terms t as in the theorem, but also containing
only the fundamental versions of the elementary constructions (no overloaded versions).

Since the theorem only applies to compound terms, the basis case occurs when t has only
variables or constants for arguments. We note that Circle (A,A), Line (A,A), Ray (A,A),
Segment (A,A), Arc (A,A,A) are undefined. But we also have to consider the possibility that
the constants β or γ occupy one of the argument places. For example, Circle (A, β) is undefined
when A takes the value β̄ that is assigned to the constant β. In the rest of the proof we shorten
this kind of statement to “is undefined when A = β.” Similarly, Circle (β,A) is undefined when
A = β; Line (A, β) and Line (β,A) are undefined when A = β, and the same for Ray , Arc , and
Segment . Note that this argument does not work for Circle3 , since Circle3 (A, β, γ) is always
defined, but by hypothesis, t does not contain Circle3 .

Since t does not contain any overloaded constructions, the basis case is finished, as there is
no fundamental construction that takes only arguments of type Point. Specifically, there are

8



just five fundamental constructions for producing the intersections of lines and lines, lines and
circles, or circles and circles, and they each need arguments of type Line or Circle.

Now consider the induction step. If the main symbol of t is a constructor, such as Line ,
then t has the form Line (a, b). One of a or b must contain a variable, and hence be somewhere
undefined. Hence t is also somewhere undefined, and indeed the same assignment of a value to
A that makes a or b undefined will work. Similarly for the other constructors (since Circle3 , to
which this argument does not apply, is not allowed).

Next consider the case when t is IntersectLines(p, q). Then p and q have type Line. The
only terms of type Line are those of the form Line (a, b), or variables of type Line. But t is
not allowed to contain variables of type Line. Therefore t must have the form,

IntersectLines(Line (a, b), Line (c, d))

Since t contains a variable, one of s = Line (a, b) or s = Line (c, d) must contain a variable, and
by induction hypothesis the term sσ is undefined when substitution σ assigns the variable of s
to one of the constants in s (or any constant if s has no constants). Hence tσ is also undefined.

Similarly for the other elementary constructions. That completes the proof.

Corollary 1 Let e(A,B,C) be any term built up from the elementary constructions, not con-
taining Circle3, having type Point, and containing exactly three variables A, B, and C of type
Point. Then it is not the case that in R2−, whenever B 6= C then e(A,B,C) is defined and is
a point D such that AD = BC.

Proof. Let us invent two constants β and γ, and interpret them as two distinct points β̄ and γ̄
(fixed for the rest of the proof). Then let f(A) = e(A, β, γ). Suppose, for proof by contradiction,
that e(A,B,C) is defined whenever B 6= C and is a point D such that AD = BC. Then f(A)
is defined for all A and is always different from A, contradicting the previous theorem.

Corollary 2 Circle3 is not definable in the model R2− from the (other) elementary construc-
tions.

Proof. Circle3 is a term e fulfilling the hypotheses of the previous corollary.

Circle3 is intimately connected with the “compass” of “straightedge and compass construc-
tions”. Euclid’s compass is supposed to be “collapsible”, so that you cannot use it to measure
BC and then move it to draw a circle of that same radius centered at A. Therefore Euclid
proved Euclid I.2, showing how you can accomplish this with a collapsible compass; but for
that we need to assume A 6= B. In effect we need a test-for-equality construction. When Pro-
clus criticized Euclid for omitting arguments by cases, perhaps this is what he had in mind.
The theorem “for every A, B, and C with B 6= C there exists a point D with AD = BC” is
(apparently) not “realized” by an elementary construction D = f(A,B,C).

The theorem above shows that without Circle3 , we cannot even define a construction f such
that for each point A, f(A) is a point different from A. We also cannot define a construction
f(A,L) that takes a point A and line L into a point on L, different from A.

The fact that Circle3 is not definable in R2− means that, if we do not include Circle3 as
a primitive construction, we shall not be able to define it in any axiomatic theory that has
R2− for a model. It seems clear that Euclid’s book does have R2− as a model; so the uniform
version of Book I, Proposition 2 is essentially non-constructive, using Euclid’s non-rigid compass.
We therefore add Circle3 as a fundamental construction (rendering I.2 a triviality) and give a
constructive theory that works for the rest of Euclid.

There is still an unresolved technical issue here: is Circle3 undefinable inR2? The above the-
orem does not extend toR2, because, for example, IntersectLineCircle2(Line (A,B),Circle (B, x))
is a total function if Circle is total. We conjecture that Circle3 is undefinable in R2 as well as
in R2−.
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6 Circles of zero radius and Circle3

In this section, we address the two issues of whether our basic theory ought to include Circle3 and
whether we ought to allow circles of zero radius. We conclude that both should be allowed. Our
approach is to consider what is required to achieve a formalization of Euclid using intuitionistic
logic, with no test-for-equality construction needed.

Here are some possible constructions we wish to consider.
Euclidean Extension. One of the Euclidean axioms says that we can extend a given segment

AB by a segment CD. More precisely, we can construct a point P = Extend(A,B,C,D) such
that BP = CD and B is between A and P . The assumptions here are that A 6= B and C 6= D,
but it is not assumed that B 6= C or B 6= D.

Strong Extension. ExtendA(A,B,C,D) is the unique continuous extension of Extend(A,B,C,D)
that is defined when A 6= B, i.e. without assuming C 6= D. When C = D, we have

ExtendA(A,B,C,D) = B.

We will show below how to define ExtendA in terms of Circle3 .
Projection. The construction project(P,L) takes a point P and line L and produces a point Q

on L such that P lies on the perpendicular to L at Q. The well-known Euclidean construction
for the projection applies only if P is known not to be on L. To define project using that
construction, we would require a test-for-incidence that allows us to test whether point P is on
line L or not. But no such test-for-incidence construction is computable over the computable
plane, so the Euclidean projection construction does not lead in any obvious way to a definition
of project . (That does not, however, constitute a proof that project is not definable in terms of
the elementary constructions, which we give below.)

Projection is absolutely necessary in order to reduce geometry to algebra. We want to pick a
line, call it X , and erect a perpendicular Y to X , and project each point P onto its coordinates
x = project (P,X) and y = project(P, Y ).

Lemma 2 Strong extension and projection are definable from Circle3 (with circles of zero radius
allowed). Also one can, using those primitives, construct the perpendicular to line L passing
through point P, without conditions as to whether P is or is not on L.

Proof. First we define

ExtendA(A,B,C,D) = IntersectLineCircle2(Line (A,B),Circle3 (B,C,D))

Since circles of zero radius are allowed, we do not need to assume C 6= D.
To construct the projection of point P on line L, we just need some circle with center P

that intersects L in two distinct points Q and R. Then the projection of P on L is the midpoint
of segment QR. If L is Line (A,B), then a suitable radius would be the sum of the lengths of
AB and PA. Thus the circle we need can be constructed as Circle3 (P,A,ExtendA(A,B, P,A)).
Note that we need strong extension, not just Euclidean extension, because we cannot rule out
P = A. That completes the definition of projection.

Now, to construct the perpendicular to L at P , we simply erect the perpendicular to L at
the projection of P on L, using the usual Euclidean construction. That completes the proof of
the lemma.

The following lemma helps make the case for allowing circles of zero radius and for allowing
Circle3 .

Lemma 3 In R2− (where circles of zero radius do not exist), projection is not definable in
terms of the elementary constructions without Circle3.

Proof. Let α and β be constants, whose values will be two distinct (fixed) points. Let t(A) be
the term project(A,Line (α, β)). Then t(A) is defined for all values of A. By Theorem 1, t(A)
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is not definable in terms of the elementary constructions without Circle3 , in the model R2−.
That completes the proof.

There are also some “constructions” that go “beyond Euclid.” We have already mentioned
the test-for-equality function D. In addition, there is a notion of apartness introduced by
Heyting [10]. The apartness axiom says that if B 6= C, then for any other point A, either
A 6= B or A 6= C. An “apartness construction” would be an operation # such that if B 6= C
then #(A,B,C) is defined5 , and is equal to B or to C, and satisfies A 6= #(A,B,C). In other
words, when B and C are different, A must be different from one of them, and this constructor
picks one from which A is different.

If we have an apartness construction, then #(#(A,B,C), B,C) is the other point of B and
C, so it would not be necessary to add a second apartness construction.

The following lemma just summarizes what the recursive model R2− tells us about apartness
and test-for-equality.

Lemma 4 (i) No apartness construction is definable in terms of the elementary constructions
and Circle3. (ii) Test-for-equality is not definable in terms of the elementary constructions and
Circle3, even with the aid of an apartness construction.

Proof. Ad (i): No apartness construction is definable in terms of the elementary constructions
and Circle3 , since all such terms define continuous functions, and # is not continuous. Ad (ii):
We have shown in a previous section that no test-for-equality function exists in the recursive
plane. However, the recursive plane does have Circle3 and an apartness construction. Here is
how to compute a point apart from one of two distinct recursive points B and C. Namely, let n
be a positive integer such that 1/n is less than the length of segment BC, and compute rational
approximations a, b, and c to A, B, and C within 1/(4n). Then a cannot be within 1/(4n) of
both b and c, and the answer is C if |a − b| < 1/(4n) and B otherwise. That completes the
proof.

We investigated a system in which Circle3 is included, but circles of zero radius are not
allowed, and instead project is taken as primitive. This is a workable system, but it is a bit more
complex, and there seems to be no intuitive justification for projection in terms of the compass
that does not also suffice to justify allowing circles of zero radius. In fact it can be argued that
there is no good reason not to allow the two points of the compass to coincide. We therefore
chose to allow Circle3 , and to allow circles of zero radius by requiring that Circle3 (A,B,C) is
always defined.

7 Continuous Coordinatization and Arithmetic

Nowadays we usually think of analytic geometry as coordinatizing a plane and translating
geometrical relations between points and lines into algebraic equations and inequalities. But
the converse is also possible: translating algebra into geometry, and this is important for lower
estimates on the power of geometric constructions, for example for showing that the models of
the geometry of constructions are planes over Euclidean fields.

In modern books (such as [5]) arithmetic is geometrized as operations on congruence classes
of segments. We operate instead on points on some fixed line X = Line (0, 1), where 0 and 1
are two arbitrarily fixed points. As far as I can tell, past work on coordinatization has always
assumed some discontinuous constructions, such as test-for-equality or at least apartness. Since
coordinatization itself is patently computable and continuous, it is in some sense “overkill” to
appeal to discontinuous and non-computable “constructions” to achieve coordinatization and
arithmetization. Although coordinatization is standard, old, and not complicated, we need to
check that it can in fact be done from the specified primitives, without using apartness or test-
for-equality, by definitions that apply without (for example) case distinctions as to whether

5Strict constructivists will want to assume B is apart from C in the definition of an apartness construction, but
we haven’t defined that yet and the discussion here makes sense with classical logic.

11



numbers being multiplied are equal to 0 or 1 or not. We note that it is crucial that circles of
zero radius be allowed (or else we need to take projection as another primitive).

In this section, we give the definitions of constructions that serve to implement coordinatiza-
tion and the arithmetic operations in a continuous way. We show that, in the models discussed
above, these operations are defined and behave as desired. In a later section, we will give an
axiomatic theory capable of formalizing these correctness proofs without reference to models.

Recall that the concepts of “right turn” and “left turn” have been introduced and discussed
in Section 4. For example, in Fig. 1, AOZ is a “right turn”, because the sign of the cross product
OA × OB is positive. Intuitively, traveling from A to O to Z requires one to turn right at O.
This definition of “right turn” is adequate for this section, since we are only concerned with
models where cross product makes sense. (Later, we will expend considerable effort defining
“right” and “left” in an axiomatic context.)

To perform addition geometrically we suppose given a line L = Line (R,S) and an “origin”,
a point O on L with S between R and O. We need to define a construction Add(A,B), which
also depends, of course, on S, R, and O, such that Add(A,B) is a point C on L representing
the (signed) sum of A and B, with O considered as origin. In particular if A and B are on the
same side of O then Add(A,B) = ExtendA(O,A,O, B), but that does not suffice to define Add.
It may be instructive to see another failed attempt to define Add(O,A,B):

IntersectLineCircle2(Line (O,B), Circle3(A, 0, B))

which is correct when O 6= B, but is undefined when O = B.

Lemma 5 Given line L = Line(R,S), and a point O on L with S between R and O, we can
construct a point Add(A,B) on L representing the signed sum of A and B, with O considered
as origin, using the elementary constructions and Circle3.

Proof. We first define an auxiliary construction rotate , which requires as inputs three distinct,
non-collinear points P , O, and Q (think of angle POQ), as well as a point A on Line (O, P ).
The desired result of rotate (P,O,Q, A) is a point Z on Line (O,Q) such that OZ = OA and
if A 6= O then AOZ is a right turn. (See Fig. 1.) The point is that Z is defined even when

Figure 1: Z = rotate (P, O, Q, A)

O A P

L

Q

B

Z

A = O (in which case it is just O, of course), and if A moves along Line (O, P ) through O,
then Z moves along Line (O,Q), passing through O as A does. To construct Z, we first bisect
the angle POQ (by the usual Euclidean construction, which is not problematic since the three
points are not collinear). Let the angle bisector be line L. Then let line K be the perpendicular
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to Line (O,P ) at A, let B be the intersection point of K and L, and let Z be the projection of
B on Line (O,Q) (which is defined no matter whether O = A or not).

Note that there are, if A 6= O, two points Z on OQ such that OZ = OA. The one constructed
by rotate (P,O,Q, A) is such that, if POQ is a right turn, then AOZ is a right turn when A 6= O,
regardless of whether A is between O and P or not. Similarly, if POQ is a left turn, so is AOZ.

With rotate in hand, we can give a construction for Add(A,B) (depending also on R, S,
and O). (The construction is illustrated in Fig. 2.) First, we replace R and S with new points
on L = Line (R,S), farther away from O, so that O, A, and B are all on the same side of R
and S, and the new R and S are in the same order on line L as before. (This can be done using
Extend.) Now erect the perpendicular K to L at O, and the perpendicular H to L at B. In the
process of erecting these perpendiculars, we will have constructed points C on K and D on H
such that ROC is a right turn. Then let

U = rotate (R,O,C,A)

V = project (U,H)

W = rotate (D,B,R, V )

We set Add(A,B) = W . Then Add(A,B) is defined for all A,B. Suppose A 6= O. Then UV is
perpendicular to both K and H . Then U and V are on the same side of L, since if UV meets
L at a point X , then XU and XO are both perpendicular to K , which implies U = O, which
implies A = O, contradicting A 6= O. It then follows from the property of rotate that B and W
occur on line L in the same order that O and A occur. Refer to Fig. 3 for an illustration of the
case when A is negative. This implies that Add(A,B) represents the algebraic sum of A and B,
since in magnitude BW = OA.

Figure 2: Signed addition without test-for-equality

O A B W=A+B

U
V

C

R

Figure 3: Signed addition when A is negative

A O W=A+B B

U V

Having defined addition, we now turn to multiplication, division, and square root. The
geometrical definitions of these operations go back to Descartes. On the second page of La
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Geometrie [7], he gives constructions for multiplication and square roots. We reproduce the
drawings found on page 2 of his book [7] in Figures 4 and 5. Here is Descartes’ explanation of
these figures:

Figure 4: La Multiplication according to Descartes

B A

C

D

E

1. Let AB be taken as unity.

2. Let it be required to multiply BD by BC. I have only to join the points A and
C, and draw DE parallel to CA; then BE is the product of BD and BC.

3. If it be required to divide BE by BD, I join E and D, and draw AC parallel to
DE; then BC is the result of the division.

4. If the square root of GH is desired, I add, along the same straight line, FG
equal to unity; then, bisecting FH at K, I describe the circle FIH about K as
a center, and draw from G a perpendicular and extend it to I, and GI is the
required root.

From the point of view of constructive geometry, there is a problem with the construction.
Namely, Descartes has only told us how to multiply two segments with non-zero lengths, and
at least one of whose lengths is not 1 (the length of unity–he needs this when constructing AC
parallel to DE), while we want to be able to multiply in general, without a test-for-equality
construction. To solve this problem, we recall from Lemma 2 that we can define perp(P,L), the
perpendicular to L passing through P , without regard to whether P is or is not on L. Then we
can define a construction para such that, for any line L and any point P (which may or may
not be on L), para(P,L) passes through P , and if P is not on L then para(P,L) is parallel to
L, while if P is on L, then para(P,L) has the same points as L. The definition of para is

para(P,L) = perp(P,perp(P,L)).

In words: First find the perpendicular to L passing through P . Then erect the perpendicular
to that line at P .

Using the para construction where Descartes calls for “drawing DE parallel to CA”, we
no longer have a problem multiplying numbers near 1 or 0. We now give a construction for
multiplication (which of course could be written as a single, much less readable, term). The
construction assumes that 0 and 1 are two distinct points on line X , and D and Q are points
on line X to be multiplied, and Y is another line through X , meeting X at 0 and distinct from
X . We could, for example, take Y to be the perpendicular to X at 0, although that does not
match the illustration from Descartes’ book.

Multiply(Point D, Point Q)

{ I = IntersectLineCircle1(Y,Circle(0,1))

C = rotate(1,0,I,Q) // f is as in the lemma, so 0C = 0Q
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// now we have to multiply BD by BC per Descartes

L = Line(1,C) // AC in Descartes’ diagram. A there is 1 here; B is 0.

K = para(1,C,D) // parallel to AC through D (or AC itself if D=1)

E = IntersectLines(K,Y) // defined because K is not parallel to Y

N = rotate(I,0,1,E) // rotate length 0E back to line X from line Y

return N

}

Note that since I is defined by IntersectLineCircle1 , which side of 0 it lies on (on Y ) is deter-
mined arbitrarily, by the unknown order on Y of the two points pointOn1(Y ) and pointOn2 (Y ).
That side of 0 on Y becomes the “positive” side. If Q is positive (lies on the same side of Zero as
One does) then C is positive, i.e. lies on the same side of 0 as I , and vice-versa, if Q is negative
(lies on the opposite side of 0 as 1 does), then C lies on the opposite side of Zero as U . This
makes multiplication of signed numbers come out correctly without needing a test-for-equality
constructor.

It remains, of course, to prove in some geometrical theory that multiplication and addition
satisfy the field laws. We do not take that up at this point since we have not yet discussed
theories and axioms.

Descartes’ division method is handled similarly, using para where Descartes constructs a
parallel. Turning to Descartes’ square root construction, we show that it can be carried out
uniformly, without needing to know that the point whose square root is required is different
from Zero. We carry out Descartes’s construction, but then we need to find a point on X whose
distance from 0 is IG, without dividing into cases as to whether G = 0 or not.

Now we take up the geometrical construction of square roots. Fig. 5 shows Descartes’
construction.

Figure 5: Square roots according to Descartes

H K G F

I

SquareRoot(Point G)

{ // H in Descartes’ diagram is 0

F = Add(0,G,0,1) // so FG has unit length

K = Midpoint(F,0)

C = Circle(K,F)

L = perp(G,Line(0,F))

I = IntersectLineCircle1(L,C)

U = IntersectLineCircle1(L,Circle(G,F)) // rotate unit length to line L

R = rotate(U,G,F,I) // so now RG = IG but R is on X, on the same side of G as F

// now we need N so that N0 = RG

MinusOne = IntersectLineCircle2(1,0,Circle(0,1))

N = ExtendA(MinusOne,0,G,R)

return N

}
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The point here is that we do not need to assume G 6= 0 for this construction to work; we only
need that 0 is not between G and 1, i.e. loosely speaking G ≥ 0. This works because perp is
total.

8 Euclidean Constructive Geometry ECG

In this section we develop a first order axiomatic theory of geometry as close as possible to
Euclid. We call it ECG, for “Elementary Constructive Geometry”. Euclid worked with the
following data types: Point, Line, Circle, Segment, and Arc.6 For foundational purposes, it
seems simplest to use only Point, Line, and Circle, and that is what we do in ECG. We
therefore choose a multi-sorted theory, with “sorts” corresponding to those types. We use the
words “sort” and “type” synonymously in this paper. It is, of course, not difficult to add sorts
Ray , Arc and Segment , and axioms making the extended theories conservative over ECG, but
we do not do so here. We take function symbols corresponding to constructors and accessors for
those types, described in detail below. The relation symbols we use are standard in axiomatic
geometry, B for (strict) betweenness and δ for equidistance. We emphasize that B is used for
strict betweenness; as Hilbert put it, if C is between A and B, then A, B, and C are three
distinct points.

We use on (P,L) for the incidence of point P on line L, and On (P,C) for the incidence
of point P on circle C. There is a complete list of the axioms of ECG in the Appendix, for
reference. In this section, we introduce these axioms one by one, with discussion and explanation.

ECG has five basic function symbols, shown here with arguments:

IntersectLines(L,K)

IntersectLineCircle1(L,C)

IntersectLineCircle2(L,C)

IntersectCircles1(C,K)

IntersectCircles2(C,K)

The intuitive meaning of these symbols has been discussed above. ECG does not have “over-
loaded” versions of these functions; in other words, we just write

IntersectLines(Line (A,B),Line (P,Q))

instead of having an overloaded version of IntersectLines that takes four points.
Our underlying logic is intuitionistic. We first give the specifically intuitionistic parts of

our theory, which are very few in number. We do not adopt decidable equality, nor even
the substitute concept of “apartness” introduced by Heyting (and discussed above), primarily
because we aim to develop a system in which definable terms (constructions) denote continuous
functions, but also because we wish to keep our system closely related to Euclid’s geometry,
which contains nothing like apartness. Our first four axioms express our intuition that there is
nothing asserting existence in the meaning of equality or incidence; hence assertions of equality
or incidence can be constructively proved by contradiction.

¬¬x = y ⊃ x = y (Axiom 1)
¬¬δ(A,B,C,D) ⊃ δ(A,B,C,D) (Axiom 2)
¬¬on (P,L) ⊃ on (P,L) (Axiom 3)
¬¬On (P,C) ⊃ On (P,C) (Axiom 4)

6Euclid also worked with triangles, squares, pentagons, hexagons, and “figures”. By “figure” he seems to have
meant, “closed polygon”. One cannot work with arbitrary figures without introducing variables for integers, which
in the modern view takes us beyond geometry. We therefore view those theorems of Euclid that mention “figure” as
geometrical theorem schemata, which result in a theorem about polygons of N sides, for each particular integer N .
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We will take care to formulate our axioms without quantifiers and without disjunction,
which will be key to our applications of proof theory. What we aim to do in this section is
to formulate such a theory, which we feel is quite close in spirit to Euclid. In formulating this
theory, we made use of the famous axioms of Hilbert [11], which have been given a more modern
and detailed formulation in the textbook of Greenberg [9]. Of course, we do not take the full
continuity axioms of Hilbert, but only the line-circle and circle-circle continuity axioms. Where
possible, we formulate our axioms as correctness statements about the constructions; in that
form they are automatically quantifier-free. Some axioms, which are not about constructions,
are inherently quantifier-free. The only question of serious interest is whether disjunction can
be completely avoided. It can, as it turns out. The details of this axiomatization may seem
somewhat tedious, but the system must of course be specified in complete detail in order to
use it in metamathematical proofs. Moreover, some of the details, as far as I can determine,
are actually new. In particular, we show how to define the relations “ABC is a left turn” and
“ABC is a right turn” in our theory; the experts we consulted thought this was new. We need
this in order to distinguish the two intersection points of two circles.

Since many of our function symbols denote “partial functions”, i.e. functions that are not
always defined, we will use the “logic of partial terms” LPTin our theories. This is a modification
of first-order logic, in which the formation rules for formulas are extended by adding the following
rule: If t is a term then t ↓ is a formula. Then in addition the quantifier rules are modified so
instead of ∀x(A(x) ⊃ A(t)) we have ∀x(t ↓ ∧A(x) ⊃ A(t)), and instead of A(t) ⊃ ∃xA(x) we
have A(t) ∧ t ↓⊃ ∃xA(x). Details of LPT can be found in [2], p. 97.

We could try to deal with partial terms, such as
√
x, by simply using an ordinary function

symbol for
√

, but not saying anything in the axioms about
√

of negative numbers. Thus
√
−1

would some real number, but we would not know or care which one, and we would not be able to
prove that its square is −1. This approach rapidly becomes awkward when complicated terms
involving square roots of different quantities are used, and you must add extra hypotheses to
every theorem asserting that what is under every square root is positive, and we choose to use
LPT instead.

LPT includes axioms c ↓ for all constants c of any theory formulated in LPT; this is in
accordance with the philosophy that terms denote things, and while terms may fail to denote
(as in “the King of France”), there is no such thing as a non-existent thing. Thus 1/0 can be
undefined, i.e. fail to denote, but if a constant ∞ is used in LPT, it must denote something.

The meaning of t = s is that t and s are both defined and they are equal. We write t ∼= s to
express that if one of t or s is defined, then so is the other, and they are equal. LPT contains
the axioms of “strictness”, which are as follows (for each function symbol f and relation symbol
R in the language):

f(t1, . . . , tn) ↓⊃ t1 ↓ ∧ . . . ∧ tn ↓
R(t1, . . . , tn) ⊃ t1 ↓ ∧ . . . ∧ tn ↓

The following axioms express the meaning of the five main function symbols of ECG. They
do not, however, make any assertions of geometrical content, nor do they distinguish one inter-
section point (of a line and circle, or of two circles) from the other.
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P = IntersectLines(L,K) ⊃ on(P,L) ∧ on (P,K) (Axiom 5)
IntersectLines(L,K) ∼= IntersectLines(K,L) (Axiom 6)
P = IntersectLineCircle1(L,C) ⊃ on (P,L) ∧ On (P,C) (Axiom 7)
P = IntersectLineCircle2(L,C) ⊃ on (P,L) ∧ On (P,C) (Axiom 8)
P = IntersectCircles1(C,K) ⊃ On (P,C) ∧ On (P,K) (Axiom 9)
P = IntersectCircles2(C,K) ⊃ On (P,C) ∧ On (P,K) (Axiom 10)
on (P,L) ∧ ¬on (P,K) ⊃ IntersectLines(L,K) ↓ (Axiom 11)
IntersectLines(L,K) ↓ ∧on (P,L) ∧ on (P,K) ⊃ P = IntersectLines(L,K) (Axiom 12)
on (P,L) ∧ On (P,C) ⊃ IntersectLineCircle1(L,C) ↓ (Axiom 13)
on (P,L) ∧ On (P,C) ⊃ IntersectLineCircle2(L,C) ↓ (Axiom 14)
On (P,C) ∧ On (P,K) ⊃ IntersectCircles1(C,K) ↓ (Axiom 15)
On (P,C) ∧ On (P,K) ⊃ IntersectCircles2(C,K) ↓ (Axiom 16)

Axioms to distinguish between the two intersection points in each case will be given below, but
that must await further developments.

In order to rule out “degenerate” lines, we need an axiom saying that they don’t exist; but
we do allow degenerate circles. The following axioms also provide for lines and circles to exist
when they ought to.

Line (A,B) ↓ ↔A 6= B (Axiom 17)
Circle (A,B) ↓ (Axiom 18)

There are functions symbols corresponding to the constructor and accessor functions for
each of the sorts. The argument and value types of these symbols are obvious, and hence not
specified here. Here are the axioms (20 through 27) relating the constructors and accessors.

Line (pointOn1(L), pointOn2(L)) = L (Axiom 19)
A 6= B ∧ pointOn1(Line (A,B)) = A (Axiom 20)
A 6= B ∧ pointOn2(Line (A,B)) = B (Axiom 21)
pointOn1(L) 6= pointOn2 (L) (Axiom 22)
Circle (center (C), pointOnCircle(C)) = C (Axiom 23)
center (Circle (A,B)) = A (Axiom 24)
pointOnCircle (Circle (A,B)) = B (Axiom 25)
center (C) 6= pointOnCircle (C) (Axiom 26)

For readers unfamiliar with the logic of partial terms, we point out that Axiom 20 could
have been written

pointOn1(Line (A,B)) ∼= A

where the relation t ∼= s means that if either side is defined, both sides are defined, and they
are equal. Also, written the way it is written, with equality instead of ∼=, Axiom 20 implies that
Line (A,B) is defined when A 6= B, making half of Axiom 17 superfluous.

There are two incidence relations, for on (P,L) for points lying on lines, and On (P,C) for
points lying on and circles. There are three constants α, β, and γ with axioms saying that these
three points are non-collinear. Specifically

¬on (α,Line (β, γ)) (Axiom 27)
¬on (β,Line (α, γ)) (Axiom 28)
¬on (γ,Line (α, β)) (Axiom 30)

We do not have to say explicitly that α ↓, because it is part of the logic of partial terms that
every constant is defined–it is nothing special to any particular theory.
The other axioms of incidence are

on (A,Line (A,B)) (Axiom 30)
on (B,Line (A,B)) (Axiom 31)
on (P,L) ∧ on (Q,L) ∧ on (R,Line (P,Q)) ⊃ on (R, L) (Axiom 32)

We do not need On (B,Circle(A,B)) because that will follow axiom 44 below.
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We use the equality symbol between points to mean “identically equal”. Between lines,
equality means “intensional equality”. In the spirit of constructive mathematics, lines “come
equipped” with two associated distinct points. Thus, Line (A,B) = Line (P,Q) if and only if
A = B and P = Q. This does not need to be assumed, as it follows from the axioms given
above for the accessor and constructor functions. It may, however, be confusing to those not
accustomed to constructive mathematics. The notion of “extensional equality” refers to the
defined relation between two lines, that the same points are on both lines. In practice, to avoid
confusion, we rarely if ever mention equality between lines. It should be noted, however, that
our theory does depend on this view of lines, since the order of the two intersection points of line
Line (A,B) with circle C is opposite to the order of the two intersection points of Line (B,A)
with C. In other words, when considering IntersectLineCircle1(L, C), it is essential that L is
given by two points.

The basic relations of our theories are equidistance and betweenness, which have been recog-
nized as fundamental at least since Hilbert’s famous 1899 book [11]. All the arguments of these
two relations have sort Point. The (strict) betweenness relation is written B(a, b, c). We read
this “b is between a and c”. It implies that the three points are collinear. The first betweenness
axiom is

B(a, b, c) ⊃ B(c, b, a) (Axiom 33)

Before giving a constructive version of the remaining betweenness axioms, we discuss a
related principle. By “Markov’s principle for betweenness” we mean

¬¬B(A,B,C) ⊃ B(A,B,C) (Axiom 34)

Markov’s principle expresses the idea that by computing two points P and Q etc. to greater
and greater accuracy, if they are not identical we will eventually find that out. We want it to
be provable in ECG for several reasons: it is used in Euclid (e.g. I.6 and I.26, as is discussed
below); it is needed for some fundamental theorems (see for example Lemma ??); and it makes
for a smooth metatheory. While some may consider Markov’s principle in number theory to be of
questionable constructivity, we consider that geometry without Markov’s principle is awkward.
As we shall see in other sections, Euclid does use it, and including it does not harm our ability
to construct things that are proved to exist. In terms of order, it expresses the principle that
¬x ≤ 0 ⊃ x > 0.

Hilbert’s second axiom for betweenness is, “given three distinct points, one and only one
of the points is between the other two.” That formulation is too strong, constructively. (For
example its translation into the recursive plane is not provable in HA plus Markov’s principle.)
Instead, we consider the following version, which says that for three distinct points, if two of
the alternatives fail then the third must hold, and no two can hold.

a 6= b ∧ a 6= c ∧ b 6= c ⊃ () (Axiom 35*)
(¬B(a, b, c) ∧ ¬B(b, c, a) ⊃ B(c, a, b))∧
(¬B(b, c, a) ∧ ¬B(c, a, b) ⊃ B(a, b, c))∧
(¬B(c, a, b) ∧ ¬B(a, b, c) ⊃ B(b, c, a))∧
¬(B(a, b, c) ∧ B(b, c, a)) ∧ ¬(B(a, b, c) ∧ B(b, a, c))∧
¬(B(b, c, a) ∧ B(b, a, c))

In the presence of Markov’s principle for betweenness (Axiom 34), we can weaken Axiom
35* by replacing the unnegated betweenness formulas by their double negations. We obtain the
following:

a 6= b ∧ a 6= c ∧ b 6= c ⊃ (Axiom 35)
(¬B(a, b, c) ∧ ¬B(b, c, a) ⊃ ¬¬B(c, a, b))∧
(¬B(b, c, a) ∧ ¬B(c, a, b) ⊃ ¬¬B(a, b, c))∧
(¬B(c, a, b) ∧ ¬B(a, b, c) ⊃ ¬¬B(b, c, a))∧
¬(B(a, b, c) ∧ B(b, c, a)) ∧ ¬(B(a, b, c) ∧ B(b, a, c))∧
¬(B(b, c, a) ∧ B(b, a, c))
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In fact, Axioms 34 and 35 together are exactly equivalent to Axiom 35*, as the following
lemma shows. We separate Axiom 35* into two axioms to facilitate the discussion of different
verions of Euclid’s parallel postulate, whose relations depend on Markov’s principle.

Lemma 6 Markov’s principle for betweenness (Axiom 34) is provable from Axiom 35*.

Proof. Suppose ¬¬B(a, x, b). We want to prove B(a, x, b). From ¬¬B(a, x, b) we immediately
have a 6= b and a 6= x and x 6= b. By Axiom 35* it suffices to prove ¬B(x, a, b) and ¬B(a, b, x).
To prove ¬B(x,a, b), suppose B(x, a, b). Then ¬B(a, x, b), by Axiom 35*. But that contradicts
¬¬B(a, x, b). That proves ¬B(x, a, b). Similarly we have ¬B(a, b, x). That completes the proof
of the lemma.

There is a betweenness axiom that says, in Hilbert’s formulation, that Line (P,Q) contains
a point between P and Q. We call this the “density” axiom. Since we want a quantifier-free
axiomatization, we would like to specify the point asserted to exist. The natural candidate for
a point between P and Q is the result of Euclid’s segment-bisection construction. We therefore
take the following axiom:

B(P, IntersectLines(Line(P,Q), Line( (Axiom 36)
IntersectCircles1(Circle(P,Q), Circle(Q,P )),
IntersectCircles2(Circle(P,Q), Circle(Q,P )))), Q)

Note that, in view of the strictness axioms of LPT, this axiom implies that the circles and
intersection points involved are defined. Similarly, there is a betweenness axiom that asserts
that Line (A,B) contains points outside the segment AB. Again, we want to specify such points
so that our axiomatization is quantifier-free:

B(IntersectLineCircle1(Line(P,Q), Circle(P,Q)), P,Q) (Axiom 37)
B(P,Q, IntersectLineCircle2(Line(P,Q), Circle(Q, P ))) (Axiom 38)

The remaining betweenness axiom is called the “plane separation axiom”. To make its
statement more readable, we introduce the usual definitions of two points P and Q being on
opposite sides of, or on the same side of, line L:

OppositeSide(P,Q,L) := B(P,Q, IntersectLines(Line (P,Q), L) (Definition 39)
SameSide (P,Q, L) := ¬B(P,Q, IntersectLines(Line (P,Q), L)) (Definition 40)

When we use the symbol :=, we mean that the symbol on the left is regarded as an ab-
breviation at the meta-level, rather than a symbol of the formal language. When it is used in
subsequent formulas, it stands for the formal equivalent given by the right hand side.

Note that if Line (P,Q) does not meet L, then the argument of B is undefined, so by the
strictness axioms P and Q are on the same side of L. This formulation, however, does not require
us to be able to decide whether L is or is not parallel to Line (P,Q). Using these definitions we
can give the plane separation axiom(s):

SameSide (A,B,L) ∧ SameSide(B,C,L) ⊃ SameSide(A,C,L) (Axiom 41)
OppositeSide(A,B,L) ∧ OppositeSide(B,C,L) ⊃ SameSide (A,C,L) (Axiom 42)

Rays. Although we have not included rays in ECG, we do want to support our claim that a
conservative extension including rays can easily be introduced; and also, we sometimes make
informal arguments using rays with the implication that they can be formalized in ECG. We
now show that the use of intuitionistic logic does not cause a problem about incidence on
rays or segments. Using betweenness, we can define incidence for rays. However, there is a
technicality: the origin O of Ray (O,B) is considered to lie on the ray, i.e. “rays are closed”,
while betweenness means “strictly between.” It is thus easier to define the “opposite ray”: P is
on the opposite ray to Ray (O,B) if P is on Line (O,B) and O is between P and B. Then Q
is on Ray (O,B) if it is on Line (O,B) but not on the opposite ray:

on (Q,Ray (O,B)) := on (Q,Line (O,B)) ∧ ¬B(P,O, B) (Definition 43)

This definition can be used to express informal arguments about rays in ECG without
needing to introduce an explicit sort and axioms for rays.
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Segments. In a similar way we can define incidence for segments, so that “segments are closed”.

On(P,Segment (Q,R))↔On(P,Line (Q,R)) ∧ ¬B(P,Q, R) ∧ ¬B(Q,R, P )

Recall that Segment (R,R) and Line (R,R) are both undefined, so the fact that ¬B(P, P,P )
does not make P lie on Segment (P, P ). We do not number this definition, since it is not used
in any further axioms or proofs.

The equidistance relation is written δ(A,B,C,D). We will often express this using the in-
formal notation AB = CD. Axioms for equidistance are sometimes called “congruence axioms”
since equidistance can be thought of as congruence of segments. Sometimes, following a tradition
that goes back to Euclid, we write AB = CD instead of δ(A,B,C,D).

Using equidistance, we define incidence for circles:

on (P,Circle (A,Q)) ↔ δ(A,P,A,Q) ∧A 6= Q (Axiom 44)

The A 6= Q part is needed to avoid conflict with our axiom that Circle (A,Q) is undefined
if A = Q.
Remark. Again, we want to show that, if desired, arcs can be correctly handled in a natural
extension of ECG:

on (P,Arc (A,C,Q)) := On(P,Circle (C,A)) ∧ δ(A,C,C,Q)

∧ on (IntersectLines(Line (A,Q), Line (C,P )),Segment (A,Q))

If any two of the three points A, C, and Q are equal, we have undefined terms both on the
left and the right. Note that this definition makes arcs “closed”, in that A and Q will be on
Arc (A,C,Q), because segments are closed. No further use of arcs will be made in this paper.

Greenberg’s first congruence axiom, paraphrased from [9], is closely related to the uniform
version of Euclid’s Book I, proposition 2:

A 6= B ∧ C 6= D ⊃ ∃R(on (R,Ray (A,B)) ∧ δ(A,R,C,D) (not an axiom of ECG)

This axiom permits us to “lay off” segment CD along Ray (A,B). Since we are seeking a
quantifier-free axiomatization, we want to specify the point R. This we do by taking

R(A,B,C,D) = IntersectLineCircle1(A,B,Circle3 (A,C,D)).

Our version of the axiom is thus

A 6= B ∧ C 6= D ⊃ (on (R(A,B,C,D),Ray (A,B)) ∧ δ(A, R(A,B,C,D),C,D)

Note that the strictness axioms then will imply that R(A,B,C,D) is defined when A 6= B and
C 6= D. The official version, with R replaced by is definition, is Axiom 45:

A 6= B ∧ C 6= D ⊃
(on (IntersectLineCircle1(Line (A,B),Circle3 (A,C,D)),Ray (A,B)) ∧
δ(A, IntersectLineCircle1(Line (A,B),Circle3 (A,C,D)), C,D)

The second congruence axiom is

δ(A, B,C,D) ∧ δ(A,B,E, F ) ⊃ δ(C,D,E, F ) (Axiom 46)

The third congruence axiom can be thought of as saying that addition is well-defined on con-
gruence classes of segments:

B(A, B,C) ∧ B(P,Q, R) ∧ δ(A, B, P,Q) ∧ δ(B, C,Q,R) ⊃ δ(A, C, P,R) (Axiom 47)

With the aid of the congruence axioms considered so far, we can formalize the notion “AB <
CD”. This is defined to mean that the point B′ on ray CD such that CB′ = AB lies between
C and D. More formally, we have to define B′ by a term:
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AB < CD := B(C, IntersectLineCircle2(Line (C,D),Circle3 (C,A,B)),D) (Definition 48)

In constructive mathematics, we cannot define x ≤ y as x < y ∨x = y. Instead, we define x ≤ y
as ¬y < x. Writing out the definition of y < x to make the definition of x ≤ y directly, we have

CD ≤ AB := ¬B(C, IntersectLineCircle2(Line (C,D),Circle3 (C,A,B)),D) (Definition 49)

and as remarked earlier we also use the traditional abbreviation

AB = CD := δ(A,B,C,D) (Definition 50)

We have not included angles as a fundamental data type. Instead, statements about angles
can be formalized as statements about two non-collinear rays with the same origin, or about three
distinct points. Angles are thus always less than π–there is no such thing as a “straight angle”.
In this we follow Greenberg [9]. But Greenberg takes congruence of angles as a fundamental
notion. Instead, we define it, essentially using the principle SAS to do so. Given three points
(thought of as an angle) ABC, and three points PQR, by the first congruence axiom we can
find P ′ on ray QP and R′ on ray QR with QP ′ = BA and QR′ = BC. Then we define angle
ABC to be congruent to angle PQR if and only if AC = P ′Q′. This is a 6-ary relation between
points. Note that it can be expressed in quantifier-free, disjunction-free form, since P ′ and R′

are given by terms.
From the definition of congruence it follows that if A′ distinct from B lies on Ray (B,A)

and C′ distinct from B lies on Ray (B,C), then angle A′BC′ is congruent to angle ABC. This
is essentially the reflexivity of congruence viewed as relation between rays; that is the first half
of Greenberg’s Congruence Axiom 5, which becomes unnecessary. The same observation can be
used to prove the symmetry of angle congruence. The second half of Congruence Axiom 5 is the
transitivity of congruence of angles, which we take as our fifth congruence axiom, formulated
with nine point variables instead of three angle variables. It really comes down to the transitivity
of the congruence of triangles. We want to say that if angle ABC is congruent to triangle PQR
and triangle PQR is congruent to triangle UVW then triangle ABC is congruent to triangle
UVW . The congruence of triangle ABC and triangle PQR is expressed by AB = PQ ∧BC =
QR ∧AC = PR. Hence the transitivity axiom we need is

AB = PQ ∧BC = QR ∧ AC = PR ∧ PQ = UV ∧QR = VW ∧ PR = UV ⊃ (Axiom 51)
AB = UV ∧BC = VW ∧AC = UW

We want to show that congruence of angles really only depends on the four rays involved,
not on the six points. To that end we suppose that A′ distinct from B lies on Ray (B,A) and
C′ distinct from B lies on Ray (B,C), angle ABC is congruent to angle PQR, and P ′ distinct
from Q lies on Ray (Q,P ), and R′ distinct from R lies on Ray (Q,R). We wish to show that
angle A′BC′ is congruent to angle P ′QR′. Let P1 on Ray (Q,P ) have BA = QP1, and R1

on Ray (Q,R) have BC = QR1. Then angle A′BC′ is congruent to angle ABC (as observed
above), which is congruent to angle PQR by hypothesis, which is congruent to angle P ′QR′.
Hence by the transitivity of congruence, we are finished.

The sixth congruence axiom is the SAS criterion for triangle congruence. With our definition
of congruence for angles, this axiom is provable. In Greenberg’s system, it simply serves in place
of a definition of angle congruence.

Greenberg’s fourth congruence axiom states that for any angle BAC and any ray A′B′ there
is a unique ray C′ on a given side of A′B′ such that angle B′A′C′ is congruent to angle BAC.
Of course rays are not necessary here: this is a statement that for any five points satisfying
certain conditions, there exists another point C′ satisfying a certain condition. To make precise
the part about “on a given side of”, we have to mention another point P not on A′B′ and
demand that PC′ should not meet Line (A′, B′). To express this in a quantifier-free way, we
need to construct the point C′ in question. This we do as follows:

22



C = Circle(A′, A,B)
B′′ = IntersectLineCircle1(Line (A′, B′), C) so B′′ lies on the ray A′B′

K1 = Circle3 (B′′, B,C)
K2 = Circle3 (A′′, A,C)
C′ = IntersectCircles1(K1,K2)

Now the desired point C′ is one of the intersection points of K1 and K2. There seems to be
no reason, based on the axioms given so far, why these circles intersect. We take as our fourth
congruence axiom, the assertion that both their intersection points are defined. Writing it out
formally we have

A 6= B ∧A 6= C ∧B 6= C ∧ A′ 6= B′∧ (Axiom 52)
B′′ = IntersectLineCircle1(Line (A′, B′), C)∧
K1 = Circle3 (B′′, B,C)) ∧K2 = Circle3 (A′′, A,C)) ⊃
IntersectCircles1(K1,K2) ↓ ∧IntersectCircles2(K1,K2) ↓ ∧
OppositeSide(IntersectCircles1(K1,K2), IntersectCircles2(K1,K2),Line (A′, B′))

Of course one can use fewer variables and more complicated terms to express this axiom, elim-
inating the variables B′′, K1, and K2, at the cost of human legibility. Now one of the two
intersection points asserted to be defined will be the point needed to verify Greenberg’s fourth
congruence axiom, since the last line of Axiom 51 says that the two points are on opposite sides
of A′B′.7 Hence, by Betweenness Axiom 3, one of them is on the same side as P .

Having defined AB < CD, we are in a position to formulate the axioms of line-circle conti-
nuity. The first two of these just tell us when a line and circles intersect–namely, when there is
a point on the line closer (or equally close) to the center than the radius of the circle.

AP ≤ AB ∧ on (P,L) ⊃ IntersectLineCircle1(L,Circle (A,B)) ↓ (Axiom 53)
AP ≤ AB ∧ on (P,L) ⊃ IntersectLineCircle2(L,Circle (A,B)) ↓ (Axiom 54)

Our next axiom says that the intersection points depend “extensionally” on the circle. That
is, if two circles contain the same points (which is guaranteed if they have the same center and
radius), then their first and second intersection points with any line are the same. Note that the
intersection points depend “intensionally” on the line, because the first and second intersection
points of Line (A,B) with circle C are the second and first intersection points of Line (B,A)
with C. But the intersection points depend extensionally on the circle:

A = center (C) ∧A = center (K)∧ On (P,C) ∧ On (Q,K) ∧AP = AQ ⊃ (Axiom 55)
IntersectLineCircle1(L,C) ∼= IntersectLineCircle1(K,C)∧
IntersectLineCircle2(L,C) ∼= IntersectLineCircle2(K,C)

We next give the basic axioms about intersections of two circles.

On (P,C) ∧AP ≤ AB ⊃ (Axiom 56)
IntersectCircles1(C,Circle (A,B)) ↓ ∧ IntersectCircles2(C,Circle (A,B)) ↓

Our next axiom specifies that the intersection points of two circles depend extensionally on the
circles:

A = center (C1) ∧ A = center (C1) ∧ On (P,C1) ∧ On (Q,C1) ∧AP = AQ ⊃ (Axiom 57)
IntersectCircles1(C1,K) ∼= IntersectCircles1(C2,K)∧
IntersectCircles2(C1,K) ∼= IntersectCircles2(C2,K)∧
IntersectCircles1(K,C1) ∼= IntersectCircles1(K,C2)∧
IntersectCircles2(K,C1) ∼= IntersectCircles2(K,C2)∧
We now come to the expression of Euclid’s parallel postulate. We first define Parallel (L,K)

for lines L and K to mean that the lines do not meet:

Parallel (L,K) := ¬IntersectLines(K,L) ↓ .
7We do not know if it is necessary to take this assertion as part of the axiom. Perhaps it can be proved.
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Of course, in view of the other axioms for IntersectLines , we have

Parallel (L,K)↔∀x¬(on(x,L) ∧ on(x,K)),

but the form we took as the definition has the advantage of being quantifier-free. Most modern
treatments of geometry formulate the parallel axiom in this way: if two lines K and M are
parallel to L through point p, then K = M . In symbols:

Parallel (K,L) ∧ Parallel (M,L) ∧ on(p,K)∧ on(p,M) ⊃ K = M (Playfair’s Postulate)

We call this the “Playfair’s postulate”, or for short just “Playfair”, after John Playfair, who
published it in 1795, although (according to Greenberg [9], p. 19) it was referred to by Proclus.
Euclid’s postulate 5 is

If a straight line falling on two straight lines make the interior angles on the same
side less than two right angles, the two straight lines, if produced indefinitely, meet
on that side on which are the angles less than the two right angles.

We do not, however, take this form of Euclid’s parallel postulate as an axiom. Instead we
take the following axiom:

¬IntersectLines(K,L) ↓ ∧on(p,K) ∧ on(p,M) ∧M 6= K ⊃ IntersectLines(L,M)
(Axiom 58, the parallel postulate)

In other words, if K is parallel to L through P , then any other line M through P must meet
L. This differs from Euclid’s version in that we are not required to know in what direction M
passes through P ; but also the conclusion is weaker, in that it does not specify where M must
meet L. The relationships between these different parallel axioms are discussed in section 13
below and in [3].

To illustrate our reasons for including Markov’s principle in ECG, we exhibit the following
lemma.

Lemma 7 (In ECG) Suppose neither point A nor point B lies on line T . (i) If A is not on
the same side of T as B, then A is on the opposite side of T from B. (ii) If A is not on the
opposite side of line T from B, then A is on the same side of T as B.

Proof. Ad (i). Suppose A is not on the same side of line T as B. Then segment AB not not
meets T . By Markov’s principle for line intersections (which is a theorem of ECG), line AB
meets T in some point q. Since segment AB not not meets T , point q is not not in segment AB.
Since A and B do not lie on T , q is not not between A and B. Then, by Markov’s principle for
betweenness, the intersection point of AB and T lies between A and B. That is, A is on the
opposite side of T from B, proving (i).

Ad (ii). Suppose that A is not on the opposite side of line T as B. To show A is on the
same side of T as B, we must show that segment AB does not meet T . Suppose that segment
AB does meet T . Since A and B do not lie on T , the point of intersection Q is not equal to A
or B. Hence, by Markov’s principle for betweenness, Q lies between A and B. Hence A and B
are on opposite sides of T , contradiction. That completes the proof of the lemma.

We now have given a quantifier-free, disjunction-free axiom system that enables us to verify
Greenberg’s axioms, after translating angles as triples of points. But this axiom system has
a shortcoming: It does not distinguish which of the two intersection points of two circles are
defined by IntersectCircles1 and IntersectCircles2 , and we have not completely specified which
intersection point of a line and circle is which, either, although we have done so when the line is
a diameter of the circle, by specifying that IntersectLineCircle1(Line(A,B), Circle(A,B)) is on
the same side of A as B. Hence the axioms given up to now do not suffice to prove the continuity
of IntersectCircles1 and IntersectCircles2 . To put this matter another way, the axioms given so
far have models in which IntersectLineCircle1 and IntersectCircles1 are discontinuous; indeed
arbitrarily discontinuous. Given one model, we can arbitrary switch some of the values of
IntersectLineCircle1(P,Q) and IntersectLineCircle2(P,Q), and we still have a model.
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We wish to add new axioms in such a way that the constructions defined by these terms are
continuous. Our first approach to this was based on the observations that explicit moduli of con-
tinuity can be defined for the intersection points of circles and lines, and the intersection points
of circles and circles. The latter involve δ =

√
ε, so they are constructible using straightedge

and compass. However, the axioms required are neither short nor elegant, and we discovered an
axiomatization that, while still not very short, does qualify as “elegant”. The axiomatization
is based on a concept that is fundamental to computer graphics, although it does not receive
much attention in classical geometry. Namely, the concept that an angle PQR is a “left turn”
or a “right turn”. Analytically, the quantity in question is the sign of the vector cross product
of the vectors QP and QR. What we will exhibit is a geometric axiomatization of this concept.

We could introduce a new predicate Left (A,B,C), but there is no need to do that, since we
can just define

Left (A,B,C) := C = IntersectCircles1(Circle (A,C),Circle (B,C)) (Definition 59)
Right (A,B,C) := C = IntersectCircles2(Circle (A,C),Circle (B,C)) (Definition 60)

If we did introduce new symbols for Left and Right then these would be axioms instead of
definitions. We turn to the axioms about Left and Right. Recall that α, β, and γ are (constant
symbols for) three arbitrary distinct points.

Left (α, β, γ) (Axiom 61)
Right (α,γ, β) (Axiom 62)

These axioms arbitrarily specify the orientation of the plane. The next axiom says that “hand-
edness” is a property of the rays involved, not just the points:

P 6= P ′ ∧R 6= R′ ∧ on(P ′,Ray (Q,P )) ∧ on (R′,Ray (Q,R))∧ (Axiom 63)
Left (P,Q,R) ⊃ Left (P ′, Q′, R′)

The next axiom says that if PQR is a left turn, and we move P (in any direction) without
crossing line QR, it is still a left turn:

Left (P,Q,R) ∧ ¬B(P, IntersectLines(Line (Q,R),Line (P,P ′)), P ′) (Axiom 64)
⊃ Left (P ′, Q,R)

and similarly if we move R without crossing PQ:

Left (P,Q,R) ∧ ¬B(R, IntersectLines(Line (Q,P ),Line (R,R′)), P ′) (Axiom 65)
⊃ Left (P,Q, R′)

Together these axioms permit us to rotate the sides of a left turn PQR as long as they do not
coincide or become opposite, and it remains a left turn.

The next axiom permits us to perform a translation:

Left (A,B,C) ∧AB = PQ ∧BC = QR∧ (Axiom 66)
AC = PR ∧AP = BQ ∧AP = CR ⊃ Left (P,Q,R)

Those are all the axioms for Left . Here are similar axioms for Right :

P 6= P ′ ∧R 6= R′ ∧ on(P ′,Ray (Q,P )) ∧ on (R′,Ray (Q,R))∧ (Axiom 67)
Right (P,Q, R) ⊃ Right (P ′, Q′, R′)

Right (P,Q, R) ∧ ¬B(P, IntersectLines(Line (Q,R),Line (P, P ′)), P ′) (Axiom 68)
⊃ Right (P ′, Q, R)

Right (P,Q, R) ∧ ¬B(R, IntersectLines(Line (Q,P ),Line (R,R′)), P ′) (Axiom 69)
⊃ Right (P,Q,R′)

Right (A,B,C) ∧AB = PQ ∧BC = QR∧ (Axiom 70)
AC = PR ∧AP = BQ ∧AP = CR ⊃ Right (P,Q, R)

Repeated applications of Axioms 64 and 65 permit us to perform an arbitrary rotation on a
left turn PQR, preserving the fact that it is a left turn. The reader who wishes to understand
the motivation for these axioms about Right and Left should see Lemma 8 and its proof, below.

With the aid of Right and Left , we define the concept “P and Q have the same order on
line L as A and B”, constructively and without needing case distinctions. Of course, we assume
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P 6= Q and A 6= B. First, we construct point E such that ABE is a left turn. By Definition
59, E = IntersectCircles1(Circle (A,B),Circle (B,A)) is such a point. Then P and Q have the
same order as A and B if and only if Left (P,Q, E). Formally,

SameOrder (A,B, P,Q) := (Definition 71)
A 6= B ∧ P 6= Q ∧ on (P,Line (A,B)) ∧ on (Q,Line (A,B))∧
Left (P,Q, IntersectCircles1(Circle (A,B),Circle (B,A)))

With SameOrder in hand, it is easy to distinguish the two intersection points of a circle.
However, we must be careful to allow for the case when the two intersection points coincide.

P = IntersectLineCircle1(Line (A,B), C)∧ (Axiom 72)
Q = IntersectLineCircle2(Line (A,B), C) ∧ P 6= Q
⊃ SameOrder (A,B, P,Q)

Next we give the remaining axioms for IntersectCircles1 and IntersectCircles2 . We want to
say essentially that if P and Q are the two intersection points of circles C and K with centers
A and B respectively, then ABP is a left turn and ABQ is a right turn. But there is also
the possibility that the two circles are tangent, and the two intersection points coincide. Then
neither ABP nor ABQ is a left or right turn. Therefore, instead of saying ABP is a left turn
and ABQ is a right turn, we say that ABP is not a right turn, and ABQ is not a left turn.
Here are the axioms in question:

R = IntersectCircles1(Circle (A,P ),Circle (B,Q)) ⊃ ¬Right (A,B,R) (Axiom 73)
R = IntersectCircles2(Circle (A,P ),Circle (B,Q)) ⊃ ¬Left (A,B,R) (Axiom 74)

This completes our list of axioms of ECG. Note that these axioms are all quantifier-free and
disjunction-free. We will consider one more axiom, which does contain disjunction, as a possible
addition to ECG, in the next section.

Lemma 8 (In ECG) Let ABC be any triangle. Then we can determine the handedness of
the turn ABC, in the following sense. Let α, β, and γ be the three fixed non-collinear points
mentioned in the axioms of ECG, so that αβγ is a left turn by definition. Let L = Line (α, β).
Then we can construct a point R such that ABC is a left turn if and only if R is on the same
side of L as γ, and a right turn if and only if R is on the opposite side of L from γ.

Proof. The idea of the proof is this: by a series of “moves” (applications of the axioms for
Left and Right , which correspond to translations, dilations, and rotations), the triangle ABC
is “reduced” to either triangle αβγ or triangle αγβ, preserving the handedness of the turns; but
Axioms 61 and 62 directly specify the handedness of the turns αβγ and αγβ. We now give the
details.

By a “move”, applied to a triple of non-collinear points PQR, we mean a construction of a
new triple UVW such that, according to the axioms for Left and Right , if PQR is a left turn
then so is UVW , and if PQR is a right turn then so is UVW . This latter condition we describe
for short by saying that the move “preserves handedness”. The axioms describe several types of
moves that preserve handedness, specifically, moving P along the ray QP , moving R along the
ray QR, rotating PR or QR in such a way that the points P ,Q, and R never become collinear,
and translating the whole triple. We first show that the number of moves (applications of these
axioms) required to perform a given rotation is bounded by a fixed constant. Consider the
following procedure: First move P to decrease the angle to less than a right angle. Then we can
rotate PQR by any angle up to a right angle, using two moves (one moves PQ and one moves
QR). An arbitrary rotation can be performed by performing at most four rotations of less than
ninety degrees. Thus in four or fewer rotations (requiring eight or fewer moves) we can bring
one of its sides onto the desired (“target”) ray. Then we can move P by the same amount as
in the first step resulting in the desired rotation. Hence ten or fewer applications of the above
axioms suffice to perform any rotation.

Now consider three non-collinear points P , Q, and R. We give a procedure for determining
whether PQR is a left turn or a right turn. First translate PQR so that Q coincides with the
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point β (given by a constant of ECG). Then rotate it so that P lies on Ray (β, α). Then move
P to α. By the axioms above, all these steps preserve the handedness of PQR. Now, if R
is on the same side of Line (α, β) as γ, then by Axioms 65 and 69, PQR is a left turn, since
αβγ is a left turn by definition. And if R (after the moves described) is on the opposite side
of Line (α, β), then we claim that PQR is a right turn. To see this, let γ′ be a point on the
same side of Line (α, β) as γ, and on the same side of Line (Q,R) as α. (Such a point can be
constructed by bisecting the angle formed by Ray (β, α) and the opposite ray to Ray (Q,R).)
Then we can move P to γ′ without changing the handedness of PQR, and then we can move R
to α without changing the handedness of PQR. But now PQR coincides with γβα, which by
definition is a right turn. That completes the proof of the lemma.

Remark. With classical logic, we could prove that ABC is either a right turn or a left turn. To
reach that conclusion, we would need to know that if point R is not on L = Line (α, β), then
either R is on the same side of L as γ or on the opposite side. The constructive status of this
statement is discussed below.

Lemma 9 The predicates Right (A,B,C) and Left (A,B,C) are definable in Greenberg’s theory
G, relative to an arbitrary choice of Left (α, β, γ) and Right (α, γ, β) for some triple of non-
collinear points α, β, and γ. This can even be done with intuitionistic logic.

Proof. It will suffice to define the relation T (A, B,C, P,Q, R) with the meaning “ABC and
PQR have the same handedness.” First we note that it is possible to define the notion of
one triangle being a translation of another; namely, ABC is a translation of PQR if the two
triangles are congruent and AP = BQ = CR. It is also possible to define the notion of ABC
being a rotation of PBQ (when the two angles share vertex B). This requires twenty variables
to express, so it is too complex to write down intelligibly, but the definition in question says
there exist twenty points representing ten “moves” according to the ECG axioms for rotations
given above. Then ABC and PQR have the same handedness if there exist P ′ and Q′ such that
P ′BR′ is a translation of PQR and there is a rotation P ′′BR′′ of PQR with R′′ on Ray (B,C)
and P ′′ is on the same side of Line (B,C) as A.

Theorem 2 ECG with classical logic is equivalent to Greenberg’s systemG with only line-circle
and circle-circle continuity.

Remark. Greenberg’s system is not completely formal. But we understand here a weak second-
order theory, with the first-order variables ranging over points, and circles, lines, segments, rays,
and angles treated as sets of points.8 Incidence means membership. There is a weak form of
the comprehension axiom, only for formulas with no set quantifiers.

Proof. It suffices to deal with the point, line, and circle fragment of ECG, since the whole theory
is conservative over this fragment (as follows either by model theory or cut-elimination from
the fact that the axioms of both theories can expressed in this fragment). First we show that
set variables are irrelevant in Greenberg’s theory G. There are no set variables in the axioms,
except those ranging over lines, circles, segments, rays, and angles. Hence, in the axioms, those
variables can be replaced with variables of the corresponding sorts of ECG, and set membership
by the appropriate incidence relations. By Gentzen’s cut-elimination theorem, if a formula A
without set variables has a proof in ECG, then there is a cut-free proof of a sequent Γ ⇒ A,
where Γ is a conjunction of axioms. This entire proof contains no set variables, by the cut-
elimination theorem; hence it is a proof in the language of ECG. We showed above that the
axioms of G (interpreted in ECG in this way) are provable in ECG. That is one direction of
the proof.

For the other direction, we define a translation A′ of ECG into G as follows. In A′, variables
over lines and circles are replaced by set variables, restricted to appropriate predicates defining

8Technically, in Greenberg’s book, lines are primitive objects and the incidence relation on(Point, Line) is unde-
fined, but rays, segments, and circles are sets of points and the incidence relations are set membership. See p. 144
for his explanation.
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those concepts. Incidence relation symbols are replaced by ‘ε’. For each term t(x1, . . . xn) of
ECG, there is a formula Gt(y, x1, . . . , xn) that expresses y = t(x1, . . . , xn). The definition
is given inductively on the complexity of t. The most difficult part of this is to interpret
the function symbols for the two intersection points of two circles. However, the difficulty,
which is defining the concepts Left (A,B,C) and Right (A,B,C) required to distinguish the
two intersection points of two circles, has been taken care of in Lemma 9.

To interpret the function symbols for the intersection points of a line and a circle we need
to define the concept “P and Q occur in the same order on Line (A,B) as A and B do.” That
can be done without case distinctions, simply by saying that for some R, RAB is a left turn
and RPQ is a left turn. That completes the proof.

9 Euclid’s Reasoning

Euclid’s proofs have been analyzed in detail by Avigad et. al. in [1], and they conclude:

Euclidean proofs do little more than introduce objects satisfying lists of atomic (or
negation atomic) assertions, and then draw further atomic (or negation atomic) con-
clusions from these, in a simple linear fashion. There are two minor departures from
this pattern. Sometimes a Euclidean proof involves a case split; for example, if ab
and cd are unequal segments, then one is longer than the other, and one can argue
that a desired conclusion follows in either case. The other exception is that Euclid
sometimes uses a reductio; for example, if the supposition that ab and cd are unequal
yields a contradiction then one can conclude that ab and cd are equal.

It is our purpose in this section to argue that Euclid’s reasoning can be supported in ECG,
including the two types of apparently non-constructive reasoning just discussed. The type of
reductio argument mentioned corresponds to Markov’s principle ¬¬x = y ⊃ x = y, which we
have shown follows from the betweenness axioms of ECG. The first type (based on the idea
that if ab and cd are unequal then one of them is longer) will be studied metamathematically.
But first, we give two examples.

A typical example of such an argument in Euclid is Prop. I.6, whose proof begins

Let ABC be a triangle having the angle ABC equal to the angle ACB. I say that
the side AB is also equal to the side AC. For, if AB is unequal to AC, one of them
is greater. Let AB be greater, . . .

The same proof also uses an argument by contradiction in the form ¬¬x = y ⊃ x = y. This
principle, the “stability of equality”, is included in ECG, and is universally regarded as con-
structively acceptable. The conclusion of I.6, however, is negative (has no ∃ or ∨), so we can
simply put double negations in front of every step, and apply the stability of equality once at
the end.

Prop. I.26 is another example of the use of the stability of equality: “. . .DE is not unequal
to AB, and is therefore equal to it.” While we have proved that classical arguments can be
eliminated from proofs of Euclid’s theorems, in fact it seems that the only classical arguments
that occur in Euclid are applications of the principle “if ab and cd are unequal then one of them
is longer.”

In the examples above, this principle is not really needed to reach Euclid’s desired conclusion.
Since the conclusion concerns the equality of certain points, we can simply double-negate each
step of the argument, and then add one application of the stability of equality at the end. The
double negation of “if ab and cd are unequal then one is longer” is provable, since (intuitively
speaking) ¬(p < q) is q ≤ p and p ≤ q ∧ q ≤ p implies p = q. In fact, this had to happen: we
prove metatheorems below explaining why the principle in question, and indeed, any uses of
classical logic whatsoever, are in principle eliminable from proofs of theorems of the form found
in Euclid.
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In order to arrive at such metatheorems, we first formulate the principle in question in the
language of ECG, which does not contain < as a primitive. Our formulation is as follows: If
two unequal points B and C are both between A and D, then either B is between A and C or
C is between A and B. Formally that is

B 6= C ∧ B(A,B,D) ∧ B(A,C,D) ⊃ B(A,B,C) ∨ B(A,C,B) (Axiom 75)

The point D is a matter of convenience; the axiom is really about A, B, and C and their
positions on a ray emanating from A, but ECG does not have rays as primitive, so we need
point D to express this in ECG.

We defined AB < CD in Definition 48. We write AB > CD to mean CD < AB.

Lemma 10 (in ECG) Axiom 75 implies that if AB 6= CD, then either AB > CD or AB <
CD.

Proof. Given AB and CD, let Q be the intersection point mentioned in the definition of
AB > CD. Then according to Axiom 75, if Q 6= B then either Q is between A and B or B is
between Q and A. In the first case we have AB > CD. In the second case, B is inside the circle
of radius CD about A. It follows that D is outside the circle of radius AB and center C. That
completes the proof of the lemma.

The theory ECG has quantifier-free, disjunction-free axioms. It follows (as we will prove
in Theorem 8) that no non-trivial disjunction can be proved in ECG. That is, if P is negative
and ECG proves ∀x P (x) ⊃ A(x) ∨ B(x), then ECG proves ∀xP (x) ⊃ A(x) or ECG proves
∀xP (x) ⊃ B(x). Hence, Axiom 75 is not provable in ECG.

When we add Axiom 75, we will also introduce a new construction term, which we write
if (AB > CD,P,Q). This abbreviates the official version, which is if (A,B,C,D, P,Q). Provided
AB 6= CD, this term constructs a point which is equal either to P or to Q, depending on whether
AB > CD or AB < CD . The axiom expressing this is

(AB > CD ⊃ if (AB > CD,P,Q) = P ) (Axiom 76)
∧(AB < CD ⊃ if (AB > CD,P,Q) = Q)

Note that Axiom 76 does not contain disjunction, but that by Axiom 75, we have

AB 6= CD ⊃ if(AB > CD,P,Q) ↓ .

Definition 1 The theory ECGD is ECG plus the new function symbol “if ”, with Axioms 75
and 76.

Remark. The “D” in ECGD is for “disjunction”.
The following lemmas give two appealing theorems of ECGD that cannot be proved in

ECG (because they are non-trivial disjunctions).

Lemma 11 (in ECGD) Let P be point not on line L. Then any point Q is either on the same
side of L as P , or on the opposite side.

Proof. Drop a perpendicular K from P to L, meeting L at point R. Projecting Q to point Q′

on K . Extend segment PR past R by the amount RQ′ twice, arriving at point D on K . Then
both R and Q′ are between P and D, so by Axiom 75, either R is between P and Q′ or Q′ is
between P and R. In the first case, Q′ and P are on the same side of L, and in the second case,
they are on opposite sides. But Q and Q′ are on the same side of L. Hence Q and P are on the
same side, or on opposite sides, of L. That completes the proof of the lemma.

Lemma 12 (in ECGD) In any triangle ABC, either ABC is a left turn or ABC is a right
turn.
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Proof. In Lemma 8, we have already shown how to construct a point Q not on line L =
Line (α,β), such that ABC is a left turn or a right turn according as Q lies on the same side of
L as γ, or on the opposite side. In ECGD by Lemma 11, Q must lie on one side or the other
of L. Hence ABC is either a left turn or a right turn. That completes the proof.

Terms of ECGD that involve the new symbol if represent geometrical constructions that
can proceed by cases, with comparisons between constructed (unequal) lengths determining the
next construction steps. Given Euclid’s cavalier approach to case splits, the fact that such
constructions are not explicitly mentioned in Euclid does not necessarily mean that they are
not required to give a correct and complete version of Euclid. The question thus arises, whether
Axiom 75 (or more generally, disjunctive axioms of any kind) are required to formalize Euclid.
But because the theorems of Euclid do not mention disjunction in any essential way, we can
simply take the double-negation interpretation, and eliminate Axioms 75 and 76, as will be
shown below. Thus what happened in the example of Proposition I.6 happens necessarily in all
examples of similar logical form.

10 Euclid’s parallel postulate proved in ECG

Let P be a point not on line L. We consider lines through P that do not meet L (i.e., are
parallel to L). Playfair’s version of the parallel postulate says that two parallels to L through
P are equal. Our Axiom 58 says that if K is a parallel to L through P and M is another line
through P , with M 6= K , then M meets L. Recall that Euclid’s postulate 5 is

If a straight line falling on two straight lines make the interior angles on the same
side less than two right angles, the two straight lines, if produced indefinitely, meet
on that side on which are the angles less than the two right angles.

We consider the formal expression of Euclid’s parallel axiom. Suppose P is a point not on
line L, and K is parallel to P through L, M is another line through P , and Q any point on L.
Let A be any point on M not equal to P and not on L. Euclid’s condition that M “make the
interior angles less than two right angles” on the side of PQ where A lies can be conveniently
expressed by saying that A is between Q and the intersection of QA with K . Thus a formal
version of Euclid’s parallel axiom is

Parallel (L,K) ∧ on(P,K)∧ on(P,M) ∧ on(A,M)∧ (Euclid’s Postulate 5)
¬on(A,L) ∧A 6= P ∧ B(Q,A, IntersectLines(Line (Q,A),K))

⊃ B(P,A, IntersectLines(L,M))

Note that the logical axioms of LPT make it superfluous to state in the conclusion that
IntersectLines(L,M) is defined. That follows automatically.

Axiom 58 has a weaker conclusion than Euclid’s Postulate 5, because it does not specify
on which side of P the intersection point will lie. On the other hand, Axiom 58 also has a
weaker hypothesis than Euclid’s Postulate 5, so its exactly relationship to Postulate 5 is not
immediately clear. One direction is settled by the following theorem:

Theorem 3 ECG proves Euclid’s Postulate 5.

Proof. Suppose Axiom 58, and let L be a line, P a point not on L, K parallel to L through
P , M another line through P , Q be a point on L, A be a point on M not on PQ, and B the
intersection of QA with K . Suppose that the interior angles made by L, M , and PQ make less
than two right angles, which formally means that A is between Q and and B. Then by Axiom
58, since M 6= K , M does meet L at some point R. It remains to show that A is between P
and R. By Markov’s principle (Axiom 34) it suffices to prove that P is not between R and A,
and R is not between P and A. Suppose first that P is between R and A. Then R is on the
opposite side of line K from A. But R is not not on the same side of line K as Q, since if R is
not on the same side of K as Q, then RQ (which is L) would meet K (which it does not). By
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Lemma 7, R and Q are on the same side of line K . Since R is on the opposite side of K from
A, it follows that A and Q are on opposite sides of line K . Hence point B, the intersection of
AQ with K , must be between A and C. But that contradicts the fact that A is between Q and
B. Hence the assumption that P is between R and A has led to a contradiction. Now suppose
instead that R is between P and A. Then A and P are on opposite sides of L.

But B and P are on the same side of line L, since BP = K does not meet L. Hence A and
B are on opposite sides of L. But then the intersection point of AB and L, which is Q, lies
between A and B, contradicting the fact that A lies between Q and B. Hence the assumption
that R is between P and A has also led to a contradiction. Hence, as noted already, by Axiom
34, A is between P and R. That completes the proof of Euclid’s Postulate 5 from Axiom 58.

Now we consider the converse problem, of deriving Axiom 58 from Euclid’s Postulate 5. The
obvious proof attempt works only if we assume Axiom 75.

Lemma 13 Let T be the theory ECG without any parallel postulate. Then in T, Axiom 75
(“of two unequal segments one is longer”) plus Euclid’s Postulate 5 implies Axiom 58.

Proof. Assume Euclid’s postulate and let p be a point not on line L, and K parallel to L through
p, and line M another line through p as in Axiom 58. Let q be the point on L at the foot of the
perpendicular to L from p. Let A on line M and B on line L be on the same side of pq. Then
K makes the interior angles Apq and pqB equal to two right angles. Hence M does not, or it
would coincide with K . If angle Apq is less than a right angle, then by Euclid’s Postulate 5, M
meets L. Similarly, if angle Apq is more than a right angle, we can show by Euclid’s Postulate
that M meets L (on the other side of q from B). By Axiom 75, one of these alternatives must
hold. More formally, let S be the intersection point of Line (A,B) with K . Then angle Apq is
less than a right angle if A is between S and B, and more than a right angle if S is between
A and B. By Axiom 75, one of these alternatives holds. Hence by Euclid’s Proposition 5, M
meets L. That completes the proof of the lemma.

11 Constructive Geometry and Euclidean Fields

We know (from the previous section) that ECG plus classical logic is not only “reasonable”
but equivalent to textbook theories. But when we use only intuitionistic logic, is it still a
“reasonable” theory? There are two possible ways to answer that question:

• Can Euclid be formalized in ECG?

• Are the models of ECG characterizable in some elegant way?

We have argued in the previous section that probably ECG suffices to formalize Euclid, and
certainly ECGD does suffice. In this section we take up the second approach. Classically, the
models of G are all planes over a Euclidean field, that is, an ordered field in which every positive
element has a square root. Is that same thing true constructively for ECG? The main point
of this section is to answer that question in the affirmative. The detailed answer is somewhat
surprising, though. There turns out to be more than one natural set of axioms for constructive
Euclidean fields, and these different versions correspond directly to ECG, to ECGD, and
to ECGwith our parallel postulate (Axiom 58) replaced by the (apparently) weaker version,
Euclid’s Postulate 5.

Before turning to the proofs of those correspondences, we must prove some elementary
lemmas about intuitionistic geometry. We begin with a two-dimensional version of Markov’s
principle.

Lemma 14 ECG proves that, if point P does not lie on line L, then some circle with nonzero
radius and center P lies entirely on the same side of L as P .
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Proof. Let point P not lie on line L; we will construct a circle with center P lying on the
same side of L as P . Let point K on L be the foot of the perpendicular from P to L. Then
K 6= P . Hence the two circles C1 = Circle (K,P ) and C2 = Circle (P,K) that are used to
bisect PK have different centers and each contains a point inside the other. Hence the points
X = IntersectCircles1(C1, C2) and Y = IntersectCircles2(C1, C2) are defined. If X = Y then
X is between P and K , contradicting PX = PK . Hence the midpoint of PK is given by
M = IntersectLines(Line (X,Y ),Line (P,K)). Hence Circle (P,M) lies on the same side of L
as P , because K is nearer to P than any other point of L. That completes the proof of the
lemma.

Next one may wonder whether the axioms of betweenness of ECG are actually sufficient to
establish a reasonable theory of order of points on a line. Instead of basing our definition of
order on betweenness, we base it instead on Right and Left . Fix a line L and a point 0 on L.
Let K be the perpendicular to L at K and let I be a point on K that is not on L. Define x < y
for points x and y on L to mean that xyI is a left turn, and x < y to mean that xyI is a right
turn. Then we can establish the fundamental facts about intuitionistic order in ECG.

Lemma 15 (in ECGD) With notation as above, ECG proves x 6= 0 ⊃ x > 0 ∨ x < 0.

Proof. Since x, 0, and I are distinct and not collinear, xyI is either a left turn or a right turn,
by Lemma 12. That completes the proof.

Lemma 16 (in ECG) With notation as above, ECG proves 0 6< x ∧ x 6< 0 ⊃ x = 0.

Proof. Suppose 0 6< x and x 6< 0. Then 0xI is not a left turn and x0I is not a left turn. Suppose
x 6= 0. Then x0I is a triangle and by Lemma 8, not not (one of x0I and 0xI is a right turn and
the other is a left turn). But neither is a left turn; hence ¬¬x = 0. Since in ECG we have the
axiom ¬¬x = y ⊃ x = y, we can conclude x = 0. That completes the proof.

But note that neither ECG nor ECGD can prove a < b ⊃ a < x∨x < b, since the decision
as to which alternative holds cannot be made continuously in x. This theorem is essentially the
axiom of apartness.

For points on L, we say that x is on the same side of y as z if y does not lie on Segment (x, z).
Note that this is equivalent to saying that x and y are on the same side of the line perpendicular
to L at y. Then we have

Lemma 17 (in ECG) With notation as above, fix a point 1 > 0 on L. Then x > 0 if and only
if x is on the same side of 0 as 1.

Proof. Since 0 < 1, 01I is a left turn. Assume x is on the same side of 0 as 1. Then, by the
axioms for Left , 0xI is a left turn. Hence 0 < x. Conversely, assume 0 < x. Then 0xI is a left
turn. We must show x is on the same side of 0 as 1; that is, we must show that 0 does not lie
on Segment (x, 1). Suppose 0 does lie on Segment (x, 1). Since 0xI is a left turn, 0 6= x, since
00I is not a left turn. Since 0 6= 1, we have B(x, 0, 1). But 01I is a left turn; hence both 0xI
and 01I are left turns, contradicting Lemma 8. That completes the proof.

With the basic properties of order established, we are ready to turn to the characterization of
models of ECG and ECGD as planes over Euclidean fields. We first discuss the axiomatization
of Euclidean fields with intuitionistic logic. We use a language with symbols + for addition and
· for multiplication, and a unary predicate P (x) for “x is positive”. We take the usual axioms
for fields, except the axiom for multiplicative inverse, which says that positive elements have
multiplicative inverses. If positive elements have inverses, it is an easy exercise to show that
negative elements do too. We define a Euclidean field to be a commutative ring satisfying the
following additional axioms:

x 6= 0 ⊃ ∃y (x · y = 1) EF1

P (x) ∧ P (y) ⊃ P (x+ y) ∧ P (x · y) EF2

x+ y = 0 ⊃ ¬(P (x) ∧ P (y)) EF3
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x + y = 0 ∧ ¬P (x) ∧ ¬P (y) ⊃ x = 0 EF4

x+ y = 0 ∧ ¬P (y) ⊃ ∃ z(z · z = x) EF5

¬¬P (x) ⊃ P (x) EF6, or Markov’s principle

Axiom EF5 says that non-negative elements have square roots. This is a stronger axiom,
intuitionistically, than simply specifying that positive elements have square roots. We could
conservatively extend field theory by a unary function symbol for negation, −x, in which case
the last axiom could be more readably written ¬P (−x) ⊃ ∃z (z2 = x).

As usual, we define x < y to mean ∃z(P (z)∧ x+ z = y, or informally, y − x is positive; and
x ≤ y means ¬(y < x. Then Markov’s principle is equivalent to ¬(x ≤ 0) ⊃ 0 < x.

We also consider weakly Euclidean fields, which instead of EF1, are required only to satisfy
the weaker axiom

P (x) ⊃ ∃y (x · y = 1) EF0

EF1 implies EF0, because P (x) ⊃ x 6= 0, but to derive EF1 from EF0, we would have to know
that each nonzero element is either positive or negative. In the language without a symbol for
additive inverse, this can expressed as

x+ y = 0 ∧ x 6= 0 ⊃ P (x) ∨ P (y) EF7

Fields that satisfy EF0 and EF2 through EF7 then automatically satisfy EF1 as well. We
call these fields strongly Euclidean. To recap: In a Euclidean field, all nonzero elements have
multiplicative inverses, while in a weakly Euclidean field, it is only required that elements known
to be positive or negative have multiplicative inverses. In a strongly Euclidean field, nonzero
elements are either positive or negative, so the distinction doesn’t matter.

Remark. Since the double negation of EF7 follows from EF4, every Euclidean field is not not
strongly Euclidean; in other words, one cannot give an example of a Euclidean field that is not
strongly Euclidean. The standard plane is strongly Euclidean if and only if Markov’s principle
(in the formulation ¬¬x > 0 ⊃ x > 0) holds in the reals.

Theorem 4 The models of ECG are all isomorphic to planes F 2, where F is a Euclidean field.
and the relations and function symbols of ECG are interpreted as usual in reducing geometry
to field theory. The models of ECGD are all isomorphic to planes F 2, where F is a strongly
Euclidean field. The models of ECG with the parallel Axiom 58 replaced by Euclid’s Postulate
5 are all isomorphic to planes F 2, where F is a weakly Euclidean field. In fact, each of these
geometrical theories interprets, and is interpretable in, the corresponding field theory.

Remark. Theory A is interpretable in theory B if there is a map from the syntax of A (variables,
terms, formulas) to that of B that preserves provability. Thus the theorem implies, for example,
that Euclid’s Postulate 5 implies Axiom 58 if and only if axiom EF0 implies EF1 with the help
of EF2 through EF6.
Proof. We show how to interpret field theory in our geometrical theories. We have three fixed
points α, β, and γ, pairwise unequal. Let 0 be another name for α and let 1 be another name
for β. Let L be Line (α, β), and let K be the perpendicular to L at 0. Let I be a point on K
but not on L such that 01I is a left turn, and define P (x) to mean that 0xI is a left turn. The
function symbols + and · of field theory are interpreted by terms Add and Multiply of ECG,
defined as shown earlier.

Technically, we ought to exhibit formal proofs in ECG of the (interpretations of) the ring
axioms, corresponding to the informal proofs in the section on arithmetization, and it may well
be possible to exhibit such proofs using a theorem-prover or proof-checker, but here we rely on
the reader to be convinced that such proofs exist based on an examination of the proofs and
the axioms of ECG.
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Now we will check axiom EF3. Suppose x + y = 0 holds in this model. That means that
Add(x, y) = 0. Suppose also that ¬P (x) and ¬P (y), i.e. neither 0xI nor 0yI is a left turn.
Then x is not between 0 and 1, since 01I is a left turn, and if x is between 0 and 1, 0xI would
be a left turn too. Similarly y is not between 0 and 1. Now assume x < 0. then Add(x, y) = 0
implies that x and y are on opposite sides of 0. Since x0I is a left turn, by Lemma 8 0xI is
a right turn. Hence 0yI is a left turn, so 0 < y, contradiction. Hence ¬x < 0. Since we have
proved x is neither negative nor positive, we have x = 0 by Lemma 16. That completes the
verification of axiom EF3.

Now we turn to axiom EF5. Suppose x + y = 0. Suppose also ¬P (y); that is, it is not
that case that y 6= 0 and 0yI is a left turn. Verifying this axiom amounts to checking that
in ECG, Descartes’ square root construction can be extended to a function defined for x ≥ 0,
without requiring a case distinction as to whether or not the argument is zero. We have given
just such an extension of Descartes’ construction in the section on arithmetization, and now it
only remains to remark that the argument given there can be carried out in ECG.

Next we check axiom EF7 in ECGD. Let x + y = 0 and x 6= 0. Then x and y are on line
L, and we can find a point D on the same side of 0 as 1 and a point A on the opposite side of
0 from 1, x between A and D. Then either 0 is between A and x, in which case x is positive
(that is 0xI is a left turn), or x is between A and 0, in which case y is on the opposite side of 0
from x, i.e. the same side as 1, and hence y is positive.

Next we verify Markov’s principle ¬¬P (x) ⊃ P (x). Suppose ¬¬P (x), i.e. ¬¬x > 0. Let
y = Add(x, 1), so that y > x. Then x > 0 is equivalent to B(0, x, y). Hence we have ¬¬B(0, x, y).
Then by Markov’s principle in ECG, we have B(0, x, y), i.e. x > 0, i.e. P (x), as desired.

We now turn to the verifications of the parallel Axiom 58 and Euclid’s Postulate 5. In order
to define the reciprocal 1/x in geometry, we use Descartes’s method. That is, we fix a line L to
serve as the x-axis, and a point 0 on L and a point 1 6= 0 on L. Then let X be a point on L, and
suppose X 6= 0. We wish to define a point 1/X . Erect the perpendicular K to L at X , and find
a point on K at distance 1 from X , for example Q = IntersectLineCircle1(K,Circle (X,0, 1)).
Then Q 6= 0, since Q is not on L, so we can form M = Line (0, Q). Erect the perpendicular H
to L at 1. Then K and H are parallel, since they are both perpendicular to L. Line M does
not coincide with K , since 0 lies on M but not on K (since X 6= 0). Hence M is a line through
Q that is not parallel to H . Then, by Axiom 58, M meets H in a point R. The segment R1
has the desired length. The desired point 1/X on line L is one of the intersection points of
Circle (0, 1, R) with L. Which one it is depends on the sign of X , which we do not know; but
the selection is made automatically by the definition of IntersectLineCircle2 :

1/X = IntersectLineCircle2(Line (0,X),Circle (0, 1, R))

since the two intersection points are numbered in the same order as 0 and X occur on L. Hence
arithmetic on L satisfies the axioms of a Euclidean field. Similarly, if we only have Euclid’s
Postulate 5, we can still construct 1/X if we know that X > 0, as follows. Consider the interior
angles made by M and H with the perpendicular dropped from Q to H . They will make less
than two right angles if X > 0, and more than two right angles if X < 0. Hence by Euclid’s
Postulate 5, if X > 0, M meets H as shown in the figure, while if X < 0, M meets H at a point
south of L. One can then verify that arithmetic on L satisfies the weak Euclidean field axioms.
Finally, Axiom 75 erases the distinction in question, and enables us to verify axiom EF7 as well.

Conversely, assume F is a Euclidean field. We will show how to turn F 2 into a model of
ECG (or, to describe the construction more formally, we will show how to interpret geometry in
field theory). As usual in the corresponding classical theories, we take the points to be elements
of F 2, and let lines, circles, arcs, and segments have their usual analytic definitions; in particular
we define circles so that circles of zero radius are allowed. Hence Circle3 can be interpreted.
Markov’s principle in F allows us to verify that axiom of ECG. The intersection points of circles
and lines, and the intersection points of circles and circles, can be defined by the solution of
quadratic equations; and which one is which (i.e. the concept “ABC is a left turn”) can be
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defined as usual in computer graphics, by the cross product, which can be defined in Euclidean
field theory (note that division is not required). Then one has to verify that the axioms of ECG
about handedness are valid. The details follow the sketch given in an earlier section, and are
omitted. The verification of the parallel Axiom 58 requires that the reciprocal 1/x be defined
when x 6= 0; the verification of Euclid’s Postulate 5 only requires that the reciprocal be defined
when x > 0. If F is strongly Euclidean (satisfies EF7) then we can also verify Axiom 75, and
in that case there is on obvious interpretation of the function symbol if of ECGD validating
Axiom 76. That completes the proof of the theorem.

In [3] it is shown that the different constructive version of Euclidean field theory are not only
apparently different, but really are not equivalent with constructive logic; and as a corollary,
the different versions of the parallel postulate are also not equivalent.

12 Classical logic not needed for negative theorems

Our plan in this section is to investigate the double-negation interpretation for geometric theo-
ries. Since the double-negation interpretation applies a double-negation to atomic formulas, we
need to have ¬¬A ⊃ A for each atomic formula A. We first consider the case when A has the
form t ↓.

The following schema seems initially to have the character of Markov’s principle, since t ↓,
in number theory or even in the recursive model R2, involves an existential quantifier.

¬¬t ↓⊃ t ↓ for all terms t

As it turns out, however, this schema is provable in ECG; however, we require Axiom 58 for
the proof, and Euclid’s Postulate 5 apparently does not suffice.

Lemma 18 Let t be any term of ECG. Then ECG proves ¬¬t ↓⊃ t ↓. Moreover, Axiom 34
(Markov’s principle for betweenness) is not needed in the proof.

Proof. We proceed by induction on the complexity of the term t. If t is a variable or constant
then t ↓ is an axiom of LPT, so we need consider only compound terms. Consider the induction
step when t is a term f(q, r), for terms q and r. By the induction hypothesis, ECG proves
¬¬q ↓⊃ q ↓. Argue in ECG as follows: Suppose ¬¬f(q, r) ↓ We claim ¬¬q ↓. For suppose
¬q ↓. Then by the strictness axioms of LPT, we have ¬f(q, r) ↓, contradicting ¬¬f(q, r) ↓.
That contradiction completes the proof that ¬¬q ↓. Using the proof in ECG that ¬¬q ↓⊃ q ↓,
we conclude q ↓. Similarly, we have r ↓. Hence, to complete the proof, it suffices to prove for
each function symbol f of ECG that

s1 ↓ ∧ . . . ∧ sn ↓ ∧¬¬f(s1, . . . , sn) ↓⊃ f(s1, . . . , sn) ↓

We will prove this by an exhaustive consideration of each function symbol of ECG. First
consider the case when f is IntersectLines . Suppose that IntersectLines(K,L) is not undefined.
By Axiom 12, if K = L then IntersectLines(K,L) is undefined; hence K 6= L. Then by
Axiom 58 (the parallel axiom), K meets L. Note that neither Playfair’s version of the parallel
axiom nor Euclid’s would seem to suffice here: Playfair’s does not guarantee the existence of
the intersection point, and Euclid’s guarantees it only when we know on which side of some
transversal K makes interior angles less than two right angles.

Consider the case when f is IntersectLineCircle1 or IntersectLineCircle2 . Then we have a
line L and a circle C that do not fail to meet, and we must show that they do indeed meet.
Let P be the center of C, and let K be the line through P perpendicular to L (which we have
shown how to construct without knowing whether P is on L or not). Let F be the foot of this
perpendicular, i.e. the intersection point of L and K . Then L meets C if and only if PF is
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less than or equal to the radius r of C. So we have ¬¬PF ≤ r. Then (even without Markov’s
principle) we have PF ≤ r, so C does meet L as desired.

Next consider the case when f is IntersectCircles1 or IntersectCircles2 . Then we have two
circles C and K that do not fail to intersect, and we must show that they do intersect. The
relevant geometrical fact is that two circles intersect if and only if the distance d between their
centers is less than or equal to the sum of their radii r1 + r2. So if C and K do not fail to
intersect implies ¬¬d ≤ r1 + r2. Even without Markov’s principle we then have d ≤ r1 + r2, so
C and K do intersect.

Next we consider the constructors. Circle (P,Q) is always defined, since we allow zero-radius
circles; similarly for Circle3 (P,Q,R). Line (P,Q) is defined if and only if P 6= Q. Hence we
need ¬¬P 6= Q ⊃ P 6= Q. This follows from the general intuitionistic logical principal that
triple negation is equivalent to single negation. The constructors for segments and arcs can be
treated similarly.

Finally we consider the accessors, such as center , pointOn1, etc. These are all total, so there
is nothing to prove. That completes the proof of the lemma.

Let A− be the Gödel double-negation interpretation of A, obtained by replacing ∃ by ¬∀¬
and A∨B by ¬(¬A∧¬B). We do not replace A by ¬¬A for atomic A since these are equivalent
in intuitionistic ECG.

Theorem 5 (Double negation interpretation) Suppose ECG with classical logic proves A.
Then ECG with intuitionistic logic proves A−.

Proof. First we observe that ¬¬A is equivalent to A for atomic A. This is an axiom for all
atomic formulas not of the form t ↓, and also for those of that form when t has the form
IntersectLines(u, v). For other formulas of the form t ↓, we have proved it in Lemma 18. Since
the axioms of ECG are quantifier-free and disjunction-free, it follows that so A− is equivalent
to A for axioms A of the ECG. Now the theorem follows as soon as we check the soundness
of the double-negation interpretation in a multi-sorted logic with partial terms. But that is
straightforward; sorts and partial terms offer no complications over the usual first-order case.
That completes the proof.

Corollary 3 ECG with classical logic is conservative over ECG with intuitionistic logic for
negative formulae.

Proof. For negative A, A− is identical to A.
A typical theorem of Euclid has the form H ⊃ A, where A will be quantifier-free when

formulated in ECG, and H is a collection of hypotheses that certain points are distinct, or
certain incidence relations hold or do not hold. As Proclus pointed out, sometimes this implies
a theorem formulated by cases. For example, Euclid I.2 has one proof if A = C and another
proof if A 6= C. Using the double-negation interpretation, we find a proof that A = C ∨A 6= C
implies the conclusion of Euclid 1.2, but without the law of the excluded middle we cannot
conclude the “uniform version” of Euclid I.2.

Recall the example given above of Euclid’s Prop. I.6, where Axiom 75 is used, but the same
conclusion can be reached without it. Since Axiom 75 is classically tautological, the double-
negation interpretation shows that it is always eliminable from proofs of negative theorems. But
all the theorems in Euclid are either already negative, or assert the existence of some objects that
can be constructed using the terms of ECG; when formulated more explicitly, they are negative
in the sense that they say that the result of a certain construction has certain (quantifier-free)
properties.

13 From proofs to geometric algorithms

In this section we take up our plan of doing for ECG what cut-elimination and recursive
realizability did for intuitionistic arithmetic and analysis, namely, to show that existence proofs
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lead to programs (or terms) producing the object whose existence is proved. In the case of ECG
we want to produce geometrical constructions, not just recursive constructions (which could
already be produced by known techniques, since ECG is interpretable in Heyting’s arithmetic
of finite types). Terms of ECG correspond in a natural way to straightedge and compass
constructions.

Theorem 6 (Geometric constructions extracted from intuitionistic proofs) (i)Suppose
ECG proves P (x) ⊃ ∃y φ(x, y) where P is negative (does not contain ∃ or ∨). Then there is a
term t(x) of ECG (representing a geometric construction) such that P (x) ⊃ (φ(x, t(x)) is also
provable in ECG.

(ii) Same as (i) but with ECGD in place of ECG.

(iii) Let ECG + DE be ECG, augmented with a constant D and the axiom saying D is a
test-for-equality function. Then the analogue of (i) holds for ECG + DE.

Proof. We use cut-elimination.9 Since our axiomatization is quantifier-free, if ψ → ∃y φ is prov-
able in constructive ECG, then there is a list Γ of quantifier-free axioms such that Γ, ψ ⇒ ∃y φ
is provable by a cut-free (hence quantifier-free) proof. Since our axiomatization is disjunction-
free, by [14] (or rather, by its adaptation to multi-sorted logic with the logic of partial terms)
we can permute the inferences so that the existential quantifier is introduced at the last step.
Then we obtain the desired proof just by omitting the last step of the proof. That completes
the proof of part (i). All the work was in arranging the axiom system to be quantifier-free and
disjunction-free. Part (iii) is proved in the same way, noting that the axioms for D are also
disjunction-free.

Part (ii) requires a bit more work. Since Axiom 75 contains a disjunction, there is an
issue about permuting the inferences in a cut-free proof. Suppose that we have a cut-proof of
Γ ⇒ ψ → ∃y φ, where Γ is a list of axioms (or subformulas of axioms) of ECGD. Among Γ
there may be occurrences of Axiom 75, which contains a disjunction. We prove by induction on
the number of disjunctions in Γ that there exists a term t of ECGD and a list ∆ of axioms
of ECGD such that Γ,∆ ⇒ φ(t) is provable. The basis case, when there are no disjunctions,
is part (i) of the theorem. Now for the induction step. If the ∃ on the right is introduced at a
lower level (nearer the end-sequent) than the lowest introduction of disjunction on the left, then
we can complete the proof as above, since the line just before the ∃ is introduced will contain
the desired term, and the ∃-introduction can just be postponed until the end. Otherwise there
is a part of the proof that looks like this:

AB > AC,Γ1 ⇒ ∃y φ AB < AC,Γ2 ⇒ ∃y φ
AB > AC ∨AB < AC,Γ1,Γ2 ⇒ ∃y φ

By induction hypothesis, there are terms t1 and t2 such that AB > AC,Γ1 ⇒ φ(t1) is
provable and AB < AC,Γ2 ⇒ φ(t2) is provable. Let t be the term if (AB > AC, t1, t2). Then
ECGD proves AB > AC ⊃ t = t1 (by Axiom 76), and ECGD proves AB < AC ⊃ t = t2.
Hence, for some list ∆ of axioms of ECGD, there is a cut-free proof of AB > AC,∆,Γ1 ⇒ φ(t),
and a cut-free proof of AB < AC,∆,Γ2 ⇒ φ(t). These two proofs can then be combined as
follows:

AB > AC,∆,Γ1 ⇒ φ(t) AB < AC,∆,Γ2 ⇒ φ(t)

AB > AC ∨AB < AC,∆,Γ1,Γ2 ⇒ φ(t)

That completes the induction step, and with it, the proof of the lemma.

Example 1. The “other intersection point”. Many Euclidean constructions involve construct-
ing one intersection point P of a line L = Line (A,B) and a circle C, and then we say “Let

9In fact, we use cut-elimination for many-sorted logic with the logic of partial terms. The details of the cut-
elimination theorem for such logics have not been published, but they are not significantly different from Gentzen’s
formulation for first-order logic.
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Q be the other intersection point of L and C”. Of course we can prove “if P lies on L and
C and the two intersection points of L and C are not equal, then there exists an x such that
x 6= P ∧ on (x,L) ∧ On (x,C).” Then by the theorem, there must be a term t(A,B,C, P ) such
that, under the stated conditions, t(A,B,C, P ) is an intersection point of L and C that is not
equal to P . It is not immediately obvious what this term t might be, and it would be interesting
to extract it by computer from a proof. But we should be able to see directly how such a term
could be constructed.

Here is a sketch of such a construction. First, project the center of C onto line L, obtaining
point R on L. Since the two intersection points are distinct, R 6= P . Then we ask whether (A,B)
is in the same order on L as (R,P ) or not. Now Definition 71 shows how to construct a certain
point E (given by a term involving A andB) such that (A,B) is in the same order as (R,P ) if and
only if ERP is a left turn. And the proof of Lemma 8 shows how to construct a (complicated)
term `(A,B, P,C) that will be equal to γ if and only if ERP is a left turn. If ERP is a right turn,
then `(A,B, P,C) can be arranged to be another specific point α′ on the other side of αβ from
γ, the same distance from line αβ along line βγ as α, but on the other side. Combining this term
` with terms representing an appropriate dilation, translation, and rotations, we can construct
a term f(A,B, P,C) such that if (A,B) has the same order as (R, P ) then (f(A,B, P,C) = A,
and if (A,B) has the opposite order as (R,P ), it is another point A′ with B(A,B,A′. Hence
(f(A,B, P,C), B) has the same or opposite order as (A,B), depending on whether (A,B) has
the same or opposite order as (R,P ). Note that if (A,B) has the same order as (R,P ), then
P = IntersectLineCircle2(L,C), while if not, P = IntersectLineCircle1(L,C). Hence we can
take

t(A,B,C, P ) = IntersectLineCircle1(Line (f(A,B, P,C), B), C)

as the “other intersection point” constructor.
In case one thinks, “this is not what Euclid had in mind!”, that is of course true; but

Euclid never tried to give uniform constructions of this type. Perhaps the complexity of this
construction is one reason why not. This example shows that one could conservatively add a
function symbol to ECG for “the other intersection point”.

Theorem 7 (Geometric constructions extracted from classical proofs) Suppose ECG
with classical logic proves P (x) ⊃ ∃y φ(x, y) where P is quantifier-free and disjunction-free. Then
there are terms t1(x), . . . , tn(x) of ECG such that P (x) ⊃ φ(x, t1(x)) ∨ . . . ∨ φ(x, tn(x)) is also
provable in ECG with classical logic.

Proof. This is a special case of Herbrand’s theorem.

Example 2. Euclid’s proof of Book I, Proposition 2 provides us with two such constructions,
t1(A,B,C) = C and t2(A,B,C) the result of Euclid’s construction of a point D with AD = BC,
valid if A 6= B. Classically we have ∀A,B,C ∃D(AD = BC), but we need two terms t1 and t2
to cover all cases.

Example 3. Let P and Q be distinct points and L a given line, and A, B, and C points on
L, with A and B on the same side of C. Then there exists a point D which is equal to P if B
is between A and C and equal to Q if A is between B and C. The two terms t1 and t2 for this
example can be taken to be the variables P and Q. One term will not suffice, since D cannot
depend continuously on A and B, but all constructed points do depend continuously on their
parameters. This classical theorem is therefore not constructively provable.

We mentioned above that ECG cannot prove any non-trivial disjunctive theorem. That is
a simple consequence of the fact that its axioms contain no disjunction. We now spell this out:

Theorem 8 ( ECG cannot prove a nontrivial disjunctive theorem) Suppose ECG proves
H(x) ⊃ P (x) ∨ Q(x), where H is negative. Then either ECG proves H(x) ⊃ P (x) or ECG
proves H(x) ⊃ Q(x). (This result depends only on the lack of disjunction in the axioms of
ECG.)
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Proof. Consider a cut-free proof of Γ,H(x) ⊃ P (x) ∨ Q(x), where Γ is a list of some axioms of
ECG. Tracing the disjunction upwards in the proof, if we reach a place where the disjunction
was introduced on the right before reaching a leaf of the proof tree, then we can erase the other
disjunct below that introduction, obtaining a proof of one disjunct as required. If we reach a
leaf of the proof tree with P (x) ∨ Q(x) still present on the right, then it occurs on the left,
where it appears positively. Its descendants will also be positive, so it cannot participate in in
application of the rule for proof by cases (which introduces ∨ in the left side of a sequent); and
it cannot reach left side of the bottom sequent, namely Γ,H(x), as these formulas contain no
disjunction. But a glance at the rules of cut-free proof, e.g. on p. 442 of [13], will show that
these are the only possibilities. That completes the proof.

Theorem 9 (Disjunction Properties for ECG and ECGD) Suppose ECGD proves

H(x) ⊃ P (x) ∨Q(x)

where H is negative. Then there is a term t(x) of ECGD such that ECG proves

H(x) ⊃ t(x) = α ∨ t(x) = β

and ECGD proves
t(x) = α ⊃ P (x) ∧ t(x) = β ⊃ Q(x).

(Here α and β are two constants of ECGD, with α 6= β an axiom.)

Proof. Suppose ECGD proves H(x) ⊃ P (x) ∨Q(x). Then also ECGD proves

H(x) ⊃ ∃y ((y = α ⊃ P (x)) ∧ (y = β ⊃ Q(x))).

The formula on the right is disjunction-free, so by Theorem 6, there is a term t as required.

14 Conclusions

We have given a quantifier-free, disjunction-free axiomatization ECG of Euclidean Constructive
Geometry, making use of the Logic of Partial Terms (LPT). We have verified that this theory
is a reasonable version of intuitionistic geometry, by checking that its models are planes over
Euclidean fields. Past versions of intuitionistic geometry have included either apartness or
decidable equality. Both of these destroy the property of continuity that the terms of ECG
possess. The terms of this theory correspond in a natural way to Euclidean straightedge-and
compass constructions. Making use of more-or-less standard proof-theoretical tools, we have
shown that proofs of existential theorems contain Euclidean constructions of the objects proved
to exist, and that these constructions can be automatically extracted from such proofs. As a
corollary, objects proved to exist in ECG depend continuously on parameters.

We set out to pursue the analogy

formal number theory

Turing computable functions
=

intuitionistic geometry

geometric constructions

and we think that we have found the correct theory ECG to place on the right side of this

equation.
We have shown that Euclid is essentially constructive, in the process exposing these inter-

esting facts:

• in constructive geometry, we need a rigid compass (for the uniform version of Prop. I.2).

• We need Markov’s principle to prove the fundamental properties of same-side and opposite-
side of a line. We therefore conclude that Markov’s principle is fundamental to geometry;
theories without it do not correspond to our geometrical intuition.
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• Different versions of the parallel postulate correspond to different axiom systems for Eu-
clidean fields: Euclid’s postulate 5 amounts to assuming 1/x is defined when x > 0∨x < 0,
while Axiom 58 amounts to assuming that x 6= 0 implies 1/x is defined. It may be simpler
to determine the logical relations between these field theories than to work directly in
geometrical theories.

• Axiom 58 implies Euclid’s Postulate 5, and conversely with the aid of Axiom 75 (corre-
sponding to x 6= 0 ⊃ 0 < x ∨ x < 0). That the reverse implications are not constructively
valid is shown in [3].

• Since ECG and ECGD correspond well to Euclid and to constructive field theories, we
conclude that apartness is not necessary for constructive geometry.

15 Appendix: List of axioms of ECG

In this section we list the axioms of ECG given above without comment, for reference. The
underlying logic is three-sorted intuitionistic logic (sorts for points, lines, and circles) with the
logic of partial terms LPT [2], p. 97.

In the following list, the symbol := is used for a definition (macro). The symbols on the left
side are to be replaced (with argument substitution) in their subsequent uses by the right hand
side of the definition. α, β, and γ are the only constant symbols in ECG.

The underlying logic of LPT provides the following:

∀x(t ↓ ∧A(x) ⊃ A(t))

A(t) ∧ t ↓⊃ ∃xA(x)

f(t1, . . . , tn) ↓⊃ t1 ↓ ∧ . . . ∧ tn ↓
R(t1, . . . , tn) ⊃ t1 ↓ ∧ . . . ∧ tn ↓
t ∼= s := (t ↓⊃ s ↓ ∧t = s) ∧ (s ↓⊃ t ↓ ∧t = s)

x ↓ for every variable x

c ↓ for every constant c

In listing the axioms of ECG, it is not necessary to explicitly indicate the types (or sorts)
of the variables, as this can be mechanically deduced from the signature of the relation and
function symbols. (That is one reason for distinguishing on and On .) The signatures of the
function symbols have also not been explicitly given here, as the names chosen for them convey
that information. The following are the axioms of ECG, including the definitions used in stating
the axioms.

¬¬x = y ⊃ x = y (1)

¬¬δ(A,B,C,D) ⊃ δ(A,B,C,D) (2)

¬¬on (P,L) ⊃ on (P,L) (3)

¬¬On (P,C) ⊃ On (P,C) (4)

P = IntersectLines(L,K) ⊃ on(P,L) ∧ on (P,K) (5)

IntersectLines(L,K) ∼= IntersectLines(K,L) (6)

P = IntersectLineCircle1(L,C) ⊃ on (P,L) ∧ On (P,C) (7)

P = IntersectLineCircle2(L,C) ⊃ on (P,L) ∧ On (P,C) (8)

P = IntersectCircles1(C,K) ⊃ On (P,C) ∧ On (P,K) (9)

P = IntersectCircles2(C,K) ⊃ On (P,C) ∧ On (P,K) (10)

on (P,L) ∧ ¬on (P,K) ⊃ IntersectLines(L,K) ↓ (11)
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IntersectLines(L,K) ↓ ∧on (P,L) ∧ on (P,K) ⊃ P = IntersectLines(L,K) (12)

on (P,L) ∧ On (P,C) ⊃ IntersectLineCircle1(L,C) ↓ (13)

on (P,L) ∧ On (P,C) ⊃ IntersectLineCircle2(L,C) ↓ (14)

On (P,C) ∧ On (P,K) ⊃ IntersectCircles1(C,K) ↓ (15)

On (P,C) ∧ On (P,K) ⊃ IntersectCircles2(C,K) ↓ (16)

Line (A,B) ↓ ↔A 6= B (17)

Circle (A,B) ↓ (18)

Line (pointOn1(L), pointOn2 (L)) = L (19)

pointOn1(Line (A,B)) = A (20)

pointOn2(Line (A,B)) = B (21)

pointOn1(L) 6= pointOn2(L) (22)

Circle (center (C), pointOnCircle(C)) = C (23)

center (Circle (A,B)) = A (24)

pointOnCircle(Circle (A,B)) = B (25)

center (C) 6= pointOnCircle(C) (26)

¬on (α,Line (β, γ) (27)

¬on (β,Line (α, γ) (28)

¬on (γ,Line (α,β) (29)

on (A,Line (A,B)) (30)

on (B,Line (A,B)) (31)

on (P,L) ∧ on (Q, L) ∧ on (R,Line (P,Q)) ⊃ on (R,L) (32)

B(a, b, c) ⊃ B(c, b, a) (33)

¬¬B(a, b, c) ⊃ B(a, b, c) (34)

a 6= b ∧ a 6= c ∧ b 6= c ⊃ (35)

(¬B(a, b, c) ∧ ¬B(b, c, a) ⊃ ¬¬B(c, a, b))

(¬B(b, c, a) ∧ ¬B(c, a, b) ⊃ ¬¬B(a, b, c))

(¬B(c, a, b) ∧ ¬B(a, b, c) ⊃ ¬¬B(b, c, a))

¬(B(a, b, c) ∧ B(b, c, a)) ∧ ¬(B(a, b, c) ∧ B(b, a, c))

¬(B(b, c, a) ∧ B(b, a, c))

B(P, IntersectLines(Line(P,Q), Line( (36)

IntersectCircles1(Circle(P,Q), Circle(Q, P )),

IntersectCircles2(Circle(P,Q), Circle(Q, P ))),Q)

B(IntersectLineCircle1(Line(P,Q), Circle(P,Q)), P,Q) (37)

B(P,Q, IntersectLineCircle2(Line(P,Q), Circle(Q, P ))) (38)

OppositeSide(P,Q,L) := B(P,Q, IntersectLines(Line (P,Q), L) (39)

SameSide(P,Q,L) := ¬B(P,Q, IntersectLines(Line (P,Q), L)) (40)

SameSide(A,B,L) ∧ SameSide(B,C,L) ⊃ SameSide(A,C,L) (41)

OppositeSide(A,B,L) ∧ OppositeSide(B,C,L) ⊃ SameSide(A,C,L) (42)

on (P,Ray (O,B)) := on (P,Line (O,B)) ∧ ¬B(P,O, B) (43)

On (P,Circle (A,Q))↔δ(A, P,A,Q) ∧A 6= Q (44)

A 6= B ∧ C 6= D ⊃ (45)
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(on (IntersectLineCircle1(Line (A,B),Circle3 (A,C,D)),Ray (A,B)) ∧
δ(A, IntersectLineCircle1(Line (A,B),Circle3 (A,C,D)), C,D)

δ(A,B,C,D) ∧ δ(A, B,E, F ) ⊃ δ(C,D,E, F ) (46)

B(A,B,C) ∧ B(P,Q,R) ∧ δ(A,B, P,Q) ∧ δ(B,C,Q,R) ⊃ δ(A,C, P,R) (47)

AB < CD := B(C, IntersectLineCircle2(Line (C,D),Circle3 (C,A,B)),D) (48)

CD ≤ AB := ¬B(C, IntersectLineCircle2(Line (C,D),Circle3 (C,A,B)),D) (49)

AB = CD := δ(A, B,C,D) (50)

AB = PQ ∧BC = QR ∧AC = PR ∧ PQ = UV ∧QR = VW ∧ PR = UV ⊃ (51)

AB = UV ∧BC = VW ∧ AC = UW

A 6= B ∧A 6= C ∧B 6= C ∧A′ 6= B′ ∧ (52)

B′′ = IntersectLineCircle1(Line (A′, B′), C) ∧
K1 = Circle3 (B′′, B,C) ∧K2 = Circle3 (A′′, A,C) ⊃
IntersectCircles1(K1,K2) ↓ ∧IntersectCircles2(K1,K2) ↓ ∧
OppositeSide(IntersectCircles1(K1,K2),

IntersectCircles2(K1,K2),Line (A′, B′))

AP ≤ AB ∧ on (P,L) ⊃ IntersectLineCircle1(L,Circle (A,B)) ↓ (53)

AP ≤ AB ∧ on (P,L) ⊃ IntersectLineCircle2(L,Circle (A,B)) ↓ (54)

A = center (C) ∧A = center (K) ∧ On (P,C) ∧ On (Q,K)∧AP = AQ ⊃ (55)

IntersectLineCircle1(L,C) ∼= IntersectLineCircle1(K,C) ∧
IntersectLineCircle2(L,C) ∼= IntersectLineCircle2(K,C)

On (P,C) ∧AP ≤ AB ⊃ (56)

IntersectCircles1(C,Circle (A,B)) ↓ ∧ IntersectCircles2(C,Circle (A,B)) ↓
A = center (C1) ∧A = center (C1) ∧ On (P,C1) ∧ On (Q,C1) ∧ AP = AQ ⊃ (57)

IntersectCircles1(C1,K) ∼= IntersectCircles1(C2,K) ∧
IntersectCircles2(C1,K) ∼= IntersectCircles2(C2,K) ∧
IntersectCircles1(K,C1) ∼= IntersectCircles1(K,C2) ∧
IntersectCircles2(K,C1) ∼= IntersectCircles2(K,C2) ∧

¬IntersectLines(K,L) ↓ ∧on(p,K) ∧ on(p,M) ∧M 6= K ⊃ IntersectLines(L,M) (58)

Left (A,B,C) := C = IntersectCircles1(Circle (A,C),Circle (B,C)) (59)

Right (A,B,C) := C = IntersectCircles2(Circle (A,C),Circle (B,C)) (60)

Left (α,β, γ) (61)

Right (α, γ, β) (62)

Left (P,Q, R) ∧ P 6= P ′ ∧R 6= R′ ∧ on(P ′,Ray (Q,P )) ∧ on (R′,Ray (Q,R)) (63)

⊃ Left (P ′, Q′, R′)

Left (P,Q, R) ∧ ¬B(P, IntersectLines(Line (Q,R),Line (P, P ′)), P ′) (64)

⊃ Left (P ′, Q,R)

Left (P,Q, R) ∧ ¬B(R, IntersectLines(Line (Q, P ),Line (R,R′)), P ′) (65)

⊃ Left (P,Q, R′)

Left (A,B,C) ∧AB = PQ ∧BC = QR ∧ (66)

AC = PR ∧AP = BQ ∧AP = CR ⊃ Left (P,Q,R)

P 6= P ′ ∧R 6= R′ ∧ on(P ′,Ray (Q,P )) ∧ on (R′,Ray (Q,R)) ∧ (67)
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Right (P,Q,R) ⊃ Right (P ′, Q′, R′)

Right (P,Q,R) ∧ ¬B(P, IntersectLines(Line (Q,R), Line (P,P ′)), P ′) (68)

⊃ Right (P ′, Q, R)

Right (P,Q,R) ∧ ¬B(R, IntersectLines(Line (Q,P ),Line (R,R′)), P ′) (69)

⊃ Right (P,Q,R′)

Right (A,B,C) ∧AB = PQ ∧BC = QR ∧ (70)

AC = PR ∧AP = BQ ∧AP = CR ⊃ Right (P,Q,R)

SameOrder (A,B, P,Q) := (71)

A 6= B ∧ P 6= Q ∧ on (P,Line (A,B)) ∧ on (Q,Line (A,B)) ∧
Left (P,Q, IntersectCircles1(Circle (A,B),Circle (B,A))

P = IntersectLineCircle1(Line (A,B),C) ∧ (72)

Q = IntersectLineCircle2(Line (A,B), C) ∧ P 6= Q

⊃ SameOrder (A,B, P,Q)

R = IntersectCircles1(Circle (A,P ),Circle (B,Q)) ⊃ ¬Right (A,B,R) (73)

R = IntersectCircles2(Circle (A,P ),Circle (B,Q)) ⊃ ¬Left (A,B,R) (74)

B 6= C ∧ B(A,B,D) ∧ B(A,C,D) ⊃ B(A,B,C) ∨ B(A,C,B) (75)

(AB > CD ⊃ if(AB > CD,P,Q) = P ) ∧ (AB < CD ⊃ if(AB > CD,P,Q) = Q)(76)
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